Context in Machine Translation

Aaron B. Phillips
Advanced Machine Translation Seminar

Language is not static. The words we se-
lect to convey a concept and the semantics of
individual words change based on subject, au-
dience, and one’s cumulative life experience.
The wonder of it all is that language is still an
effective and meaningful mode of communica-
tion. With regard to machine translation, this is
a troubling scenario. Computers excel at deter-
ministic tasks; modeling a phenomena as fluid
and capricious as language is challenging.

Language is disambiguated through addi-
tional information commonly called ‘context’.
Given a particular statement, context is a vague
and malleable notion describing things outside
of that statement that can elucidate it. Word-
Net (Fellbaum, 1998) defines context as “dis-
course that surrounds a language unit and helps
to determine its interpretation” and, “the set of
facts or circumstances that surround a situation
or event”. In this paper I consider context to be
any information beyond the sequence of lexi-
cal words that form a statement to be translated.
While humans may refer to a logical argument
or prior knowledge as context, these are difficult
concepts for a machine to work with. As such,
this paper will focus on the use of linguistic fea-
tures to identify context. These include, but are
not limited to: part of speech (POS), lemmas,
chunk markers, nearby words, sentence infor-
mation, document information, and genre.

Clearly context alone is not sufficient for
translation. Thus, the goal of this work is to
understand how context can be added as an ad-

ditional source of information to existing trans-
lation models.

1 Machine Translation, From Ages
Past to Ages Present

Machine translation has been developed in a
variety of paradigms, but recently data-driven
techniques have dominated the field. The data-
driven approach, especially that represented by
statistical machine translation (SMT) will be
the presumed translation paradigm for this pa-
per. SMT originally followed the “noisy chan-
nel model”. This generative story describes the
translation process as recovering English text
that has been passed through a noisy channel,
thereby distorting it. Following Bayes Rule, it
can be succinctly represented as:

Plelf) = P(e)P(fle)

This equation neatly splits the translation pro-
cess into two components, one that models the
probability of the target sentence, P(e), com-
monly referred to as the language model, and a
translation model that computes the probability
of a source word given a target word, P(f|e).
Early SMT systems were word-oriented.
They treated each word of the input as inde-
pendent translation units. The only part of the
system that captured context was the language
model. By selecting a fluent sequence of trans-
lations, the language model enforced (to some
degree) the selection of a coherent (contextual)



meaning across the sentence as a whole. How-
ever, the effect of this depends heavily on the
strength of the language model. A trigram lan-
guage model, for example, will only preserve
context across a small window of words. Addi-
tionally, this only addresses consistency within
the target sentence and does not model context
present in the source.

The field made a leap forward when re-
searchers began using phrases (of which words
are a proper subset) as basic translation units.
These phrasal translations are often decompos-
able and theoretically the same target sequence
can be modelled by a word-based system. How-
ever, the key advantage to using phrases is that
the translation model can provide a probability
for a group of words, in context, rather than sep-
arate probabilities for each word, in abstract. A
careful reader will argue that this is not contex-
tual information as context was defined earlier
as “information beyond the sequence of lexi-
cal words”. However, this definition is influ-
enced by modern phrase-based models where
the phrase (or sequence of lexical words) is the
basic translation unit. Compared to a word-
based model, including phrases in the trans-
lation process incorporates the context of the
neighboring words when forming a translation
unit. As my definition suggests, this type of
context will be presumed by the work covered
later in the paper. All the work reviewed in
this paper utilizes phrase-based systems, so I
will investigate techniques that model context
beyond the basic phrase. However, it is im-
portant to acknowledge that jointly modeling
a sequence of words is a much stronger pre-
dictor than modeling each word independently
and that this proto-context is already present in
phrase-based systems.

A more recent advancement in MT has been
the move away from the “noisy channel model”
to a more general log-linear model. This dis-
criminative approach to MT allows for an ar-
bitrary number of features to be combined to-
gether. Each translation is scored with the equa-

tion

s(t) = [Toit)

where ¢;(t) is a feature of the translation ¢ and
A; 1s its weight. A n-gram language model
is integrated into this framework by adding a
language model feature with dependencies on
neighboring target words. Similarly, one ap-
proach to integrating context that we will see
later is to include context features with depen-
dencies on neighboring source words.

