Word Segmentation and their Integration in Machine Translation

Advanced MT Seminar

ThuyLinh Nguyen

thuylinh@cs.cmu.edu

Advanced MT seminar - p. 1/2

日文章魚怎麼說? 'How do you say octopus in Japanese?'

Word Segmentation for MT

- Use word segmentation toolkit to segment character sequences into words before the training and translation.
- Each Chinese character is interpreted as a single word and learn the segmentation from Chinese character -English word alignment. (Xu et al. [2004])
- Confusion networks: Take different segmentations into account and represent them as lattice. The input of the translation system is a set of lattices. (Xu [2005])

Ambiguity

- A character can be a word component in one context or a word by itself in other context.
- A character can occur in different positions.

Position	Example		
Left	产生 'to come up with'		
Word by itself	产小麦 'to grow wheat'		
Middle	生产线 'assembly line'		
Right	生产 'to produce'		

Ambiguity

- A character can be a word component in one context or a word by itself in other context.
- A character can occur in different positions.

Unknown words

- New words are combinations of existing words.
- Names are created by combining characters in unpredictable manner.
- Transliteration of foreign names.

Ambiguity

- A character can be a word component in one context or a word by itself in other context.
- A character can occur in different positions.

Unknown words

- New words are combinations of existing words.
- Names are created by combining characters in unpredictable manner.
- Transliteration of foreign names.
- There is no widely accepted definition of Chinese word. (Sproat et al. [1994])used 6 people segmented the same text. The segmentation consistency is only 76%.

Word Segmentation methods

- Purely dictionary-based approach (Cheng et al. [1999])
 - Address the ambiguity problem with maximum matching heuristic.
 - Pros: Simple, good heuristic.
 - Cons: Depends on the coverage of the dictionary.

Word Segmentation methods

- Purely dictionary-based approach (Cheng et al. [1999])
 - Address the ambiguity problem with maximum matching heuristic.
 - Pros: Simple, good heuristic.
 - Cons: Depends on the coverage of the dictionary.
- Purely statistical-based approach
 - Use Point-wise mutual information or EM.
 - Pros: Not depend on a dictionary.
 - Cons: Low accuracy.

Word Segmentation methods

- Purely dictionary-based approach (Cheng et al. [1999])
 - Address the ambiguity problem with maximum matching heuristic.
 - Pros: Simple, good heuristic.
 - Cons: Depends on the coverage of the dictionary.
- Purely statistical-based approach
 - Use Point-wise mutual information or EM.
 - Pros: Not depend on a dictionary.
 - Cons: Low accuracy.
- Statistical-based approach using manual word segmentation data.

Peng et al. [2004] & Tseng et al. [2005]

Word segmentation as Character Tagging problem

Peng et al. [2004] & Tseng et al. [2005]

Word segmentation as Character Tagging problem

• Conditional Random Field model Let $\mathbf{c} = (c_1, c_2, \dots, c_K)$ be a Chinese sentence, $\mathbf{t} = (t_1, t_2, \dots, t_K)$ be the character tags of \mathbf{c} .

$$\Pr\left(\mathbf{t}|\mathbf{c}\right) = \frac{1}{\mathbf{Z}(\mathbf{c})} \exp\left(\sum_{k=1}^{k=K} \sum_{i} \lambda_{i} f_{i}(t_{k-1}, t_{k}, \mathbf{c}, k)\right)$$

- Unknown words detection
 - Peng et al. [2004]: Use forward backward algorithm to calculate the confidence of word segment.
 - Tseng et al. [2005]: Add additional features to the model i.e the first and the last characters of rare words.

Unknown words detection

- Peng et al. [2004]: Use forward backward algorithm to calculate the confidence of word segment.
- Tseng et al. [2005]: Add additional features to the model i.e the first and the last characters of rare words.
- Results

Sighan Bakeoff 2003	F-score Tseng et al (2005)	F-score Peng et al. (2004)
CTB	0.863	0.849
AS	0.970	0.956
нк	0.947	0.928
РК	0.953	0.941

Xu et al. [2004]

- Each Chinese character is interpreted as one "word".
- Aligned Chinese characters with English text.

Xu et al. [2004]

- Each Chinese character is interpreted as one "word".
- Aligned Chinese characters with English text.

- Generate a Chinese word dictionary.
- Use self-learned dictionary for Chinese word segmentation.

Word length statistics

word	LDC dictio	LDC dictionary		C dictionary learned dictionary		ionary
length	frequency	[%]	frequency	[%]		
1	2 3 3 4	18.6	2 368	16.9		
2	8 1 4 9	65.1	5486	39.2		
3	1 188	9.5	1899	13.6		
4	759	6.1	2084	14.9		
5	70	0.6	791	5.7		
6	20	0.2	617	4.4		
7	6	0.0	327	2.3		
≥ 8	11	0.0	424	3.0		
total	12527	100	13 996	100		

		Chinese	English
Train	Sentences	4 17	2
	Characters	172874	832760
	Words	116090	145422
	Char. Vocab.	3419 + 20	26 + 20
	Word Vocab.	9 391	9505
Test	Sentences	993	}
	Characters	42100	167101
	Words	28247	26225

method	error rates		accuracy		
v	WER	PER	BLEU		
no segment.	73.3	56.5	27.6		
learned segment.	70.4	54.6	29.1		
LDC segment.	71.9	54.4	29.2		

Xu [2005]

