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1 Introduction

In statistical machine translation, the fundamental problem of word alignment is the process of
finding word-to-word connections (i.e. translations) across languages given a sentence in one lan-
guage and its translation in another. In more formal terms, given a source-language sentence F of
n words (f1, f2, ..., fn) and a target-language sentence E of m words (e1, e2, ..., em), an alignment
is a mapping between subsets of F (elements of the power set 2F ) and subsets of E (elements of
2E). Instead of a mapping between full subsets, an alignment is usually indicated as a collection
of links, each of which connects some fj (1 ≤ j ≤ n) to some ei (1 ≤ i ≤ m). The total collection
of links makes up the alignment for the given sentence pair.

In the general case, the total number of possible alignments, called the alignment space, is
extremely large. With no restrictions in place and an n-word sentence pair, there are n2 possible
alignment links and 2n2

possible alignments. If a one-to-one constraint is enforced, such that
one word in F may only align to one word in E, this exponential space can be reduced to n!.
Additional constraints may further restrict the alignment space or lead to related spaces (Cherry
and Lin, 2006a).

The natural goal of constrained alignment is to restrict the alignment space in such a way that
“bad” or linguistically very unlikely alignments are ruled out while “good” or linguistically sound
alignments remain possible or are preferred. Word alignment is most commonly carried out within
the scope of a parallel sentence represented as a flat stream of plain-text words or as a flat stream
of sets of feature–value pairs. However, in the realm of natural language, it is also possible to
represent the structure inherent in a sentence; further, the structure can provide useful information
about what alignments are “good” and what alignments are “bad” beyond what information can be
extracted from a flat string. In this paper, we will consider a number of techniques for representing
different levels of syntactic structure in the alignment process and examine the benefit of the
information it provides.

First, in Section 2, we briefly describe basic statistical alignment models that do not take
into account any overt representation of the syntax of the sentence they are aligning. A number
of published extensions to or replacements for the base models will be discussed in Section 3;
these approaches all explicitly model some level of structure on one or both sides of the parallel
sentence pair. Section 4 considers tradeoffs that these models introduce, compares their expressive
and restrictive powers, and concludes the paper with some possible avenues for future alignment
research.
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2 Non-Syntax-Based Methods

Since the introduction of statistical machine translation in 1990, the most common approach to
word alignment as a subtask has been with generative models. In the past few years, however,
work has been carried out in discriminative approaches as well. In this section, we will review the
IBM models (the standard generative approach) and a discriminative alignment technique that has
shown promising results.

2.1 Generative Models

A generative approach to word alignment begins with a generative story: for an alignment from
English to French, for example, the story is that each of the words in the English sentence in-
dividually generated a certain number of the words in the French sentence (Brown et al., 1990);
the task of alignment is to recover these correspondences. The generation of the French sentence
occurs in a series of three steps. In an initial fertility step, each English word produces a certain
number of French word placeholders. A lexical production step fills in French words for each of
these placeholders, and then the words may be reordered in a final distortion step. Together, the
fertility, lexical translation, and distortion models specify the probability of producing the French
sentence given the initial English sentence: P (F |E).

The de facto models of statistical word alignment in recent years have been those developed by
IBM in 1993 (Brown et al., 1993) and implemented more recently in the GIZA++ toolkit (Och and
Ney, 2003). Under these generative formulations, the alignment of a sentence is modeled as a hidden
variable; instead of computing the probability of a source sentence given the target, P (F |E), the
calculation also takes into account the alignment of the sentence pair, P (F,A |E). In this case, an
element aj of A = a1, a2, ..., aj represents the word index (or indexes, more generally) in E that fj

is aligned to.
The five original IBM models range in complexity, statistical deficiency, and amount of linguistic

knowledge encapsulated, although none of the models takes any explicit account of the syntax of
the sentences being aligned. Model 1 performs one-to-one alignments and treats F and E as simple
“bags of words,” meaning that the word order plays no role in the sentence alignment:

P (F,A |E) =
P (n |m)

(m + 1)n

n
∏

j=1

P (fj | eaj
) (1)

Here, the first term on the right-hand side provides a probability distribution over the length of the
sentence pair, and P (fj | eaj

) is the lexical probability of fj given the word in E it is aligned to. In
Model 2, the probability of an alignment link depends on the positions of the words being aligned:

P (F,A |E) = P (n |m)
n

∏

j=1

(

P (aj | j, n,m)P (fj | eaj
)
)

(2)

Thus, Model 1 is just a special case of Model 2 where the alignment-position probability P (aj | j, n,m)
is just a uniform 1

m+1
.