Local nuances and alterations in meaning that
occur within a monotonic unit are usually cap-
tured well by modern phrase-based MT sys-
tems. However, as with word-based systems
before them, there is not always sufficient evi-
dence present within the translation unit to gen-
erate an unambiguous translation. What these
systems currently lack is the ability to address
context external to the phrase (translation unit).
Modeling longer and longer phrases can over-
come this limitation, but this approach quickly
becomes impractical. The translation model
can only effectively learn translations of phrases
that occur frequently in the training corpus. Due
to a finite set of resources, unseen or infre-
quent phrases are unlikely to be translated cor-
rectly by phrase-based systems. The hope is
that context surrounding the phrase can be used
to aid the translation process; translations for
phrases will be dynamically adjusted based on
their context, eliminating or reducing the need
to match extremely long lexical sequences. This
will allow for use of shorter (thus more fre-
quent) translation units resulting in a more ro-
bust model.

2 Integrating Context

In machine translation we are not only con-
cerned with deciphering what is being said, but
also how that concept should be restated in an-
other language. This roughly reflects the di-
vision between the translation model and the
language model present in most modern MT



systems. (Even though modern systems have
moved away from the “noisy channel model”,
MT systems are still typically thought of as con-
sisting of these two separate components.)

The translation model describes the “what”—
it identifies target phrases that correlate well
with each source phrase. This model can be
thought of as selecting the most likely mean-
ing of each source phrase, where the collec-
tion of target phrases defines the set of possible
meanings. This model is trained from a bilin-
gual corpus where information about neighbor-
ing phrases in both the source and target are
available. To this end, there is a lot of addi-
tional context information available to the trans-
lation model, that modern phrase-based systems
ignore.

The language model describes the “how”—it
is responsible for identifying a sequence of tar-
get phrases such that the result is fluent and
coherent. Most language models are n-gram
based and calculate the probability of a se-
quence based only on the lexical words. Con-
text can be addressed within these models by
modeling the probability of additional informa-
tion (such as POS or lemma tags) or increasing
the size of the history. It is important to note,
however, that this is explicitly a monolingual
process. The language model does not depend
on the source text and cannot model any con-
textual information about the source text.

While context is important in both of these
models, the focus of this paper will be on in-
tegrating context within the translation model.
This is not to belittle the importance of the lan-
guage model; changes to the language model
might even show more dramatic improvement
than those to the translation model. However,
to narrow the scope of this paper I must select
only one and I see a greater potential for nov-
elty and integration of context in the translation
model because both the source and target are
available for use. I will investigate what con-
textual features are appropriate to use, how to
score them, and how these new features should

be integrated in the translation model.

2.1 Context as Word Sense
Disambiguation

Word sense disambiguation (WSD) attempts to
select the proper ‘sense’ of a word given a par-
ticular sentence. This area of research focuses
explicitly on how to model the meaning of a
word given its context. A commonly cited arti-
cle giving further background is (Yarowsky and
Florian, 2002). WSD is a traditional machine
learning classification problem. Features are se-
lected that might guide the selection of a word
sense such as lemmas, POS, sentence bag-of-
words, neighboring words, etc. A simple ap-
proach is to train a Bayesian classifier from a
large amount of data to predict the sense of
a word given the surrounding features. Using
the same features, sophisticated statistical mod-
els can be built as well. Indeed, (Carpuat et
al., 2004) employs an ensemble of naive Bayes,
maximum entropy, boosting, and kernel PCA
for the classification task.

WSD is an attractive paradigm for integrat-
ing context within the translation model. Not
only have effective features and models already
been identified for WSD, but the goals of WSD
and the translation model are very similar. The
crucial difference is that WSD seeks to iden-
tify the proper sense while the translation model
attempts to identify the proper translation of a
word. However, as (Vickrey et al., 2005) points
out, if each possible target translation is treated
as a unique sense, then this process is the same.
The additional discrepancy is that WSD is usu-
ally done at the word level, so some changes
may have to be made to predict phrases in con-
text.

A series of papers that have all taken this ap-
proach are grouped together below. By building
upon current research in WSD, they attempt to
add new features to the translation model that
inform the model about the particular context.
In contrast to a traditional SMT system, these
models are no longer static. Each occurrence of



a phrase pair has a unique context and must be
handled separately.

2.1.1 An Unimpressive Beginning

One of the first published attempts at inte-
grating a stronger model of context within the
translation model, (Carpuat and Wu, 2005) was
a failure. Later I will discuss more successful
approaches, but this work is insightful because
it indicates that not all approaches work equally
well. (Carpuat and Wu, 2005) demonstrates that
a SMT system results in significantly lower per-
formance than the state of the art WSD system
at a WSD task. From this they conclude that the
ability of the SMT system to model context is
weak and they hope to see improvement by in-
tegrating the WSD system within the SMT sys-
tem.

