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1.  Introduction

The state-of-the-art in machine translation (MT) is statistical machine translation (SMT). Such models 
began as word-based models, but they have evolved to phrase-based models, as translating chunks of 
the input text at a time yields better results than merely translating word-by-word. Phrase-based SMT 
systems assume that it is possible to construct a target sentence by segmenting a source sentence into 
phrases, translating each phrase, and combining the translated phrases to create the target sentence. 
SMT follows the noisy channel model, where a target language sentence t is distorted by a channel into 
a foreign language sentence s (Sarikaya, et al 2007). The goal is to translate the input word sequence in 
the source language to the target language word sequence by maximizing the probability of the target 
sentence given the source sentence. This is equivalent to maximizing the product of the probability of 
the source sentence given the target sentence and the probability of the target sentence: P(s|t) * P(t). 
P(s|t) is known as the translation model, and P(t) is known as the language model of the target 
language. The translation model represents the correspondence between words in the source and target 
sequences, and the language model represents the well-formedness of the produced target sequence. 
The language model and translation model are modeled independently of each other (Popovic, et al 
2004).

Such SMT systems use word-based n-gram models, which need a large amount of data to train, 
so as to estimate the probabilities of the language model and translation model. The large amount of 
data is necessary, so the models can see a large majority of the forms in a language and accurately 
estimate probabilities. Seeing all possible forms is not possible, but with enough data, reliable 
probability estimates are possible. Without a large amount of parallel data available, the main issue is 
data sparseness. SMT systems exhibit a large drop in performance if the target or source domains are 
not properly covered in the data (Sarikaya, et al 2007). The sparsity problem becomes even worse if the 
source or target language (or possibly both languages) is a morphologically-rich language such as 
Arabic. Morphology is the study of the way words are built from smaller meaning-bearing units. The 
most important morpheme is the stem or lemma, which is the root of the word. A morpheme can be an 
affix (prefix or suffix), and the morpheme provides additional meaning to the main concept provided 
by the stem (Karageorgakis, 2005). Morphologically-rich languages have many different surface forms, 
even though the stem of a word may be the same. This leads to rapid vocabulary growth, as various 
prefixes and suffixes can combine with stems in a large number of possible combinations and worse 
language model probability estimation because of more singletons (forms occurring just once in the 
data), and a lower number of occurrences over all distinct words. In addition, SMT systems rely on 
phrase extraction, which is highly dependent on word alignment. Morphologically-rich languages may 
create many-to-many mappings, as a surface form may map to multiple words; especially if prefixes or 
suffixes take on the meaning of separate tokens in the other language. Typical SMT systems rely on the 
IBM word alignment models, but such models produce poor alignment with morphologically-rich 
languages, as they cannot handle many-to-many mappings (Zollman, et al 2006).

A possible solution to both data sparsity caused by a rich morphological system and word 
misalignments is to incorporate morphological information into the SMT system. Adding the 
morphological information reduces data sparsity by attempting to break down words into prefixes, 
stems, and suffixes (Goldwater, et al 2005). The intuition is that words that appear different in terms of 
surface forms may have the same stem or root. It is then possible to conflate statistics and claim that 
these two seemingly different forms are actually the same (underlying) form. In theory, the conflated 
statistics should help reduce the data sparsity issue and result in better trained language and translation 
models. The three most common solutions are to preprocess the data so that the input language more 
closely resembles the output language, adapt the language model to make use of the morphological 
information, and post-process the output of a MT system to add on the proper inflections. It should be 
noted that all these schemes make use of preprocessing (in terms of deriving morphological 
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information), but the main difference is the change in the MT systems. The first solution preprocesses 
the data and does not change the underlying MT system. The second solution preprocesses the data but 
also modifies the language model(s). The third solution preprocesses the data, translates stems with the 
MT system, and then adds on proper inflections in a post-processing step.

All of the above solutions depend highly on the amount of training data. With less data, adding 
the morphological information helps a lot more because the sparse data issue is that much more of a 
problem with less data. With more data, the above solutions help less because sparse data is less of a 
problem the more data that is available.

This paper will explore integration of morphological information in SMT systems, translating 
from Arabic to English, English to Turkish, English to Czech, English to Greek, and English to 
Russian. The first section explores various preprocessing techniques. The second sections explores a 
couple modifications to the language model, and the third sections explores one post-processing 
technique.

2.  Preprocessing

The use of preprocessing highly depends on the direction of translation. Translating from a 
morphologically rich language to a morphologically poor one is often the easier direction. This is 
because the inflectional and morphological distinctions in the highly-inflected language are often not 
present in the poorly-inflected language. As such, merely stemming a word to its root is often good 
enough to create common (underlying) word forms, conflate statistics for such word forms, and 
improve the translation and language models enough to produce decent translations. Translating from a 
morphologically-poor language to a morphologically rich language is not as simple, however. 
Translating in this direction is especially challenging, as there is a need to decode detailed 
morphological information from a language that does not encode such information at all or does so 
only implicitly.