Single best segmentation translation

Text Segmentation Decoder Translation

$$\begin{split} & \hat{\mathbf{f}}_{1}^{\hat{\mathbf{J}}} &= \arg\max_{\mathbf{f}_{1}^{\mathbf{J}},\mathbf{J}} \left\{ \Pr\left(\mathbf{f}_{1}^{\mathbf{J}}|\mathbf{c}_{1}^{\mathbf{K}}\right) \right\} \\ & \hat{\mathbf{e}}_{1}^{\hat{\mathbf{I}}} &= \arg\max_{\mathbf{e}_{1}^{\mathbf{I}},\mathbf{I}} \left\{ \Pr\left(\mathbf{e}_{1}^{\mathbf{I}}|\hat{\mathbf{f}}_{1}^{\hat{\mathbf{J}}}\right) \right\} \end{split}$$

Xu [2005]

Segmentation lattice translation

$$Text \longrightarrow Global decision \longrightarrow Translation$$

$$\hat{e}_{1}^{\hat{I}} = \operatorname{argmax}_{I,e_{1}^{I}} \left\{ Pr(e_{1}^{I}|c_{1}^{K}) \right\}$$

$$= \operatorname{argmax}_{I,e_{1}^{I}} \left\{ \sum_{f_{1}^{J}} Pr(f_{1}^{J},e_{1}^{I}|c_{1}^{K}) \right\}$$

$$= \operatorname{argmax}_{I,e_{1}^{I}} \left\{ \sum_{f_{1}^{J}} Pr(f_{1}^{J}|c_{1}^{K}) \cdot Pr(e_{1}^{I}|f_{1}^{J},c_{1}^{K}) \right\}$$

$$\cong \operatorname{argmax}_{I,e_{1}^{I}} \left\{ \operatorname{max}_{f_{1}^{J}} \left\{ Pr(f_{1}^{J}|c_{1}^{K}) \cdot Pr(e_{1}^{I}|f_{1}^{J}) \right\} \right\}$$

Xu [2005]

Input sentence at the character level

Segmentation lattice

Xu [2005]

Input sentence at the character level

 $\underbrace{0 \xrightarrow{zai} 1 \xrightarrow{na} 2}_{4} \underbrace{i}_{3} \underbrace{ban}_{4} \underbrace{i}_{5} \underbrace{deng}_{6} \underbrace{ji}_{7} \underbrace{shou}_{8} \underbrace{wu}_{9} \underbrace{9}_{10}^{2} \underbrace{10}$

Segmentation lattice with weights

Xu [2005]

Corpus statistics

		C	hinese	English
Train:	Sentences	19 851		
	Running Words	18	8 1247	159 655
	Vocabulary		7 610	6955
Singletons		3 512		2938
CStar'03:	Sentences	506		
		Words	Characters	Words
	Running Words/Characters	3 5 1 5	4 7 5 7	65 604
	Vocabulary	870	800	2 0 7 8
	OOVs (running words/characters) [%]	5.40	8.74	14.3
2	OOVs (in vocabulary) [%]	18.4	26.3	20.6

Translation results

Monotone finite state transducer

Segmentation methods	WER [%]	PER [%]	NIST	BLEU [%]
Single-best (manual) segmentation	51.3	43.1	3.60	28.5
Segmentation lattice without weights	51.6	42.2	4.69	29.0

Phrase based system

Segmentation methods	WER [%]	PER[%]	NIST	BLEU[%]
Single-best (manual) segmentation	53.6	43.8	8.18	38.9
Segmentation lattice without weight	47.0	38.1	8.09	40.2
Segmentation lattice with bi-gram LM	47.2	38.0	8.18	40.4

Very few research on word segmentation for machine translation

- Very few research on word segmentation for machine translation
- GIZA++ can produce error alignments.

- Very few research on word segmentation for machine translation
- GIZA++ can produce error alignments.
- Unalignment of English words and Chinese characters.

- Very few research on word segmentation for machine translation
- GIZA++ can produce error alignments.
- Unalignment of English words and Chinese characters.
- Word reordering problems.

References

- K. S. Cheng, G. H. Young, and Wong. A study on word-based and integral-bit chinese text compression algorithms. *Journal of the American Society for Information Science*, 50(3):218– 228, 1999.
- Fuchun Peng, Fangfang Feng, and Andrew Mccallum. Chinese segmentation and new word detection using conditional random fields. In *Proceedings of Coling 2004*, pages 562– 568, Geneva, Switzerland, Aug FebruaryMarch–Aug FebruaryJuly 2004. COLING.
- Richard Sproat, Chilin Shih, William Gale, and Nancy Chang. A stochastic finite-state word-segmentation algorithm for chinese. In *Meeting of the Association for Computational Linguistics*, pages 66–73, 1994. URL #.
- Huihsin Tseng, Pichuan Chang, Galen Andrew, Daniel Jurafsky, and Christopher Manning. A conditional random field word segmenter. 2005. URL http://www.aclweb.org/anthology-new/W/W06
- Xu. Integrated chinese word segmentation in statistical machine translation. In *Proceedings of the International Workshop on Spoken Language Translation (IWSLT)*, pages 141– 147, Pittsburgh, PA, October 2005.

J. Xu, R. Zens, and H. Ney. Do we need chinese word segmentation for statistical machine translation? In *Proceedings of the Third SIGHAN Workshop on Chinese Language Learning*, pages 122–128, Barcelona, Spain, July 2004.