Their WSD system was trained using
Senseval-3 Chinese lexical data which covers
20 words. 175 sentences were extracted from
NIST MTO04 for evaluation that contained at
least one of the known ambiguous Chinese
words. The researchers tried two different ap-
proaches in order to test the effectiveness of in-
tegrating a WSD system with a SMT system.
The first approach used the WSD system to sep-
arately model word selection and then constrain
the SMT phrase table to only permit entries in
agreement with the WSD system. Translations
were only considered valid if they matched a
possible English gloss of the sense of the Chi-
nese word predicted by the WSD system. The
second approach translated complete sentences
and then selectively replaced ambiguous target
words using a gloss of the sense predicted by
the WSD system. The first method performs
better than the second, but as shown in Table 1
both fail to outperform the baseline SMT sys-
tem.

The authors observe that one problem could
be that the WSD lexicon is significantly smaller
than the vocabulary of the SMT system. The
result is that when the WSD is used in con-
junction with the SMT system, the possible hy-

MT System BLEU
SMT Baseline 0.1310
SMT + WSD Filtering 0.1239
SMT + WSD Post-Processing | 0.1253

Table 1: Results from (Carpuat and Wu, 2005)

potheses are too constrained. To overcome this
issue, they retrain the WSD using the larger vo-
cabulary in the SMT lexicon. Unfortunately,
this lowered the BLEU score even further from
0.1239 to 0.1232.

The authors also introduce a problem refer-
enced later by other researchers known as the
“language model effect”. Changing the selec-
tion of one word in a sentence can significantly
alter the surrounding words due to different lan-
guage model probabilities. Even if the sys-
tem using WSD selects a better translation, this
translation could harm the overall sentence if
the language model can less reliably predict an
appropriate sequence of words using the better
translation. This was the motivation behind the
second approach to perform post-processing,
thereby preventing the language model from al-
tering the sentence. Even though some of the
lexical choices were superior, a review of the
translations showed that for all but two of the
target words, the system using WSD failed to
increase the BLEU score. BLEU is very sen-
sitive to the “language model effect” because
it especially favors long matches with a refer-
ence. While human evaluation observed this to
be an issue, even calculating BLEU at the uni-
gram level resulted in a lower score for the sys-
tem using WSD. Thus, the system using WSD,
on average, did not even select more words that
were contained in the references.

This work has been criticized for using a
state-of-the-art WSD system, (Carpuat et al.,
2004), but a translation system was not state-of-
the-art at the time the paper was published (ISI’s
ReWrite decoder (Germann, 2003)). While this
may have contributed to their negative results,
more fundamentally the problem with this work



was that they poorly integrated the WSD sys-
tem with the SMT system. The WSD system
made hard decisions that only removed pos-
sible translations from the SMT system. The
translation model and language model work to-
gether to find a translation that is both meaning-
ful and fluent. Hard filtering of potential candi-
dates from the translation model (unless it can
be done near perfectly) disrupts this balance and
limits the ability of the language model to build
a fluent translation. This work demonstrates
that a deeper integration is necessary—one that
alters the weight of translations in a probabilis-
tic manner—and does not simply chop off poten-
tial candidates.

2.1.2 Changing the Paradigm

(Vickrey et al., 2005) changed the paradigm
of how to use a WSD system with regard to
machine translation. (Carpuat and Wu, 2005)
used WSD in the traditional sense that clas-
sified each Chinese source word to a unique
sense. For the translation task, each Chinese
sense was mapped to an English target word us-
ing HowNet glosses. Recognizing that the goal
is translation, not sense identification, (Vick-
rey et al., 2005) modeled the problem more di-
rectly. They specified that each target word rep-
resents a different sense of the source word. Not
only does this approach avoid the lossy lexicon-
lookup, but it also conflates senses that are rep-
resented by the same target word (where ambi-
guity can be preserved).

The pseudo-WSD/context model built by
(Vickrey et al., 2005) is a rather simple logis-
tic regression model that uses POS and sur-
rounding lexical words as features. This model
was able to predict the translation of a single
word with an accuracy of 0.605. Selecting the
most frequent translation yielded an accuracy of
0.526. Both models were trained on the French-
English Europarl and evaluated on a held-out
subset containing 1859 ambiguous words.