Later IBM models begin to include more linguistic intuition with the introduction of fertility
and distortion models. The concept of fertility represents the linguistic observation that some
source words may more naturally translate into the target language as multiple words (English not
to French ne ... pas, for example) or as no words at all. Model 3 expresses this as P (φ | ei), the
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probability that a word ei will generate φ words in F . Distortion, which also appears beginning
in Model 3, considers permutations of the words in F and assigns probabilities to them. Begin-
ning in Model 4, a first-order dependency is introduced into the alignment model that specifies a
distribution for a fertile alignment (ei, fj1 fj2 ... fjk) over the placements of fj2 through fjk.

In addition to the IBM models, another commom discriminative approach to word alignment is
the HMM model of Vogel, Ney, and Tillmann (1996), which also includes a first-order dependency
by means of a hidden Markov model. It represents the linguistic intuition that words in parallel
sentences often tend to group together into clusters by conditioning the alignment for fj on the
difference in position between it and the alignment for fj−1:

P (F,A |E) =
n

∏

j=1

(

P (aj | aj−1,m)P (fj | eaj
)
)

(3)

2.2 Discriminative Models

In contrast to the generative approach described above, work has also been carried out on taking
a discriminative view of the word alignment problem. In the discriminative approach, all possible
alignments are considered and assigned scores; the final output is the matching with the highest
total score, possibly subject to some set of constraints. The discriminative framework is well suited
for incorporating arbitrary features to make up the score for each alignment link, which is more
difficult to do in carefully factored statistical generative models. On the other hand, discriminative
training relies on at least a small amount of gold-standard training data, whereas generative models
are completely unsupervised.

Taskar, Lacoste-Julien, and Klein (2005) proposed a general, but non-syntax-aware, discrimina-
tive method for computing scores of possible alignments based on a weighted function of arbitrary
features — including, if desired, predictions from the IBM generative models. Each possible align-
ment link (ei, fj) is assigned a score v(ei, fj) = wT f(ei, fj), where f(ei, fj) is a vector of feature
values for the link and w is a vector of learned weights for those features. The authors model a
number of features on the type of information represented in the IBM models, with the added con-
straint that all of their alignments are either one-to-one or one-to-zero. These include co-occurrence
features (Dice coefficients on pairs of words), position difference features, and co-occurrence fea-
tures for the words following the current pair being aligned (to approximate first-order dependency
features from the IBM and HMM models). In addition, there are word-string similarity features
and particular lexical translation features for very high-frequency words. IBM Model 4 predictions
can also be added as another feature; when they are included, Taskar, Lacoste-Julien, and Klein
(2005) report the lowest published alignment error rate (AER) for a French–English alignment task.

3 General Syntax-Based Approaches

In extending — or replacing — the general approaches to word alignment discussed in Section 2,
syntactic information has the potental to provide useful guidance during the search of an align-
ment space to rule out or de-emphasize incorrect alignments and shift greater likelihood to correct
alignments. The movement of a multi-word noun phrase in translation from an SOV to a VSO
language, for example, can be modeled as a single operation on the phrase rather than a series of (at
least somewhat) independent operations on individual words (Cherry and Lin, 2006a). This type
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of modeling also has the simultaneous effect of restricting the alignment space in a meaningful way:
if a noun phrase e1, e2, e3 must be aligned as one unit, as in the previous example, syntactically and
intuitively incorrect alignments for it such as f1, f7, f8 are immediately ruled out. The enforcement
of such a phrasal cohesion constraint is usually maintained in gold-standard alignments (Cherry
and Lin, 2006b).