2.1  Arabic to English Statistical Machine Translation

Arabic to English MT is representative of translating from a morphologically-rich language (Arabic) to 
a morphologically-poor one (English). The goal of preprocessing the data is to make the Arabic 
training data resemble English. This can be done by making use of some already existing 
morphological resources. A good example of such an approach is a paper by Habash and Sadat. In this 
work, preprocessing entails modifying the raw training data and evaluation texts, making them suitable 
for model training and decoding. Such modification includes different kinds of tokenization, stemming, 
part-of-speech tagging, and lemmatization. A word is defined as strings in Modern Standard Arabic 
separated by white space, meaning that prepositional particles and conjunctions were part of a word's 
morphology and not separate.

The major issues in Arabic are that it is a complex language with a large set of morphological 
features. These features are present both as concatenative affixes and templatic morphology, and there 
are morphological and phonological adjustments that appear in a word's orthography and interact with 
other orthographic variations. Certain letters are not spelled consistently, and this leads to an increase in 
sparsity and ambiguity (the same form can be multiple different words). Additionally, clitics must be 
distinguished from inflectional features such as gender, but these clitics are written attached to a word, 
and this further increases the ambiguity. Two important issues in preprocessing are: the need to resolve 
ambiguity and determine if a feature or clitic to be split off is actually present in the word. Once this is 
determined, the need to know the proper form of the resulting word once the clitic or feature is split off 
is also important. Not normalizing such split-off forms leads to increased sparsity and ambiguity, as the 
resulting word could be multiple different forms (both nominal and verbal for example).
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Habash and Sadat outline three preprocessing techniques, which they distinguish from 
preprocessing schemes. A scheme is a a specification of the form of the preprocessed output, whereas a 
technique is how such output is created. The first technique is called REGEX, and this is the baseline 
technique. REGEX uses a greedy pattern-matching approach to simply split off prefixes or suffixes 
matching a clitic regular expression. The second technique makes use of BAMA - the Buckwalter 
Arabic Morphological Analyzer - which is used to obtain multiple word analyses. Disambiguation is 
done by selecting the first analysis returned by BAMA. The third and most advanced technique uses 
the MADA (Morphological Analysis and Disambiguation for Arabic) tool. This tool was developed at 
Columbia by Habash and Rambow in 2005, and it is an off-the-shelf resource for Arabic 
disambiguation. The tool chooses among the BAMA analyses using a combination of classifiers along 
10 orthogonal dimensions, including part-of-speech, gender, number, and pronominal clitics. Using 
BAMA and MADA to preprocess involves moving features specified by a scheme out of a chose word 
analysis and generating the word without the split-off features. This guarantees normalization of the 
word.

The three preprocessing techniques fit into six preprocessing schemes. The first is ST (Simple 
Tokenization), which splits off punctuation and numbers from words and removes all diacritics 
appearing in the input. The second, third, and fourth all split off various particles and clitics. D1 splits 
off the class of conjunction clitics (w+ and f+), D2 splits off the class of particules (l+, k+, b+, and s+), 
and D3 splits off what D2 does as well as definite articles (Al+) and pronominal clitics. Additionally, 
MR (morphemes) splits words into stem and affix morphemes, and EN (English-like) aims to minimize 
the difference between English and Arabic. This scheme is similar to D2,but it uses lexemes and 
English-like part-of-speech tags instead of regenerated words. It also indicates pro-drop explicitly with 
a separate token.

Habash and Sadat made use of the Portage phrase-based SMT system in their experiments, 
which uses a log-linear model to combine the translation model, language model, distortion model, and 
word-length feature. This system uses IBM word alignment models 1 and 2 and trains in both 
directions to extract the phrase table. The max phrase size was 8 in the experiments, and the authors 
used the SRILM toolkit to implement a 3-gram language model. They then optimized the decoding 
weights with minimum error rate training (MERT) using 200 sentences from the 2003 NIST MT 
evaluation test set. This optimization lead to the weights for the language model, phrase translation 
model, distortion model, and word-length feature in the log-linear model. Portage uses the Canoe 
decoder, which utilizes a dynamic programming beam search algorithm. The training data came from 
the Linguistic Data Consortium (LDC), and a parallel corpus of about 5 million words was used to train 
the translation model. The English language model was trained on the English side of the corpus, as 
well as 116 million words from the English Gigaword Corpus (LDC2005T12) and 128 million words 
from the UN Parallel corpus (LDC2004E13). English preprocessing involved converting all words to 
lowercase, separating punctuation from words, and splitting off "'s." Habash and Sadat used two test 
sets: the 2004 NIST MT evaluation set (MT04), and the 2005 NIST MT evaluation set (MT05). MT04 
was a mix of news, editorials, and speeches, whereas MT05 was only news (like the training data). 
They tested all schemes on different training set sizes of 1%, 10%, and 100% to look at the effect of 
amount of data on translation.

