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1 Introduction

The automatic evaluation of machine translation (MT) has been a very im-
portant factor driving the success of statistical machine translation for most
of this decade. Prior to automatic metrics, researchers were forced to rely
more heavily on human evaluations, which are costly and time-consuming.
Automatic metrics allow systems to analyze and reduce errors while they
train. Fully automatic machine translation evaluation poses an interesting
problem, however. In order to be able to judge whether a translation from a
source to target language is a good one, we must �rst solve the problem of
machine translation. For that reason, human reference translations are cre-
ated for the purpose of evaluation and the target output is compared against
these reference translations. Some metrics also look at the source sentences
for length ratios or other statistics.

The success of automatic MT evaluation relies heavily upon accurate
reference translations. There are at least two assumptions in dealing with
reference translations: that the human translation will be adequate in the
transmission of information from the target language to the source language
and that the human translation will be �uent in the target language. It is
possible for there to be a many-to-many mapping from sentences with the
same meaning in the source language to sentences with the same meaning
in the target language. Also, it is still a matter of debate in the linguistic
community whether exact meaning-to-meaning mapping is even possible be-
tween human languages (cf. the Sapir-Whorf hypothesis (Kay and Kempton,
1984)). Another complication is deciding how best to evaluate the quality
of the MT evaluation metrics themselves.
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These factors make automatic MT evaluation a di�cult task. Reference
translations simplify it, but how best to exploit them is still an open question.
This paper will begin by brie�y mentioning current popular metrics for MT
evaluation and how MT metrics are evaluated in Section 2. In Section 3, we
will describe some recent attempts of incorporating linguistic information
in evaluation metrics and in Section 4, we will see explore how machine
learning has been combined with this information. Finally, we will conclude
in Section 5 with some �nal discussion and ideas for future research in this
�eld.

2 Background

Evaluating MT evaluation is a growing research area in itself. One common
evaluation strategy has been to collect human judgments of MT quality for
measures of adequacy and �uency. A bilingual judge examines the source
sentence and reference translations and assigns a rating (usually in the scale
of 1 to 5) to that sentence for both of these measures. There is a great deal
of intercoder disagreement (Koehn and Monz, 2006), so these human assess-
ments are usually normalized according to the method described in (Blatz
et al., 2003). The MT evaluation metric is evaluated based on correlation
(using Pearson correlation or Spearman's rank correlation) with the judges'
normalized assessments.

2.1 Binary System Comparisons

Intercoder disagreement between judges using rating scales indicates a need
for a better method of scoring hypothesis translations. One alternative for
human evaluation of multiple machine translation systems is binary system
comparison (Vilar et al., 2007). The central insight of binary system compar-
ison is that a human judge is better able to tell which of two translations is of
higher quality than he is of assigning a rating to each. The process is simple:
a judge is presented with two translations of the same source sentence and is
instructed to mark which sentence is better or if they are equal. It is up to
each judge to decide what it means to be the better translation, and they are
instructed not to distinguish between adequacy and �uency. Judges are pre-
sented with sentences from multiple systems chosen at random, to alleviate
the e�ect of bias in the evaluators.

Once enough binary comparisons for multiple systems have been elicited,
a ranking of all the systems is possible. Vilar et al. (2007) de�ne the com-
parison score between two systems X and Y , with translations ei,X and ei,Y
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as

ri,X,Y =


+1 ei,X is better than ei,Y

0 ei,X is equal to ei,Y

−1 ei,X is worse than ei,Y

. (1)

Therefore, the binary comparison score for two systems for m sentences is

RX,Y =
1
m

m∑
i=1

ri,X,Y . (2)

These scores also allow easy computation of standard error and signi�cance
tests. In an evaluation, Vilar et al. (2007) report that BLEU (see Section 2.2)
was able to correctly rank the systems.