Further, DeNero and Klein (2007) provide a motivational example for why syntax-based word
alignment can be important for syntax-aware translation systems. In their example (Figure 1),
incorrect word alignments make it impossible for further steps in a syntax-based MT system to
extract transfer rules from given sentence pairs. Given the word alignments in Figure 1, a baseline
phrase extractor succeeds at extracting the phrase pair (jobs are, emplois sont). However, the
incorrect alignment between the and la makes it impossible for a syntax-based phrase extractor to
extract any contiguous French spans corresponding to constituents in the English parse tree.

Figure 1: Word alignments that are incompatible with a target-language parse may severely impact
syntax-based MT. Here, the incorrect (the, la) alignment prevents any constituent phrase from being
extracted (DeNero and Klein, 2007).

3.1 Syntax-Based Distortion Model

To address the above problem, DeNero and Klein (2007) modify the distortion component of the
basic HMM model (Vogel, Ney, and Tillmann, 1996). Instead of basing the alignment probability
for aj on the difference in string position between aj and aj−1, the new syntax-based distortion
component models the likelihood of aj given the path in a parse tree between aj−1 and aj , repre-
sented as a series of “pop” operations moving from child to parent in the tree, a “move” operation
between two siblings of the same parent, and a series of “push” operations moving from parent to
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child. Probabilities for these transitions, conditioned on the current node and its parent, siblings,
or children, were learned from 100,000 parsed sentences.

On test sets for French–English and Chinese–English alignment, the syntactic-distortion HMM
model performed about equally as well as the basic HMM model when evaluated against manu-
ally aligned data (Figure 2). Syntax-based distortion led to an improvement in precision in both
language pairs, but with a consequent loss in recall. Both HMM models outperformed a GIZA++
training of the IBM models on the same data set. Some of the results may be explained, however,
by the authors’ use of thresholding and combination methods in producing the final alignments: the
HMM models were trained in both the E-to-F and F -to-E directions, then combined with a variety
of thresholding heuristics and intersection or union types. On the French–English task, the authors
report an AER of 0.084 for the syntactic HMM using a hard intersection and no thresholding; this
is more comparable to GIZA++’s AER of 0.086 under the same conditions.

Chinese–English French–English

Model Prec Rec AER Prec Rec AER

Basic HMM 0.816 0.788 0.198 0.939 0.930 0.065
Syntactic HMM 0.822 0.768 0.205 0.952 0.915 0.064
GIZA++ 0.619 0.826 0.297 0.960 0.861 0.086

Figure 2: A modified HMM distortion model (DeNero and Klein, 2007) for Chinese–English and
French–English alignment performs comparably to the basic HMM model.

3.2 Alignments from Tree-to-String Models

The tree-to-string model of translation (Yamada and Knight, 2001) modifies the generative story
from Section 2.1 to start with a target-language parse tree and transform it into a source-language
string; tracing the effects of the transformations specifies a word alignment. In the tree-to-string
model, the word-level fertility and distortion steps are replaced with two tree operations: insertion
of new lexical-level nodes and reordering of the daughter nodes of a single parent. After the
reordering, node insertion, and lexical translation steps, the leaf nodes are read off to produce the
output string.

Yamada and Knight (2001) conducted a small initial alignment experiment using the model,
which compared its performance to IBM Model 5 on a corpus of 2121 short Japanese–English
sentences with English parse trees. Alignments produced on the first 50 sentences of the training
set were evaluated by humans as either “OK” (1 point), “not sure” (0.5 points), or “wrong” (0
points). The tree-to-string model received an average score of 0.582 per alignment, while Model 5
scored 0.431. The perplexity of the tree-to-string model on the training set (15.79) was between
Model 1 (24.01) and Model 5 (9.84).