Instead of integrating this within a real MT
system, the researchers chose a more synthetic

approach. Using an aligned corpus, they re-
moved a single word in the target sentence
and attempted to predict it using their classifier.
In addition they included probabilities from a
language model for the resulting target sen-
tence. This combination is akin to the trans-
lation model and language model combination
present in most MT systems. The baseline sys-
tem utilized the language model prediction log-
linearly combined with frequency-based esti-
mates of P(s|t) and P(t|s) learned from the
alignment links. Using 655 sentences from the
Europarl with 3018 missing target words, the
baseline system correctly predicted the target
word with an accuracy of 0.833. Including the
context model as an additional feature boosts
the accuracy to 0.846. While the improve-
ment is very small, the authors argued that these
are under-estimates because multiple possible
translations are usually valid while the scoring
only considered the single word present in the
reference translation as correct (only one refer-
ence translation was available).

(Giménez and Marquez, 2007) extends the
work of (Vickrey et al., 2005) to handle phrasal
translations and moves from the synthetic
blank-filling task to using a real MT system.
Like (Vickrey et al., 2005), this work builds
a pseudo-WSD system with each target repre-
senting a distinct class, but models phrases, not
just words.

To train a context-informed model (Giménez
and Marquez, 2007) uses the full corpus as ex-
amples of when a particular phrase pair is ex-
pected and when it is not. From the corpus
they extract a large number of features detail-
ing sentence and document context associated
with each phrase pair. With regard to local con-
text they extract 1-gram, 2-gram, and 3-grams
of words, POS, lemmas, and base chunk labels
within a five word window of each phrase pair.
To model global context, topical information is
collected by treating each source sentence as a
bag of lemmas. These features along with pos-
itive and negative examples of phrase pairs are



fed into a set of local linear SVMs that perform
one-vs-all classification. Last, softmax is ap-
plied to the SVM score to produce a translation
probability. While this is very similar to WSD,
the researchers call this Discriminative Phrase
Translation (DPT) as the focus is on translation,
not sense disambiguation.

(Giménez and Marquez, 2007) trained their
models using the English-Spanish Europarl cor-
pus and evaluated on a held-out set of 1008
sentences. Unfortunately, due the number of
features and possible contexts, DPT was only
accurate with phrase pairs that occurred very
frequently. In order to address this deficiency,
they back-off to using MLE in order to estimate
phrase pairs occurring less than 50,000 times.
Thus, DPT was only used to predict 41 phrases,
covering 25.5% of their test corpus. Automatic
metrics as shown in Table 2 give high scores to
the translations, but DPT was only slightly bet-
ter than or equal to the baseline. (They also de-
veloped their own metric to justify their results,
but even there the improvement was minimal.)

MT System BLEU | METEOR
P(e) + Pure(fle) [ 059 | 0.77
P(e) + Pppr(elf) | 0.62 | 0.78

Table 2: Automatic Evaluation from (Vickrey et al.,
2005)

A more informative follow-up human evalua-
tion reviewed 114 sentences where the DPT and
MLE predictions differed and at least 5 words
in the sentence had a DPT prediction. Table 3
shows the counts of how many times the MLE
or DPT sentence was selected as being better in
terms of adequacy, fluency, and overall. These
results indicate that DPT improves adequacy
but lowers fluency. Averaging both scores sug-
gested that humans slightly preferred the DPT
translations.

These results only used monotone decoding,
which artificially diminishes the quality of the

Adequacy | Fluency | Overall
MLE > DPT | 39 84 83
MLE = DPT | 100 76 46
DPT < DPT | 89 68 929

Table 3: Human Evaluation from (Vickrey et al.,
2005)

MT system. Additionally, the baseline transla-
tion model only used P(f|e) or P(e|f). This
is a considerably weak baseline, and they could
have at least log-linearly combined both scores.
This definitely raises questions as to the qual-
ity of the results and whether they could be re-
produced with a state-of-the-art translation sys-
tem. These qualifications aside, (Giménez and
Marquez, 2007) is the first work to describe a
complete MT system that uses context to prob-
abilistically guide the translation model.