The EN scheme performed best with less training data (scarce resources), and D2 performed 
best with more training data (large resources). Also, MADA performed better than BAMA, which 
performed better than REGEX with scarce resources, but the differences between the three techniques 
were statistically insignificant with a larger amount of training data. Unsurprisingly, MT05 had better 
performance than MT04 because MT04 included out of domain items such as editorials and speeches 
(the training data only consisted of news). To test the effect of choice of preprocessing technique 
further, the authors tested the sentences in MT04 that were not news using similar experiments as with 
the entire corpus. Under such conditions, the choice of preprocessing technique becomes even more 
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important. For example, MADA+D2 with 100% training achieved 12% improvement over the baseline 
but only 2.4% improvement for news only. Finally, the experiments show that the schemes may be 
complementary, and the combination of the output of all six schemes may lead to a potential large 
improvement. For example, selecting the output sentence with the highest sentence-level BLEU score 
for each input sentence lead to 19% improvement in BLEU score using MT04, MADA, and 100% of 
the training data. The best score under MADA and using 100% of the training data was 37.1 with 
MADA+D2, but the best score under the same conditions and combining the six schemes was 44.3.

2.2  English to Turkish Statistical Machine Translation

English to Turkish SMT is representative of translating in the opposite direction. The goal here is to 
once again to create representations of the source and target language so they more closely resemble 
each other. The main issues are overcoming the data sparseness problem created by the rich 
morphology of the target language and creating the rich morphological distinctions in the target 
language, even though the source language often does not represent such distinctions.

Oflazer and El-Kahlout attempt to tackle such problems in their paper. The authors make use of 
a lexical-morpheme representation to conflate the statistics for seemingly different suffixes. Typically 
segmentation of a word is not unique, so the authors generated a representation containing both the 
lexical segments and morphological features for all possible segmentations. They then used a statistical 
disambiguator with 94% accuracy to disambiguate. The morphological features of each parse were then 
removed, leaving only the lexical morphemes.

The authors worked with parallel Turkish-English data and preprocessing involved segmenting 
words in the Turkish corpus into lexical morphemes in order to abstract out different surface forms 
because of word-internal phenomena. The goal was to improve the statistics when aligning words. 
Then Oflazer and El-Kahlout tagged the English side of the corpus with TreeTagger (Schmid 1994) 
producing a lemma and part-of-speech tag. Tags, such as cat+NN, not implying morphemes or 
exceptional forms were removed. Finally, the authors extracted a sequence of roots for open class 
content words for both English and Turkish. For English, this entailed removing all the closed class 
words and tags signaling a morpheme on an open class word, e.g., VVG. For Turkish, this meant 
removing all morphemes and roots for closed classes. The plan was to use the removed roots and open 
class content words to expand the training corpus and bias content word alignment. The authors hoped 
that the roots would then be able to align without the extra noise from morphemes and function words.

The first set of experiments used the phrase-based SMT framework, Mosses toolkit, and SRILM 
language modeling toolkit. Results were evaluated using BLEU and one reference translation. The 
baseline model was trained with an unlimited distortion limit and distortion weight of 0.1 (allowing for 
long-range distortions), and adding the content word training data hurt the baseline system's 
performance. The fully-morphologically segmented model made use of a 5-gram morpheme-based 
language model, which attempted to capture local morphotactic constraints. The decoder produced 
1000-best lists, which were converted to words by concatenating morphemes, and rescored using a 4-
gram word-based language model (to enforce more-distant word sequence constraints). The optimal 
linear combination of the word-based language model and translation model was found on the tune set. 
Rescoring with the 4-gram word-based language model was found to result in large improvements for 
the best model (the model that included the expanded training data): 22.18 BLEU versus 21.47 without 
rescoring versus 20.16 for the baseline system.

After the initial experiments, the authors noticed that some morphemes on the Turkish side did 
not align with anything on the English side. This may have been because derivational morphological 
analysis was only performed on the Turkish side, meaning that verbal nominalizations on the English 
side only aligned to verb roots on the Turkish side. Even without derivational morphology, the nominal 
and agreement markers on the Turkish side were mostly unaligned. For these cases, Oflazer and El-
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Kahlout attached the unaligned morphemes to the root on the Turkish side. Retraining the models with 
the selectively attached morphemes lead to a 2.43 point BLEU improvement over the previous best 
model.

The experiments in this paper demonstrated that using a language-pair specific representation 
between full word forms and full morphological segmentation lead to significant improvements. 
Additionally, adding content word as additional training data and re-scoring the MT system output with 
a word-based language model lead to even further improvements. 