One major drawback of the binary system comparison approach is that
it requires O( log n!) evaluations (n is the number of systems), whereas only
O(n) are needed for the earlier method. However, the actual task of eval-
uation should be easier for judges and this method does not require judges
to learn a special rating scale (if one were speci�ed). The bias introduced
by the rating scale has been removed, but there is still is bias introduced
by human preferences, which has not changed. The results of the rating
scale method cannot be compared to future evaluations. The binary sys-
tem comparison approach can be applied to later evaluations, but it requires
some additional human e�ort. If the goal is �nding the new ordering of all
systems, it will require comparing the new one to several of the previous
systems, which would be time consuming. However, if the goal is only to
determine if the new system is signi�cantly better than a previous system,
this approach makes that fairly easy to compute.

2.2 Current Metrics

Perhaps the most widely used automatic MT evaluation metric is BLEU (Pa-
pineni et al., 2002). BLEU is concerned primarily with n-gram precision
between the hypothesis and reference translations. It does not look at re-
call, due to the fact that it is not clear how recall should be computed
across multiple references. BLEU has been often criticized in recent years
as its weaknesses are being uncovered. One weakness is that in ignoring
recall, it ignores a factor which is more closely correlated with human judg-
ments (Lavie et al., 2004). Hypotheses that are scored equally by judges
can vary greatly when scored by BLEU (Callison-Burch et al., 2006). BLEU
also lacks �exibility when tuning to a particular task and while correlation is
better at the corpus level, it correlates poorly at the sentence level (Kulesza
and Shieber, 2004; Och et al., 2003).
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METEOR is another metric that seeks to address many of the concerns
in BLEU and increase correlation with human judgments at the corpus and
sentence level (Banerjee and Lavie, 2005; Lavie and Agarwal, 2007). ME-
TEOR addresses the issue of recall by using the maximum recall between
the hypothesis and each reference translation. Like BLEU, it is an n-gram
measure, but it also brings in additional semantic information if the optional
WordNet synonymy module is used. This has been shown independently to
increase correlation with human judgments (for example, (Owczarzak et al.,
2007)). Using WordNet to produce synonyms for n-gram matching is one way
of bringing linguistic information into MT evaluation. In the next section,
we will look at methods that take it a step further.

3 Incorporation of Linguistic Information

The past few years have seen the appearance of several MT evaluation tech-
niques that use linguistic information. Most often, the linguistic information
is syntactic, and compares automatically obtained parses of the hypothesis
and reference translations. One of the �rst experiments in this area was
by Liu and Gildea (2005). It is possible for BLEU to assign high scores to
dis�uent sentences that would have been caught if the syntax of the sentences
were known. Some of the issues that linguistically motivated approaches face
are noise. Parses for sentences are obtained via automatic methods. Parsing
accuracy is typically in the 90% accuracy range, but that still means there
may be several errors in each sentence. The sensitivity to noise of a metric
is an important consideration. Most automatic parsers are trained and eval-
uated on data that has been constructed by hand. How they degrade in the
face of poorly formed sentences can also a�ect performance. N-gram metrics
like BLEU are usually very fast, while parsing is much slower. Minimum
error rate training for machine translation is only possible (in a reasonable
time) with a very fast evaluation measure. If syntactic methods are to ben-
e�t MT during training, they must also be e�cient. This particular concern
has not really been addressed in the literature yet and is an open area for
research.

3.1 Subtree Features

The metrics described by Liu and Gildea (2005) all examine the similarity
between subtrees of the hypothesis and reference translations. Matching
whole trees is improbable (unless the sentences were identical, in which case
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the extra e�ort is unnecessary). Subtree similarity uses syntactic informa-
tion and allows degrees of similarity to be expressed in a more �ne-grained
way. This method has intuitive merit in that it also rewards synonymy in
a way that would be missed by an n-gram method. Assuming the higher
levels of the trees stayed the same, synonyms and synonymous phrases can
exchange leaf node positions. At the same time, this may admit additional
errors, since it is also possible for incorrect words to �ll those positions.
The hypothesis is that the latter case will be less likely in general than the
former. It is important to note that syntactic features are more likely to
be helpful in identifying �uency rather than adequacy. However, a �uent
sentence that scores well with reference translations should also have a high
level of adequacy.