2.1.3 Tight Integration

A slightly different approach was taken by
(Chan et al., 2007) using Hiero. Unlike a tradi-
tional phrase-based SMT system, Hiero uses a
very shallow grammar derived from the phrase
pairs. Decoding is performed by applying these
grammar rules bottom-up to generate the in-
put sentence. After each grammar rule is ap-
plied, (Chan et al., 2007) appends two context
features to the feature set of the current span.
This is done in a dynamic fashion during decod-
ing when a lexical sequence is formed because
some of Hiero’s rules contain non-terminals.
The first feature used represents the contextual
probability of the translation given the source
words of the span under consideration based on
an external WSD classifier. The WSD classi-
fier in this work was only trained on unigrams
and bigrams. Therefore, in order to obtain the
contextual probability of longer phrases, they
combined the contextual probabilities of shorter
phrases using a heuristic algorithm that greedily
selects the combination resulting in the highest
WSD probability. Additionally, not all words or
phrases will be represented by the WSD classi-



fier. The second feature is inversely exponen-
tial to the length of the translation chosen by
the WSD system, exp(—|t|). With a negative
weight, this feature will reward rules that use
translations suggested by the WSD (and thereby
offset the fact that some phrases are not repre-
sented by the WSD).

The WSD system was built using a SVM with
local collocations, POS, and surrounding words
as features. They followed the approach of (Lee
and Ng, 2002) and report that their system is
comparable to the best performing system in
Senseval-3, (Carpuat et al., 2004). Hiero with
and without the context features was trained on
the Chinese-English FBIS corpus. Evaluation
on NIST MTO3 results in a baseline of 29.73
BLEU and 30.30 BLEU when using the con-
text features. The reader should note that the
baseline Hiero system is much stronger than the
MT systems used by (Giménez and Marquez,
2007) and (Carpuat and Wu, 2005), making the
improvement all that more impressive. This is
the first work that tightly integrates context into
the translation model such that it is just like ev-
ery other feature and can be optimized through
minimum error rate tuning (MERT).

Following up on their initial negative re-
sults, a few years later, (Carpuat and Wu, 2007)
also provides a successful and tight integration
of context within the translation model. Like
(Chan et al., 2007), they introduce new context
features that can be tuned just like any other fea-
ture within the log-linear translation model. In-
stead of using Hiero and incorporating these dy-
namically during decoding, (Carpuat and Wu,
2007) uses a standard phrase-based SMT sys-
tem and appends the context features to the
phrase table. A side-effect of this approach is
that the phrase table must now represent the par-
ticular context of each phrase pair and can be-
come quite large. Learning from the work that
followed their first paper, the authors now dis-
ambiguate between phrases and not just words
as in the Senseval tasks. Additionally, they use
target phrases from the corpus to represent the

sense of each source phrase. Unlike previous
work, they do not actually build or use an exter-
nal WSD system to generate a single feature or
probability distribution. Instead, they plug into
the SMT log-linear model their collection of
WSD features. The individual features they re-
port using are bag-of-words context, local col-
locations, position-sensitive local POS, and ba-
sic dependency features.

A highlight of this work is that they perform
a very comprehensive evaluation. Their system
yielded only modest gains, but improvement
was consistent with evaluation performed us-
ing eight different metrics and four different test
sets. The largest experiment, trained on 1 mil-
lion sentences from Chinese-English newswire
and evaluated on NIST MTO04, is shown in Ta-
ble 4. These results are not directly compara-
ble with (Chan et al., 2007) since (Carpuat and
Wu, 2007) does not specify from what corpus
the training data was extracted and uses NIST
MTO04 instead of NIST MTO3 for evaluation.
Nonetheless, it is interesting that (Chan et al.,
2007) has scores 10 BLEU points higher than
(Carpuat and Wu, 2007).

(Carpuat and Wu, 2007) also experiments
with artificially limiting their model to only add
context features to single word entries in the
phrase table. This did not result in reliable im-
provement in translation quality and they sug-
gest this was the downfall of their first work,
(Carpuat and Wu, 2005).

2.1.4 Summary

From this progression of work one trend is
clear: a naive integration of a WSD system and
a MT system is not very beneficial. Rather,
features from the WSD need to be tightly in-
tegrated as features of the translation model so
that they can be optimized in conjunction with
the rest of the translation model features during
MERT. To this end, the last two works, (Chan et
al., 2007) and (Carpuat and Wu, 2007), are most
promising, although the works by (Vickrey et
al., 2005) and (Giménez and Marquez, 2007)



MT System BLEU | NIST | METEOR | METEOR (no syn) | TER | WER | PER | CDER
Baseline SMT | 20.20 | 7.198 | 59.45 56.05 75.59 | 87.61 | 60.86 | 72.06
SMT + WSD | 20.62 | 7.538 | 59.99 56.38 72.53 | 85.09 | 58.62 | 68.54