3.  Modifying the Language Model

In addition to preprocessing the data, adaptation of the language model is another way to incorporate 
morphological information into SMT. Two possible adaptations to the language model include factored 
language models and using the general statistical framework to combine word and stem-based SMT. 

3.1  Factored Language Models

Bojar used a factored language model to translate from English-Czech. Czech is a very rich 
morphological language and has a relatively free word order. This results in very complex 
morphological tags with an alleged 4000 different tags possible. In factored SMT, the source and target 
words are represented as tuples of factors, and a log-linear model combines the independent feature 
functions. Most features are phrase-based and operate synchronously (on the same segmentation) and 
independently of the neighboring segments. Translation involves decoding, which is made up of a 
mapping step and generation step. The mapping step maps a subset of source factors to a subset of 
target factors, and the phrase is restricted to certain factors. The generation step maps a subset of target 
factors to a disjoint subset of target factors, and this is restricted to word-to-word correspondences. It is 
possible to include an arbitrary number of target language models over the subsets of target features, 
including the standard n-gram language model. This language model enforces the sequential coherence 
of the output. Decoding is then a stack-based beam search, which builds all possible translations with 
the mapping and generation steps, prunes low-scoring options, and produces output in a left-to-right 
order and scores the output with the language models.

Bojar experimented with the News Commentary corpus, tagging and lemmatizing the Czech 
side with a tool by Hajic and Hladka, and tagging the English side with MXPOST and lemmatizing the 
English side with the Morpha tool (Minnen, et al 2001). The corpus had 55,676 pairs of sentences, and 
Bojar used 1023 sentences for tuning and 964 sentences for evaluation. Word alignment was done with 
GIZA++, and to reduce sparseness, the English data was lower-cased, and the Czech data was 
lemmatized. The language models were based on the target side of the parallel corpus only, and the 
model parameters were optimized on the tune set with MERT. Bojar created four separate systems to 
evaluate. The first system was the baseline system, involved a single factor, translated lowercase 
English word forms to lowercase Czech forms, and used a 3-gram language model to check the output 
word forms. The second system was called T+C (translate and check), used a single generation step, 
checked the output for word-level coherence using a 3-gram language model and morphological 
coherence using a 7-gram language model, and translated an input word form to an output word form 
and used the output word form to generate its morphological tag. The next system was T+T+C, which 
built output words based on the output word form and the input morphology to reinforce the correct 
translation of morphological features such as number. The final system, T+T+G, was the most 
linguistically motivated, and generated output lemmas and morphological tags from the input in two 
independent translation steps and combined them in a single generation step to produce the output. The 
English text was not lemmatized, so Bojar used the English word forms to produce the Czech lemmas. 
As above, a 3-gram language model was used to check word coherence and a 7-gram for 
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morphological coherence. The multi-factored models always outperformed the baseline model, but the 
more complex multi-factored models showed little improvements over T+C (13.9 versus 13.6). This 
may have been because the more complex models produced more hypotheses with similar scores, 
thereby making it harder to predict future scores. The more complex models also involved more steps, 
meaning that there were more model weights to tune, so perhaps there was not enough data to properly 
tune these weights.

Czech morphological tags are very complicated, so Bojar experimented with simplifying these 
tags and seeing if this simplification had any effect on the systems. He chose the T+T+C because it 
performed the best in the previous experiments, and the goal was to balance the richness and robustness 
of the statistics available in the corpus. The five scenarios ran the gamut from full tags (1200 unique 
tags seen in 56000 word corpus), which included 15 different morphological properties such as number 
and case to POS+case (184 unique seen), which only included part-of-speech and sub-part-of-speech 
for all words and case for nouns, pronominals, adjectives, prepositions. The best scenario in the 
experiments was CNG03 (1017 unique seen), which matched appropriate tags with the most relevant 
morphological information for that tag (e.g., case, number, and gender for nouns, pronominals, and 
adjectives). Using this set of tags lead to an improvement of 0.3 in BLEU score (13.9 to 14.2).

The final set of experiments involved scaling up the amount of data and mixing domains. The 
new, scaled-up corpus included newswire, e-books, stories, and data from the European Parliament. 
Bojar noted two findings: The experiments netted better results if individual language models were 
optimized for different domains separately rather than using a single, mixed-domain language model. 
More importantly, with a large enough training set, the full tags outperformed the stripped down tags, 
as data sparsity is much less of an issue.

3.2  Use of general statistical framework to combine word and stem-based SMT

Karageorgakis, Potamianos, and Klasinas demonstrate another way to incorporate morphological 
information into SMT in their paper. They use an unsupervised morphological learning algorithm, 
which is suitable because SMT systems train on untagged corpora. The morphological analysis of this 
corpus provides information about the morphology of the source and target languages, which can then 
be incorporated into the SMT system.