The basic tree-to-string model was extended by Gildea (2003) to allow for syntactially well-
formed departures from the structure of the target-language parse, thus making the model better
equipped to handle divergent linguistic structures or free translations between the source and target
sentences. His “loosely tree-based” model introduces the concept of subtree cloning, which permits
more expressive reordering than the base tree-to-string model by copying a subtree and inserting
it as a new node somewhere else in the parse tree. The operation is governed by two probabilities:
for a node np, a single parameter controls the probabilty of inserting a cloned subtree as a new
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child of np; then, the root of the subtree to clone is chosen uniformly from any other node nc in
the tree.

Training on a corpus of 4982 parallel Korean–English sentences with manually produced Korean
parse trees, and testing on 101 sentences, Gildea (2003) compared the tree-to-string model with
subtree cloning to the basic tree-to-string model of Yamada and Knight (2001) and to IBM Models
1, 2, and 3. The results in Figure 3 show a reduction in AER once the subtree cloning operation
is introduced, plus a further reduction when the probability of inserting a new lexical-level node
to the left of an existing node — one of Yamada and Knight’s original model parameters — is
manually fixed at 0.5 rather than being estimated during the EM training of the model.

Model AER

IBM Model 1 0.37
IBM Model 2 0.35
IBM Model 3 0.43
Tree-to-String 0.42
Tree-to-String + Cloning 0.36
Tree-to-String + Cloning + Fixed Pins(left) 0.32

Figure 3: Korean–English alignments results show that extending the basic tree-to-string model
with a subtree cloning operation (Gildea, 2003) improves alignment error rate.

3.3 Inversion Transduction Grammars

Wu’s (1997) Inversion Transduction Grammar (ITG) was originally developed as a formalism for
synchronously parsing bilingual text, and thus it provides a word alignment as a side effect. It
parses and produces output simultaneously in both a source-side and a target-side output stream.
In linguistic terms, the grammar is minimal, representing only a single non-terminal and three
context-free grammar rules:

A → [A A] (4)

A → 〈A A〉 (5)

A → f/e (6)

In the standard ITG notation, the square brackets in Equation 4 indicate that the right-hand side
constituents are produced in the same left-to-right order in both source and target streams; the
angled brackets in Equation 5 indicate that the order of the constituents is reversed in the target
stream. Equation 6 indicates that a terminal string f is produced in the source stream while e is
produced in the target stream.

The simplicity of the ITG formalism has made it a useful starting point for syntax-constrained
word alignment under a tree-to-tree model where parse information is taken into account in both the
source and target languages. By introducing the constraint that all alignments must be represented
as a binary tree with inversions, but not a restrictive grammar, it searches a comparatively large
subset of the n! space of one-to-one alignments (Cherry and Lin, 2006a) — exploring almost all
of it for short-distance reordering, but rapidly pruning as sentence length gets longer (Wu, 1997).
A further optimization can be made by using a tail-recursive “canonical form” ITG that removes
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redundancy in the search space by deriving only one parse structure for a given alignment (Zhang
and Gildea, 2004; Cherry and Lin, 2006a):

S → A | B | C (7)

A → [A B] | [B B] | [C B] | [A C] | [B C] | [C C] (8)

B → 〈A A〉 | 〈B A〉 | 〈C A〉 | 〈A C〉 | 〈B C〉 | 〈C C〉 (9)

C → f/e (10)

Zhang and Gildea (2004) trained a canonical-form ITG parser on 18,773 sentence pairs of parallel
Chinese–English data, restricting the set to sentences shorter than 25 words in both languages, and
evaluated alignment quality on a test set of 48 sentence pairs of hand-aligned data. For comparison,
they also trained IBM Models 1 and 4, along with Yamada and Knight’s (2001) basic tree-to-string
model and Gildea’s (2003) subtree cloning extension to it. The results, shown in Figure 4, indicate
that the ITG model has the highest precision, highest recall, and lowest AER even though it is
limited to one-to-one alignments. Similar results were shown for a French–English task, using a
training set of 20,000 sentence pairs and a larger test set of 447 sentence pairs, although in the
French case the ITG model was closely matched by IBM Model 4 and the tree-to-string model with
subtree cloning.