Table 4: Evaluation from (Carpuat and Wu, 2007)

prepared the way for them. The main differ-
ence between (Chan et al., 2007) and (Carpuat
and Wu, 2007) is that they are using different
decoders, and therefore, the stage (phrase table
or on-the-fly during decoding) at which they in-
tegrate context changes slightly. (Carpuat and
Wu, 2007) also eliminates the external WSD
system by incorporating the WSD features di-
rectly into the translation system. While con-
ceptually this is cleaner and seems to be more
appropriate, it is actually (Chan et al., 2007)
who reports the best performing system (and
best improvement from using context).

While there has been a clear progression
and solution for how to integrate context, there
is still a large degree of variance among re-
searchers regarding which features to use to
identify the context. The context features are
all borrowed from WSD and some like POS
are used in all systems. However, the partic-
ular set of features keeps changing from work
to work. One thing lacking in all the works
reviewed that would have been beneficial is
an empirical study of how each context fea-
ture affects MT. (Carpuat and Wu, 2007) comes
the closest to doing this, and reports that the
POS immediately outside the phrase and bag-
of-words full sentence context are the most im-
portant features. However, they conclude this
based on which features have the largest log-
linear weights from MERT. While this is in-
teresting, it is not sufficient justification as the
weights only indicate how much a feature must
be scaled and do not directly indicate its impor-
tance. In the same way that different MT sys-
tems frequently use different features for trans-
lation (and some features work better for par-
ticular systems), perhaps there is no “correct”
set of context features and this is something that

must be tailored to each particular MT system.

2.2 Context as Information Retrieval

The second approach to modeling context is
more implicit. Instead of altering the transla-
tion model to identify specific context features
for each phrase pair, one alters the data from
which the translation model is built so that it
better reflects the context of the text to trans-
late. This technique, more commonly known
as adaptation, is effective at globally skewing
the translation model toward a particular target.
Data-driven statistical models are merely a re-
flection of the text they are trained on. Filter-
ing or re-weighting the training data will alter
the model’s predictions. One can produce better
contextual translations by emphasizing training
data that reflects the same nuances (read con-
text) as the text they plan to translate. This is
usually most effective at a high level such as
genre. For example, when translating newswire
text, as a last resort one might use a translation
from an internet blog, but it is preferable to se-
lect a translation from another newswire source.

2.2.1 Filtering

(Hildebrand et al., 2005) applies information
retrieval (IR) techniques to filter a training cor-
pus such that it is maximally similar to the text
to be translated. For every input sentence to
be translated the n-most-similar sentences are
extracted from the corpus. The n-most-similar
sentences for all input sentences are combined
together (potentially including duplicates) to
form a new training corpus. A standard trans-
lation model can then be built from this filtered
training corpus. In order to calculate sentence
similarity, the authors measure the cosine dis-
tance between TF-IDF term vectors—a common



algorithm for document similarity in IR.

It might seem odd that after identifying sim-
ilar sentences the authors lump everything to-
gether and build a single, static translation
model. The authors justify this decision by ex-
plaining that at the high-level, the characteris-
tics of a document such as genre are unlikely
to change quickly. Although building a unique
translation model for each input sentence or
group of sentences might model context better,
such a focused translation model is likely to be
brittle and not yield robust probabilities.

(Hildebrand et al., 2005) evaluated this ap-
proach on 506 lines of Chinese-English tourism
dialogue. 20,000 lines of tourism dialogue and
9.1 million lines of newswire and speeches were
available for training. Table 5 shows the results
of their experiments under several different sce-
narios. The scores for the n-most-similar sen-
tences are the optimal values on the test set after
evaluating the system at n = 10, 20, 30, 40, 60,
70, 80, 100, 125, 150, 175, 200, 250, 300. The
authors also experimented with using perplexity
to automatically select the appropriate value for
the n, but it was unclear whether their technique
was successful.

2.2.2 Weight Adjustment

Trying to exploit the same idea, (Brown,
2005) presents an online, dynamic approach
within the EBMT framework. The general
idea is that when examples are retrieved from
the corpus that match the input document, one
should give an additional bonus to the exam-
ples that also share the same context as the
input. The author breaks this down into two
categories: local context and inter-sentential
context. In order to exploit local context,
(Brown, 2005) recognizes that when an exam-
ple is largely the same as the input sentence
then there will be numerous examples (1-gram,
2-gram, 3-gram, etc.) retrieved from the same
training sentence. Therefore, for each input
sentence, one gives a bonus to examples that
are retrieved from the same training sentence.