The authors used the Linguistica system (Goldsmith) on both the source (English) and target 
(Greek) languages, and this system uses a set of heuristics to provide the initial morphological analysis. 
The first heuristic takes all the possible splits of a word and uses entropy and probability of a split 
(frequency of the number of times a stem/suffix appears in the corpus) as a metrics. For each word, the 
best split is selected using maximum likelihood, and this selection is used to bootstrap the heuristic, and 
the metric is optimized globally over all words, stems, and suffixes in the corpus. The second heuristic 
computes the counts of all sequences of characters with a length between 2 and 6 and computes the 
mutual information metric for each n-gram. The top-100 n-grams are kept and used to parse each word 
into a stem and suffix, and if more than 1 split is possible, the first heuristic chooses the best one. The 
Linguistica algorithm creates a signatures, which are stems and a list of corresponding suffixes, stems 
with the same suffix signature are merged, and signatures with more than 1 stem and affix are regular 
signatures. This allows further generalization of the morphological rules.

The system incorporates morphological information from both the source and target languages, 
which is represented as a deterministic mapping from a sequence of words to a sequence of stems. A 
statistical morphological analyzer (stemmer) extracts stems and computes the probability of a stem 
given a word: P(S|W). A morphological generator performs the exact opposite process and computes 
the probability of a word given a stem: P(W|S). The model is similar to a basic word-to-word 
translation model, but the word-to-word translation is performed by a stem-to-stem system: Ws --> Ss 
--> St --> Wt, where s represents source, t represents target, W represents word, and S represents stem. 
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The goal is to find the word maximizing the probability of a target word given a target stem times the 
probability of a target stem given a source stem: P(Wt|St) * P(St|Ss), which is known as the stem-based 
SMT system. The authors combined this stem-based SMT system with a traditional lexical-based SMT 
system, assuming independence between the two systems (each system computes the probabilities 
separately). The authors placed weights on the two systems, with w0 representing the confidence in the 
lexical SMT model, and w1 representing the confidence in the morphological SMT model.

Combining the lexical and morphological systems involved building the lexical SMT system 
and computing P(Wt|Ws), stemming the training corpus using the Linguistica system, using the 
stemmed corpus to create the morphological SMT system and computing P(St|Ss), decoding each 
sentence in the evaluation corpus using the lexical SMT system and producing a lattice of possible 
word-level translation, which was represented as a finite state acceptor Fw, stemming and decoding 
each sentence in the evaluation corpus using the morphological SMT system and producing a lattice of 
all possible stem translation, which was represented as a finite state acceptor Fs, building a stem to 
word model P(Wt|St) by running Linguistica on the target language corpus, which is represented as an 
unweighted finite state acceptor Tsw and getting the morphological signature, composing Fs and Tsw to 
get the stem to word mapping and projecting the transducer to the output symbols to get a finite state 
acceptor Fw., reweighting Fw and Fs by w0 and w1, and intersecting the weighted acceptors Fw and 
Fw.. The final step is using Viterbi decoding to find the best path T,' which is the translated sentence 
from the combined morphological and lexical SMT systems. The authors used the AT&T FSM Library 
to represent the finite state machines.

Experiments involved testing both the lexical-based SMT system and the lexical-morphological 
SMT system. Both systems were trained on the Europarl corpus (Koehn) with two different training set 
sizes: 1 million words and 4 million words. The authors used the rest of the Europarl corpus for the 
development and testing sets. The baseline system was the lexical SMT system, and the authors used 
GIZA++ to obtain word alignments and trained the phrase-based SMT models and target language 
models on these alignments. They used the Pharaoh decoder to compute the best translation of a 
sentence. The lexical-morphological SMT system performed morphological analysis on the English 
and Greek words and extracted stems but ignored affixes. The Linguistica morphological analyzer 
automatically derived the morphological rules for both English and Greek using a 5 million word 
parallel corpus. The initial precision was 85.9% and recall was 90.4%, but the authors wanted to 
increase precision at the expense of recall, so they only stemmed words if a word's length was greater 
than 6 and if the ratio of the length of a suffix to the length of the whole word was greater than 0.3. On 
a set of 2000 distinct words, precision increased from 79.5% to 93.8% using the above heuristics. The 
corpus was then stemmed using the rules obtained from Linguistica, and the phrase-based models and 
target language language model were trained on this stemmed corpus. The authors then combined the 
lexical and morphological SMT systems using finite state machines as described above.