The �rst metric they propose is the subtree metric (STM). A subtree of
depth n in this metric is a parent node and all of its children and their chil-
dren down to a depth of n. Clipped precision is computed on all subtrees of
a given depth and normalized by the maximum depth of the tree to produce
the STM score:

STM =
1
D

D∑
i=1

∑
t∈subtreesn

(hyp)countclip(t)∑
t∈subtreesn(hyp)count(t)

. (3)

The count is the number of times the subtree t appears in the hypothesis
tree, while the clipped count is the number of times the subtree appears
in the reference translations capped by the maximum number of times it
appears in any single reference. This prevents assigning high scores to trees
that produce too many common subtrees. A similar problem occurs when
calculating unigram precision. The sentence The the the the the would have
a high precision as long as the appeared in the reference translation.

Rather than constructing subtrees that contain all of a parent's children,
they also considered all fractional parts of subtrees. To make this tractable,
they used convolution kernels as described by Collins and Du�y (2002). Ker-
nel methods operate on vectors, which in this case are vectors of counts of
all occurrences of every subtree in the hypothesis and reference translations.
The inner product of the hypothesis and a reference vector is a count of the
number of subtrees in common. This value is normalized by the magnitude
of each vector to produce the cosine of the two vectors, which is a value
between between 0 and 1. The resulting Tree Kernel Metric (TKM) is the
maximum cosine between the hypothesis and any reference.

The previous two metrics used phrase structure parses similar to that
used by the Penn Treebank. For the third metric, they turn to dependency
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parses of the sentences. In a dependency parse, branches of the tree are no
longer labeled by part of speech, but simply link children to parents according
to syntactic dependency. This introduces the notion of headedness. That is,
phrases are headed by a root word. For a noun phrase such as the silly doctor,
the head word would be doctor and both the and silly would be its children.
Any chain of dependencies, from child to parent, is considered a headword
chain. The Headword Chain Metric (HWCM) is computed in exactly the
same fashion as the STM, except that any headword chain is permissible.
Recall that in the STM, a parent and all of its children constituted a subtree.
Liu and Gildea (2005) also evaluated dependency versions of STM and TKM
(created with dependency parses rather than phrase structure parses).

To evaluate these metrics, they used data with human assessments of
adequacy and �uency on a scale of 1 to 5. The data came from the Johns
Hopkins 2003 Summer Workshop and the ACL05 MT Workshop. At both
the corpus level and sentence level, HWCM correlated better with human
judgments than did BLEU. At the corpus level, the dependency versions of
STM and TKM both generally outperformed BLEU. Only the kernel based
metrics did worse at the sentence level. These results were valuable in that
they showed that even noisy linguistic information is helpful in judging the
quality of MT output.

3.2 Grammatical Relations

Figure 1: An example LFG parse (Owczarzak et al., 2007).

Owczarzak et al. (2007) reported an interesting extension of the met-
rics proposed by Liu and Gildea (2005). Rather than using a standard
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phrase structure parser, they used a Lexical Functional Grammar (LFG)
parser developed by Cahill et al. (2004). LFG is a grammar formalism which
constructs at least two structures for each sentence: a c-structure and an
f-structure. The c-structure is similar to a parse tree, but the f-structure
describes the grammatical relations present in the sentence. A grammatical
relation is a mapping of some grammatical role to the words acting as such
in the sentence. An example sentence from Owczarzak et al. (2007) is given
in Figure 1. Whereas Liu and Gildea (2005) used only the constituent infor-
mation (equivalent to the LFG c-structure), Owczarzak et al. (2007) looked
also at the grammatical relations present in the hypothesis and reference
translations.

The grammatical relations they examined can be grouped into predicate-
only and non-predicate dependencies. Predicate-only dependencies are predicate-
value pairs (e.g. subj (resign, john)). Non-predicate dependencies are typi-
cally features that indicate the degree or the form of words in the sentence.
Rather than describing the relationship between words, they describe the
attributes of words and the sentence as a whole. Example non-predicate fea-
tures include adjectival degree, complementizer forms (if, whether), passive,
in�nitival clause, etc. Whereas subtree features looked at the similarities
between subtrees in the parses of the reference and hypothesis translations,
the labeled dependency approach measures the similarity in the f-structures
of the reference and hypothesis translations. This is done by computing the
harmonic mean (f-score) between precision and recall for each hypothesis,
reference translation pair.