Language | Local Inter-Sent. | Both

French +1.51% | +0.33% -0.26%
Chinese | +0.83% | -0.33% +1.08%
Spanish | +1.22% | -0.60% -0.28%

Table 6: Evaluation from (Brown, 2005)

Second, inter-sentential context models consis-
tency among input sentences. This is handled
by recording usage counts of which examples
are used to translate each input sentence. When
an example is selected that has been used fre-
quently, or it is near an example that has been
used frequently for translation, then the exam-
ple is given a bonus. These two strategies
help weight examples with contextual similar-
ities to the input document more heavily than
the rest of the examples in the corpus. This
work uses the same basic idea present in (Hilde-
brand et al., 2005), but implements it in a dy-
namic fashion that can alter each sentence sep-
arately. Unfortunately, evaluation did not show
this technique to yield strong improvement. Ta-
ble 6 displays the relative improvement when
using each type of context matching. Some lan-
guage pairs did perform slightly better with the
contextual bonuses, but only slightly, and only
those marked in bold were statistically signifi-
cant.

2.2.3 Mixture Model

Instead of building one adapted translation
model, (Foster and Kuhn, 2007) builds sev-
eral translation models and weights each model
based on its similarity to the input. The au-
thors take the training corpus and split it into
several smaller corpora. In their experiments
they used labeled genre information to split the
corpus, but they suggested this could also be
done through automatic topic identification and
clustering. Separate context-specific translation
models are built from each smaller corpus using
standard methods. A global translation model
is built from a weighted combination of the in-
dividual context-specific translation models. If



MT System BLEU | NIST

20k in-domain 0.4621 | 8.1129
20k in-domain + 15k random out-of-domain | 0.4850 | 8.2262
20k in-domain + 75k random out-of-domain | 0.4501 | 7.9482
Optimal n-most similar 0.4871 | 8.2132

Table 5: Evaluation from (Hildebrand et al., 2005)

the development set is very similar to the test
set, then the weights applied to each translation
model can be learned directly through tuning.
A more interesting case, however, is to abstract
this so that the weights of each context-specific
translation model are a function of a similarity
metric. With this method, the mixture weights
dynamically change for each input document.
(Foster and Kuhn, 2007) identified four features
to use to measure similarity: TF-IDF, LSA, per-
plexity, and the total probability of the mixture
model. Their results showed that the adaptation
works in the static context (when the develop-
ment set is similar to the test set), but no signif-
icant improvement was shown when using the
dynamic context matching. This suggests that
the similarity algorithm was not adequate at au-
tomatically weighting the translation models.

2.2.4 Summary

All of these approaches work by favoring
data that is most similar to the input. (Hilde-
brand et al., 2005) creates a hard cut-off based
on sentence similarity while (Brown, 2005)
takes a softer approach that takes advantage
of the EBMT framework to merely boost the
weight of examples drawn from similar docu-
ments. The difficulty with such an approach
within SMT is that the phrase table is built
from a training corpus and remains static dur-
ing translation. (Foster and Kuhn, 2007) tries
to overcome this limitation by building several
static phrase tables and interpolating dynami-
cally between them during decoding.

The common thread among all this work is
the attempt to alter the translation model based
on IR similarity metrics. This globally skews

the translation model and implicitly addresses
some of the same context issues that were ex-
plicitly modeled in “context as word sense dis-
ambiguation”. The advantage to this approach
(with the exception of the EBMT system in
(Brown, 2005)) is that it is mostly external to
the translation model and does not require com-
plex code adjustments to implement. The gen-
eral idea followed by these researchers is laud-
able and has potential. Unfortunately, all the
work in this area struggled to show improve-
ment. This is partially to be expected because
“context as information retrieval” models the
problem more indirectly than “context as word
sense disambiguation”, which only resulted in
modest improvement.

3 To the Future and Beyond

From this progression of research, where can
we project the integration of context within the
translation model is heading?

As mentioned earlier, log-linear models pro-
vide an excellent framework in which dis-
parate pieces of information from many differ-
ent sources can be combined together. Both
(Chan et al., 2007) and (Carpuat and Wu, 2007)
incorporate context as features within log-linear
models. I expect this to be the most common
approach in the future because of the prevalence
of MT systems using log-linear models and the
relative ease with which context can be added
to them. The good news, then, is that modeling
context will not require a new paradigm for MT.