The test data consisted of 26,000 sentences, and with the 1 million word training corpus, the 
morphological system produced 11,000 different sentences than the lexical system. With the 4 million 
word training corpus, the morphological system produced 6,000 different sentences than the lexical 
system. The authors only compared the systems on the different sentences, and the best improvement 
for the morphological system over the lexical system was with the 1 million training word corpus and 
was 14.3% for NIST and 14.74% for BLEU. Also, a smaller w1 weight lead to better improvements, 
meaning that the finite state machine with the morphological information should be weighted more 
heavily than the finite state machine with the lexical information, and that the statistics of the word 
stems were better trained than the statistics of the words for training sets of the same size. In addition, 
use of the morphological information showed greater improvements for systems trained with the 
smaller training set. Using bootstrap resampling (Efron and Tibshirani, 1994), the authors showed that 
the improvements using the morphological information were significant at the 95% confidence level.
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4.  Post-processing

Post-processing involves manipulating the output of the SMT system. It is complementary to the 
previously mentioned techniques to incorporate morphology into SMT and can be used in conjunction 
with any of the previously discussed techniques. One particular interesting way of post-processing is 
translating stems from both the source and target languages and using statistical models to generate the 
necessary morphology in the post-processing phase.

Minkov, Toutanova, and Suzuki do just that in their paper. Their goals were to resolve the data 
sparsity issue by allowing generation over morphology and improving this generation of 
morphologically rich languages using morphological agreement in the target language. The authors 
aimed to build a model that predicted inflected forms of a sequence of word stems in the target 
sentence given a source sentence. This model would make use of word-to-word alignment information 
and lexical resources to provide information about morphological information about words on the 
source and target sides. It would also use a sentence pair to get syntactic analysis information for both 
the source and translated sentences and generate inflected forms in the target sentence using all 
available information and a log-linear model to learn the relevant mapping functions. The approach is 
general, as it uses only limited morphological resources and training data. This problem is challenging, 
as the model must handle complex agreement phenomena along multiple morphological dimensions.

The authors assumed that the target and source lexicons were available for the target and source 
languages. They then defined three operations. Stemming produces a set of possible morphological 
stems of a word according to the lexicon. Inflections produces a set of surface words having the same 
stem as the word, and Morphological Analysis produces a set of possible morphological analyses for a 
word, and a morphological analysis is a vector of category values, each having a dimension and 
possible values. The task is to take the output of a MT system in the target language (a sequence of 
words) and convert this sequence of words into a stem set by applying the Stemming operation. The 
goal is to then given a stem, predict the inflection, where the prediction should reflect the meaning of 
the source sentence and follow the agreement rules of the target language. The models for inflection 
prediction use a Maximum Entropy Markov model to breakdown the overall probability of a predicted 
sequence into a product of local probabilities for individual word predictions. The local prediction is 
conditioned on the previous k conditions, and model is second order, so the conditional probability 
distribution is over the labels of the previous two predictions. Features pair predicates on the context 
and target labels, and they can easily encode the morphological properties of a word and its surface 
inflected form. Context features describing the morphological properties of the two previous 
predictions can be derived because the model is second order. The model shares features across 
multiple target labels, enabling generalization and inflections to apply to many forms. This is a 
structured-prediction model, which defines structure by the morphological properties of the target 
predictions and the break down of the word sequence.

There are two types of features. Monolingual features cover only the context and predicted label 
of the target language. Bilingual features, on the other hand, cover the above information and 
information about the source sentences. Information about the source sentences is obtained by 
traversing word-alignment links between target words to a (set of) source words. Both features have 
three classes. Lexical features talk about surface word forms and stems, and the model is second order, 
so such features include the features of a standard 3-gram language model. The model is discriminative 
(it predicts words from a given stem), so the monolingual lexical model uses stems and the predicted 
words from the left-hand-side of the current position, the current position, and stems from the right-
hand-side context. The second class of feature is morphological, and this feature includes part-of-
speech, person, number, gender, and various other morphological features (relevant to the source and 
target languages). The morphological features describe the target label and context, and the aim is to 
capture morphological generalizations.  The third class of feature is syntactic, and this feature type 
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makes use of syntactic analyses of the source and target sentences using dependency parsing. The aim 
is to capture morphological agreement phenomena, such as gender in Russian.

Monolingual-lexical features look at stems of the predicted words and the immediately adjacent 
words, as well as traditional 2-gram and 3-gram features, whereas bilingual-lexical features look at 
words aligned to the current word and words aligned to its immediate neighbors. Monolingual-
morphological features look at morphological attributes of the two previously predicted words and the 
current prediction, whereas bilingual-morphological features look at features in the source language 
that are expected to be useful in predicting the morphology of the target language. For example, such a 
feature would look at the source dependency tree, and if a child of a word aligned to a target word is a 
particular part-of-speech, the feature value is assigned to its surface word form. Monolingual-syntactic 
features look at the stem of the parent node.