Chinese–English French–English

Model Prec Rec AER Prec Rec AER

IBM Model 1 0.56 0.42 0.52 0.63 0.71 0.34
IBM Model 4 0.67 0.43 0.47 0.83 0.83 0.17
ITG 0.68 0.52 0.40 0.82 0.87 0.16
Tree-to-String 0.63 0.41 0.50 — — —
Tree-to-String Cloned 0.65 0.43 0.48 0.84 0.85 0.15

Figure 4: Alignment results from Zhang and Gildea (2004) for various models on Chinese–English
and French–English. The model based on Inversion Transduction Grammar has the best overall
performance.

3.4 Dependency-Augmented ITGs

One criticism of using ITG-based constraints on word alignment is that ITGs are linguistically
rather arbitrary. The canonical form grammar in Equations 7 though 10 has only four non-
terminals, none of which exactly corresponds to a linguistically motivated unit such as a noun
phrase, prepositional phrase, adjective, etc. While ITG-constrained alignment does maintain the
phrasal cohesion constraint introduced at the beginning of Section 3, it is not guaranteed to do so
in a linguistically meaningful way.

ITG efficiency and linguistic phrases can be brought together in a dependency-constrained ITG,
whereby the binary-branching constraint from a basic ITG grammar is extended to disallow ITG
phrases that span across a constituent boundary from the dependency parse (Cherry and Lin,
2006b). In an ITG chart parser, the effect is accomplished by seeding the invalid spans with a
score of either −∞ or a penalty of some intermediate strength. Invalid spans are extractable from
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a dependency representation as shown in Figure 5: valid spans are those where each head–modifier
chain is either completely included or completely excluded.

Figure 5: Invalid spans in a dependency tree contain only parts of a head–modifier chain (Cherry
and Lin, 2006b).

Cherry and Lin (2006b) experimented with a soft dependency constraint in ITG-driven align-
ment. Using a support vector machine (SVM), their discriminative training approach builds on
the non-syntactic approach of Taskar, Lacoste-Julien, and Klein (2005) described in Section 2.2.
With the original features mostly unchanged (Model 4 predictions are excluded, and the function
for calculating word-level correlations between ei and fj is modified), Cherry and Lin add features
for marking inverted ITG rules (those of the type in Equation 5) and invalid spans according to
the dependency tree. Features are defined on instances of ITG production rules and summed over
the complete parse for a sentence. As discriminative training requires some amount of labelled
training examples, the authors created 100 ITG parse trees from gold-standard alignment data by
inducing trees that maximize the number of gold-standard alignments while minimizing the number
of invalid dependency spans used.

The authors conducted two experiments on French–English alignment. The first tested a hard
dependency-constrained ITG parser against an unconstrained ITG and a completely unconstrained
discriminative aligner. For each alignment technique, link scores were calculated as

v(ei, fj) = φ2(ei, fj) − 10−5

∣

∣

∣

∣

i

m
−

j

n

∣

∣

∣

∣

(11)

where φ2 is a co-occurrence measure of the words in the link; this allowed the alignment results to be
compared without taking supervised learning into account. The results of this warm-up experiment
are shown in Figure 6(a). In the second experiment, full supervised learning over feature sets on
100 sentence pairs was included, and hard and soft dependency constraints were compared to the
Taskar, Lacoste-Julien, and Klein (2005) non-syntactic baseline. These results are in Figure 6(b).

Figure 6(a) shows that ruling out invalid dependency spans has a beneficial effect on the word
alignment, with a 34 percent relative reduction in AER compared to unconstrained alignment.
With full feature-based learning turned on, however, Figure 6(b) shows only a 9 percent relative
reduction using hard constraints (and a loss in recall), although learning with soft constraints still
achieves a 22 percent relative AER reduction (and a better recall).