In order to perform experiments that in-
corporate context, researchers performed pre-
processing, statically built multiple translation



models, or built extremely large translation
models representing all possible forms of con-
text. While effective for experimentation, these
techniques are more or less “hacks”. The reason
for this is most modern phrase-based SMT sys-
tems are not designed to model dynamic infor-
mation. To simplify the model, features are only
dependent on the translation unit. This allows
the statistical model to be pre-computed prior to
translation. Building a static model is simpler
and faster, but its’ predictive capabilities are
also more limited. Hopefully, as computational
power increases, the simpler static models will
be less necessary. Further advances in machine
translation that allow models to be built online,
dynamically during translation (that use fea-
tures outside the translation unit) will be signif-
icantly advantageous for researchers attempting
to incorporate context. Yet, there is a notable
chicken-and-the-egg problems here: it is hard
to justify building dynamic, online translation
systems without (yet) seeing a significant bene-
fit brought about by including dynamic context
features.

To this end, when dynamic, online systems
become available, the two approaches outlined
above, ‘“context as word sense disambigua-
tion” and “context as information retrieval”
will likely converge. Similar to the work of
(Brown, 2005), IR-oriented features could be
generated dynamically. Then IR-oriented and
WSD-oriented techniques could work alongside
each other to identify the proper context. In-
deed, (Carpuat and Wu, 2007) and (Giménez
and Marquez, 2007) report extracting a fea-
ture based on treating the sentence as a bag-
of-words which bears remarkable similarity to
some of the IR-oriented features (although nei-
ther paper specifies how the bag-of-words were
used). Additionally (Brown, 2005)’s calcula-
tion of local context is very similar to the local
collocations feature present in WSD-oriented
systems of (Chan et al., 2007) and (Carpuat
and Wu, 2007). While systems built within
the “context as word sense disambiguation”

paradigm show better result at the present, the
two approaches should complement each other
well, as WSD is more focused on phrase-level
context and IR-oriented features are more fo-
cused on document-level context.

One consistent, albeit depressing fact (with
the possible exception of (Chan et al., 2007))
is that a lot of effort has been expended with
very minimal to modest improvements accord-
ing to automated evaluation metrics. As a
result, many researchers blame the evaluation
metrics. BLEU in particular is criticized heav-
ily for its over-reliance on long n-grams that oc-
cur in the reference. While there are signifi-
cant problems with automated evaluation met-
rics, the metrics themselves not entirely at fault.
(Giménez and Marquez, 2007) and (Carpuat
and Wu, 2005) include human evaluations and
(Carpuat and Wu, 2007) uses a battery of eight
different automated metrics. These more exten-
sive evaluations did actually correlate with the
findings of BLEU. The general trend was that
context improved adequacy, but decreased flu-
ency of the output. This situation—improving
one aspect of the translation while worsening
another—is especially difficult to judge. Indeed,
the particular combination of adequacy and flu-
ency desired may depend on the audience or
task. It is not until these systems are capable of
improving both adequacy and fluency that us-
ing context will be clearly beneficial.

In conclusion, there is a colloquial expres-
sion in Computer Science that describes this
situation: “Garbage In, Garbage Out”. Our
systems and underlying algorithms are only as
good as the data on which they are trained. In-
cluding contextual information only provides
a little more information to the models than
the sequence of lexical words. Furthermore,
many phrases are unambiguous or occur infre-
quently enough that the context cannot be ac-
curately modeled. While context is indeed use-
ful, one should not expect it to radically trans-
form the translation model. Context is certainly
not garbage, but our expectations for context



may be too high. If context is only predictive
of subtle nuances, then one should only expect
subtle nuances of the output to change. These
types of changes will not-and should not be
expected—to dramatically alter evaluation met-
rics (either automated or human). That being
said, such subtle nuances will be necessary for
machine translation to be pervasive and adopted
for real tasks. Therefore research in context
must continue, because its not a question of
whether context is useful, but when will con-
text be useful. Human evaluations consistently
showed that adequacy—expressing the intended
meaning—improved. Subtle nuances that con-
text does alter may not be evident or may not
be useful until machine translation passes some
quality threshold. If a sentence is generally in-
coherent, then correctly translating a subtle nu-
ance of an embedded phrase will go unnoticed.
Thus, it is possible that machine translation is
not quite at a high enough quality level for con-
textual information to be a significant factor.
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