In LFG, it is possible for a single f-structure to map to many surface
forms of a sentence. Intuitively, this seems like an ideal characteristic for an
MT metric to have since there can be wide variation in target-side sentences
while still being a good translation of the source sentence. One issue that
arises whenever statistical parsing is involved is parser noise. To address this
issue, Owczarzak et al. (2007) use an interesting approach. When adjuncts
are reordered in a sentence, it is usually the case that the f-structure stays
the same. By performing meaning-preserving transformations on a set of
sentences, it is possible to compare the resulting f-structures in order to
measure the noise introduced by the parser. This comparison poses easily as
a machine translation problem: the source sentence is the original sentence
and the translation is the adjunct-reordered form of the sentence. This
reformulation allows the use of other MT evaluation metrics to measure the
parser noise. By adding n-best parses, the scores according to the labeled
dependencies steadily improve.

The result of adding labeled dependencies appears to be bene�cial. Owczarzak
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et al. (2007) report results that outperform all other examined metrics (in-
cluding METEOR with WordNet) on Pearson correlation with unnormalized
human judgments of �uency. METEOR correlates the best with adequacy
and with the average of adequacy and �uency, though the labeled depen-
dency approach is competitive on average, when using the 50-best parses,
and it signi�cantly outperforms BLEU. The labeled dependencies used are
still fairly simplistic and they describe future work with more complex fea-
tures built from the parser output.

3.3 Syntactic Word-Word Dependencies

Figure 2: Example parses of two sentences using CCG (Mehay and Brew,
2007)

.

BLEUATRE (BLEU's Associate with Tectogrammatical RElations) is
a di�erent twist on incorporating syntax into MT evaluation (Mehay and
Brew, 2007). Rather than parsing both the noisy hypothesis and reference
translations, BLEUATRE parses only the reference translations. By virtue
of the fact that these are human generated, they are expected to be well-
formed, side-stepping the problem parsers face with noisy input. To extract
dependencies, they use a Combinatory Categorial Grammar (CCG) parser
developed by Clark and Curran (2004). A word-word dependency is a tuple
consisting of the head word, the dependent (child) word, and the part of
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speech of the child. An example pair of sentences along with their word-
word dependencies is given in Figure 2.

Once the word-word dependencies have been extracted for the reference
translations, two lists are constructed: the words that must appear to the left
of the heads and the words that must appear to the right. This allows a par-
tial linear order to be established in the dependency parse. To evaluate the
performance of an MT system, the candidate sentences are evaluated on how
often it gets the head-dependent ordering correct. This requires no parsing,
only simple n-gram comparisons like BLEU. Also like BLEU, BLEUATRE
uses a brevity penalty to protect against overgeneration in sentences that
are too long.

While BLEUATRE does not achieve the best results on correlation with
human judgment, it does at least show that it is possible to achieve competi-
tive results without parsing the hypothesis translations. This o�ers hope that
a syntactic method could be incorporated in minimum error rate training for
MT systems. Also, as Mehay and Brew (2007) point out, the BLEUATRE
system does not include many of the enhancements (such as WordNet syn-
onymy) that other high-scoring metrics do. The BLEUATRE system could
easily be combined with other systems or linguistically informed approaches,
perhaps boosting the correlation of both.

4 Combination with Machine Learning

A di�erent way of looking at the MT evaluation task is as a human-likeness
problem. Rather than attempting to judge the similarity between the hy-
pothesis and reference translation, we could build a classi�er that uses those
similarity measures as features to determine whether a sentence was pro-
duced by a human or a machine (Corston-Oliver et al., 2001; Kulesza and
Shieber, 2004). The features looked at in their experiment were similar to
those used by BLEU and other n-gram metrics. In addition to n-gram pre-
cision, they looked at the ratio of hypothesis to reference sentence length,
word error rate, and position-independent word error rate. Reference trans-
lations were treated as positive training examples and machine translations
were treated as negative. They trained a support vector machine (SVM) to
classify test sentences according to their human likeness and found that it
performed very well, correlating much better with human judgments at the
sentence level than did BLEU.