4 Summary and Discussion

The syntax-based and non-syntax-based alignment models we have considered in this paper high-
light a number of tradeoffs in different approaches to the statistical word alignment problem. Many
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Model Prec Rec AER

Unconstrained 0.723 0.845 0.231
ITG 0.764 0.860 0.200
ITG + Hard dep. 0.830 0.873 0.153

Model Prec Rec AER

Unconstrained 0.916 0.860 0.110
ITG + Hard dep. 0.940 0.854 0.100
ITG + Soft dep. 0.944 0.878 0.086

(a) (b)

Figure 6: (a) French–English discriminative alignment results for the simple alignment link score in
Equation 11, and (b) French–English discriminative alignment results with full supervised learning
(Cherry and Lin, 2006b).

of the approaches highlight a fundamental decision among levels of model complexity, computabil-
ity, and statistical correctness. Parameterizations and assumptions made in IBM Models 3 and 4,
for example, lead to probability distributions that do not sum up to 1 (Och and Ney, 2003); Model
5, which provides a statistically non-deficient version of Model 4, requires many more parameters.
As we noted in Section 2.2, the complicated statistics behind some of the generative models makes
them more difficult to adapt, extend, or even compute quickly. Taskar, Lacoste-Julien, and Klein
(2005) report that running GIZA++ training through IBM Model 4 took 18 hours to align 1.1
million words, while their own discriminative approach learned feature weights in six minutes on
100 training sentences or in three hours on 5000 training sentences.

Model complexity or model constraints can also come into conflict with the range of linguistic
phenomena being represented. Gildea’s (2003) extension to the basic Yamada and Knight (2001)
tree-to-string model allowed it to capture a wider range of possible alignments for divergent sentence
structures; a tree-to-tree vesion of the same subtree cloning model ran 20 times faster and reduced
the theoretical complexity in terms of sentence length n from O(n4) to O(n2).

This highlights the problem of choosing to model the “right” level of syntactic information
or syntactic constraints. The probability calculations in Gildea’s subtree cloning operation are
minimal, and the success of the operation seems to depend on a surprisingly uninformed chain of
independently selecting a useful position in the tree to insert a clone, finding the proper subtree
to copy into that location, and generating meaningful lexical translations at the leaves of the
cloned tree while generating null words for the same lexical leaves in their original locations. Still,
allowing subtree cloning as a softening of Yamada and Knight’s original tree constraint improves
alignment results in a number of language pairs. (See Figures 3 and 4.) And, in general, hard
syntactic constraints may prove to be too rigid and restrictive for representing divergent sentence
strucutres or for free translations of parallel sentences. With a discriminant set of features, Cherry
and Lin (2006b) were able to relax a hard dependency tree constraint and achieve better alignment
performance when the tree constraint could sometimes be violated.

4.1 Alignment Spaces

A most important tradeoff in syntactically constrained alignment is being able to rule out incor-
rect alignments while not eliminating correct ones. Cherry and Lin (2006a) investigated this by
comparing a number of constrained alignment spaces reflective of the syntactic models we have
discussed in this paper:

• Permutation space: One-to-one alignments with reorderings allowed. This is the space

9



searched by IBM Model 1 and the discriminative approach by Taskar, Lacoste-Julien, and
Klein (2005); for a sentence of length n, there are n! possible alignments.

• ITG space: Permutation space where reorderings satisfy a binary tree constraint with in-
versions (Wu, 1997). For short sentences, this is nearly all of permutation space; for longer
sentences, the percentage of permutation space covered becomes rapidly smaller.

• Dependency space: Permutation space where phrasal cohesion is maintained. For a depen-
dency tree of one head and n − 1 modifiers, this is permutation space; in the other extreme,
a dependency tree forming a single chain reduces the alignment space to 2n.

• D-ITG space: The intersection of dependency space with ITG space. This is the space
searched by Cherry and Lin’s (2006b) dependency-constrained ITG model.

• HD-ITG space: A subset of D-ITG space where each valid dependency span must also contain
a head word. This space is defined by Cherry and Lin (2006a) as an attempt to keep modifiers
from grouping together in counterintuitive or non-linguistically motivated constituents.