To evaluate this method with reduced noise, the authors performed reference experiments, 
which used aligned sentence pairs of reference translations. The corpora came from the technical 
software manual domain and involved 1 million aligned English-Russian sentence pairs. The authors 
also made use of 0.5 million pairs of English-Arabic aligned sentences. They used 1000 sentence pairs 
for both development and testing, aligned words using GIZA++, and used a Treelet-based MT system 
(Quirk, et al 2005). This type of MT system uses the word dependency structure of the source language 
and projects the word dependency structure to the target language.

The Russian lexicon was limited to word types seen in training, resulting in 14,000 stems. The 
Arabic lexicon was created by considering all the different stems returned by BAMA, resulting in 
12,670 distinct stems and 89,360 inflected forms. For the word features, the authors looked at the only 
dominant analysis for any given surface word. If a tie occurred in Russian, they looked at the first 
arbitrary analysis, and they used the most frequent analysis estimated from the Arabic Treebank for 
Arabic. The baseline system was a 3-gram language model trained using the CMU language modeling 
toolkit with default settings.

The authors tested four models: Monolingual-Word used language model-like features and stem 
n-grams, Bilingual-Word used the above features and bilingual lexical features, Monolingual-All had 
access to all the information available in the target language including morphological and syntactic 
features, and Bilingual-All used all possible feature types. They performed feature selection by using a 
greedy forward stepwise feature selection algorithm to maximize the development set accuracy. 
Features were represented as templates, which generated a set of binary features corresponding to 
different values of the template, e.g., POS=NOUN. They also considered combinations of up to 3 
features: 1 predicate on the prediction and up to 2 on the context. After feature selection, the authors 
manually inspected the selected templates and wound up using 11 for Monolingual-All Russian, 36 for 
Bilingual-All Russian, 27 for Monolingual-All Arabic, and 39 for Bilingual-All Arabic.

All the suggested models handily outperformed the baseline model, and the best was Bilingual-
All, which scored 91.5% accuracy for Russian versus 77.6% accuracy for the baseline, and 73.3% 
accuracy for Arabic versus 31.7% accuracy for the baseline. The bilingual and non-lexical features 
made large contributions, resulting in about 1.5-2% absolute gain both monolingual and bilingual non-
lexical features and about 2% gain for bilingual features. The models also did a good job of resolving 
the data sparsity problem in terms of generating morphology, as when they were trained on as few as 
5000 sentence pairs, they had much greater accuracy than a language model trained on a much larger 
dataset. The learning curve became less steep with more training data, possible showing that the 
models were learning morphological generalizations. One final experiment tested this framework on 
the results of an English-Russian MT system. The authors trained an English-Russian MT system on a 
stemmed version of aligned data, and used the system to generate stemmed word sequences as outputs. 
They then inflected these stem sequences with the suggested framework and noticed BLEU score 
improvements of 1.7 compared to a typical phrase-based system.
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5.  Conclusion

The above papers demonstrate that there are a wide number of ways of incorporating morphology into 
SMT, and the best technique depends largely on the amount of training data available and the direction 
of translation (rich-morphology to poor or vice versa). Regardless, all of the above solutions helped to 
resolve the data sparsity issue and produce better word alignments. Splitting target or source or both 
words into morphemes helped reduce the data sparsity problem by conflating the statistics of two or 
more base forms (that did not look the same on the surface but have the same form after stripping off 
morphology), and this had a positive effect on the word alignment and translation processes. The better 
word alignments resulted in better overall translations, as more accurate phrase tables were able to be 
extracted. The use of morphological information worked better with smaller datasets because the 
sparsity problem is more of an issue with smaller datasets, as less forms are present, and it is harder to 
reliably estimate probabilities. On the other hand, with a large dataset, the effect of morphological 
information is less pronounced, as the issue of data sparsity is less of an issue.

The first issue to note is that just because sparse data is an issue, that does not mean that 
sparsity is an issue for each and every word form. It is quite likely that some forms in the dataset occur 
frequently enough to produce reliable probability estimates in training. However, every paper that I 
read did not really take this into account and used morphological information in the translation process 
for each word. Assuming a word occurs frequently enough to produce reliable probability estimates, 
splitting the word using morphological information may not be justified. Such a splitting may be error 
prone, as is reassembling the word after translation. I believe a kind of back-off model may be more 
appropriate here. The MT system can make use of a factored language model, and one language model 
can be morphologically based, and the other can be word-based. Before translation, the system would 
then iterate over the training set and produce a count of each type present in the data. During 
translation, if a word had a frequency greater than some arbitrary, pre-defined threshold, the MT system 
would make use of the word-based language model. If not, the system would use the morphologically-
based language model. Such a system would still maintain the advantages of including morphological 
information such as reduction of data sparseness, but it would also include the advantages of word-
based translation: no need for possibly error-prone word segmentation and reassembly.