After the work by Liu and Gildea (2005), an interesting recent extension
has been to use subtree features (speci�cally HWCM) as additional features
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in the SVM model (Albrecht and Hwa, 2007). The paper also looks at
whether classi�cation and the way the classi�cation question was framed is
the right approach. They ask three important questions:

• Is human-likeness the correct machine learning approach for MT eval-
uation?

• How do the model features a�ect the result?

• Do learning approaches generalize?

To answer the �rst question, they compare the human-likeness classi�er
of Kulesza and Shieber (2004) with a regression-based model. In regression,
rather than trying to classify a sentence as coming from a human or machine,
it attempts to learn the continuous function matching how humans assess
quality. In their experiments, Albrecht and Hwa (2007) show that achieving
a high level of accuracy on human-likeness classi�cation does not necessarily
mean better correlation with human judgment. Regression correlated better
with human judgments and was able to do so given available training data.

Two sets of model features were constructed in order to determine the
e�ect they would have on the result of the regression model. The small
feature set were the features from Kulesza and Shieber (2004). The features
from that work were then applied to headword chains derived in the same
fashion as Liu and Gildea (2005). The features from the small feature set
were computed with a large corpus of English acting as a reference translation
and repeated for the syntactic features over the larger dataset. The results
showed that having more features helped regression as the number of training
examples increased, whereas it had a large, negative impact on classi�cation
at all levels of training data. Interestingly, the classi�cation accuracy of the
classi�er increased with more features and training examples, but correlation
with human judgments did not.

To determine how well regression generalizes to unseen data, they per-
formed a series of experiments across years on NIST evaluation data. They
compare the cross-year generalization performance of regression, classi�ca-
tion, BLEU, METEOR, and HWCM. Regression performed better than any
other metric, demonstrating that it does generalize well. In another exper-
iment, the top and bottom metrics were removed from the training data
and the results for each run were compared to the results when all of the
data was present in training. The results from those experiments indicated
that the presence of good examples in the training data is very important.
Good examples are more constrained and so provide more information to
the learner than bad examples, which can vary widely in form.

10



5 Conclusion

Results from recent work incorporating linguistic information into MT eval-
uation metrics have shown that linguistic information is helpful in improving
correlation with human judgments. Finding the best way to incorporate this
information is not always straightforward. Also, n-gram similarity metrics
are usually faster and achieve results that are good enough (in the case of
BLEU) or very good (in the case of METEOR) without having to expend the
extra e�ort of using linguistic information. Also, automatic methods of ob-
taining this information is often very noisy and the data used as input (MT
system output) is not the same as the data that these parsers were trained
on. To our knowledge, no oracle studies have been done on determining
just how well these metrics would perform with perfect linguistic knowledge.
To do so would be extraordinarily time consuming and require the e�ort of
several trained experts.

Another drawback of including linguistic information is the computa-
tional cost. In general, it is prohibitively high for use in minimum error rate
training for an MT system. The work by Mehay and Brew (2007) with the
BLEUATRE system o�ers some possibilities in this area, however. It is still
an open question whether the use of a metric with better correlation with
human judgments would be bene�cial for that purpose.

Machine learning has only begun to be used in MT evaluation. We expect
that in upcoming years, we will see more and more systems which attempt
to build good machine learning models for this task. Linguistic information
has been applied in this area already to good e�ect, so we expect that trend
to continue. The obvious next steps would be to use labeled dependencies
in a system such as that used by Albrecht and Hwa (2007). The most
common machine learning algorithm has been support vector machines, but
it's possible there are better learners. Also, regression proved to be better
than human-likeness classi�cation, so it is possible there are still better ways
of framing the evaluation question for machine learning. Perhaps by using
binary system comparisons, a ranking SVM (see (Joachims, 2002) could be
trained with linguistically motivated features. In any case, there are many
interesting years ahead for research in MT evaluation.
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