Two experiments explored the effectiveness of these spaces in terms of representational power.
In the first, three searches of permutation space were compared to searches of ITG, dependency,
D-ITG, and HD-ITG space, using a lexical co-occurrence score of the form in Equation 11 to
evaluate each alignment link. The results showed that more complete searches of permuatation
space performed better, as did each successive syntax-based restriction of it. Abridged results are
shown in Figure 7(a). The second experiment considered the restrictiveness of each alignment
space, or the degree to which it ruled out correct alignments: the link score v(ei, fj) was set equal
to 1 if the alignment (ei, fj) appeared in the gold-standard data, 0 if fj was null, or −1 if (ei, fj) was
an incorrect alignment according to the gold standard. The number of gold-standard alignments
missed under each alignment space is shown in Figure 7(b).

Model AER

Permutation space 0.192
ITG space 0.174
Dependency space 0.134
D-ITG space 0.133
HD-ITG space 0.132

Model # Missed

Permutation space 162
ITG space 165
Dependency space 260
D-ITG space 232
HD-ITG space 258

(a) (b)

Figure 7: Comparison of alignment spaces (a) using the alignment link score in Equation 11, and
(b) by number of gold-standard alignments missed (Cherry and Lin, 2006a).

ITG-constrained alignment appears especially advantageous in Figure 7: it rules out almost no
correct alignments when compared to a complete search of permutation space, but its constraints
achieve a noteworthy reduction in AER. Adding dependency constraints (D-ITG space) also ap-
pears quite beneficial to higher alignment quality, although at an increased risk of being unable to
produce a larger number of the gold-standard alignments. The other search spaces (permutation,
dependency, and HD-ITG) either perform poorly or rule out large numbers of correct alignments
for a proportially minimal gain in AER.

10



4.2 Future Work and Questions

Despite the improved alignment quality that syntactically constrained models can provide, syntax-
aware alignment techniques are not yet on equal footing with the more established IBM models
in terms of use or usability. One reason for this may be the lack of an “off-the-shelf” training
toolkit such as GIZA++ (Och and Ney, 2003), which has become the definitive implementation
of the generative IBM and HMM models in recent years and has saved system developers the
effort of working out the models and the training schedule from scratch. With a similar toolkit for
easily training a discriminative or a syntax-aware alignment model, we may see rapid advances in
syntactic alignment technology based on the sheer number of researchers who will be using it.

A number of research questions remain to be worked out. Many of the results reported in
this paper were obtained from fairly small training corpora. As an extreme example, Yamada and
Knight’s (2001) tree-to-string alignment experiment was conducted on just over 2000 short sentences
of parallel text. As it is well known that EM-trained generative models often require large amount
of data to learn reasonable parameters or to produce reasonable output, the authors’ reported IBM
Model 5 score is likely to improve drastically with more training data, possibly overtaking the
syntactic alignment method in performance. A small (5000-sentence) training corpus may be the
key to explaining the performance of the IBM models reported in Figure 3: generally, the more
expressive models (such as Model 3) perform better, but their increased performance may require
more training data to learn optimal values for an increased number of parameters. Results reported
in this paper show that syntactically constrained alignment has been beneficial on relatively small
training sets, but the results — both performance and training time or computability, compared to
the IBM models — appear to be untested so far on a parallel corpus of, perhaps, 1 million sentence
pairs that is more representative of “real-world” MT system development conditions.

A further concern is that the improvements seen on AER may not entail improved end-to-
end MT performance. The experiments reported in this paper have been limited to discussions
of AER results; there has as yet not been a comparison of MT system output based on different
alignment techniques, and some researchers have questioned the correlation between improved
AER and improved MT. Future experimentation will need to show that better solutions to the
word alignment as a subtask also have a noticable benefit in the overall translation pipeline.

Finally, as time goes by, the range of syntactic features incorporated into the alignment models
may become richer. Combining a syntax-aware alignment with an extensible discriminative training
framework would allow for the easy incorporation of new and different types of information. In
addition to dependency spans or ITG constraints, statistical alignment could make use of part-of-
speech information, morphological analyses, or semantic information, for instance.
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