Moreover, the above papers noted that a segmentation in between full-segmentation and full 
word forms was ideal. Leaving word forms un-segmented does not aid in resolving the data sparsity 
issue. Fully-segmenting words results in affixes that do not align with anything on the target side, 
creating noise, worsening the alignment, and thereby worsening the translation results. Some affixes 
are helpful in the translation process, whereas other are not and should remain attached to the root. 
Which affixes to re-attach is highly dependent on the language pairs being translated. The question is 
how to determine how much to split based on which affixes are relevant and which ones are not. The 
Arabic, Czech, and Turkish translation systems from above all used linguistic knowledge or looked at 
which affixes did not align with anything to determine which affixes to re-attach to stems. Linguistic 
knowledge requires an expert on the language, and such a person may or may not be available for a 
translation project. Inspecting alignments works well, but this method requires manual re-attachment of 
affixes aligning with nothing to their stems. Ideally, the entire MT process is fully automatic and even 
more ideally, unsupervised. One possible solution may be present in a paper by Talbot and Osbourne. 
They attempt to formulate a framework that minimizes the amount of lexical redundancy in a pair of 
languages. Redundancy means that distinctions made between lexical types in one language are not 
made in another language. For example, such redundancy may come about if one language encodes 
gender on adjectives, while another does not. The goal is to optimize the source lexicon for a given 
target language by selecting a model over a set of cluster-based translation models. Such clusters group 
words by similarity, e.g, part-of-speech or distribution in training data. The authors define a prior over 
these models using a Markov random field. The framework then learns features about sets of 
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monolingual types that predict lexical redundancy (Talbot, et al 2006). The intuition is that the less 
redundancy present in two language pairs, the less re-attachment necessary, as the two languages have 
highly similar morphological structures. On a similar token, the more redundancy present in a language 
pair, the more re-attachment necessary, as the two languages have highly dissimilar morphological 
structures. Use of this algorithm lessens the dependence on a linguist to provide knowledge about 
linguistic information about the source and target languages. However, re-attachment of affixes that do 
not align still must be done manually. The Karageorgakis, et al paper provides another possible 
solution, in that they used the Linguistica system, which automatically derived morphological rules 
using the Minimum Description Length principal and other heuristics to determine an optimal splitting 
for a word. They got good results using this system, but it would have been interesting to see 
comparisons of a system using a morphological analyzer designed for English and one designed for 
Greek versus the results from the Linguistica morphological analyzer. The Linguistica morphological 
analyzer was close to fully automatic, but the authors still had to tune a couple of ad-hoc parameters 
(minimum length of word to stem and minimum ratio of suffix length to word length on a tuning set.

Integration of morphology into SMT helps achieve better local agreement, but long-distance 
agreement is still an issue. Oflazer, et al made use of a decoder and distortion model set to unlimited to 
try to allow for long-distance movement. However, this lead to mixed results. For example, their best 
model achieved 65% root accuracy but only 52% word 1-gram accuracy. Another examples is in 
English-Czech MT, the verb-modifier relation is hard to translate correctly. Bojar found that 56% of the 
time the verb and noun were both lexically correct, but the relation between them was not. Both of the 
above issues may result from a sparsity problem, as there may not be enough evidence in the data to 
reliably produce the correct forms and the correct agreement. Instead of relying on the distortion model 
to produce long-distance movement, a better solution may be incorporating syntax into SMT. A syntax-
based language model could be trained on dependency parses between verbs and modifiers or stems 
and morphemes, and this language model could then be an additional language model in a factored 
SMT system. Using a factored system also enables the use of other features and clues that may help 
identify the correct agreement, e.g., context to the left or right of the relation.

The final point is that using BLEU to evaluate is always an issue. With morphologically-rich 
languages, using BLEU is even more of a problem. This is because BLEU is an 'all or none' evaluation, 
and morphologically-rich languages have fewer tokens in the output. A system could get 100% of the 
root words correct and 90% of the affixes but still receive a low BLEU score because one affix is 
wrong in each of the words in the output. Using a more lenient and linguistically-based scoring metric 
makes a lot more sense for morphologically rich languages. For example, using Meteor (Lavie, et al) 
could result in improved scores. A possibility is using WordNet to provide synonyms for each root and 
affix. A system would then receive a score based on how closely each root and affix matched the 
reference translation. An exact match of a stem or affix results in a perfect score, whereas an affix or 
stem that matched a synonym in WordNet would result in a score that was slightly discounted from the 
perfect score depending on how distant the synonym is from the reference translation. The resulting 
score would still be good and accurately reflect how well the translation system produced stems and 
affixes, and it would resolve the 'all or none' scoring of BLEU. Hence, integrating morphological 
information into SMT systems can be done in a variety of ways, reduces the data sparsity issue, aids 
alignment, and ultimately results in improved translation scores compared to word-based SMT systems.
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