
Large Scale Machine Translation Architecture

Qin Gao
Language Technology Institution

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA, 15213, USA
qing@cs.cmu.edu

Abstract

Parallelization is widely considered to be the
future of high performance computation, and
is a natural choice when scaling up the ma-
chine translation systems. In this report, a
programming model called MapReduce is in-
vestigated and two supporting components
for MapReduce framework to work efficiently
are analyzed, namely the distributed storage
for streaming data and distributed storage for
structural data.

With the analysis of existing softwares, solu-
tions for parallelizing several important tasks
in machine translation are proposed.

1 Overview

Most machine learning technologies require large
amount of data, so does machine translation. How-
ever, as the amount of data increases, the algorithms
and computational facilities to handle these data be-
comes a problem. A first issue to be tackled is nav-
igating or processing the large amount of data, re-
cently, many corpora contain several terabytes of
data, and even a single navigation through the data is
impossible. Moreover, the representation of knowl-
edge extracted from the data may also be very large.
For example, the lexicon models of GIZA++ may
contain several million translation probability en-
tries, and the phrase tables can be even larger. N-
gram language model is another example, for a fixed
vocabulary size |V|, the number of entries in a n-
gram language model can be a fraction of |V|n.
When n grows large, training and handling the mod-
els can be prohibitively large than most state-of-art
computers. In case that we want to scale up the ma-
chine translation systems, many tasks such as word

alignment, decoding and parsing are facing severe
problems as mentioned above.

The development of computing technology pro-
vides abundant computation resource. However, the
majority of computation resource is not within one
single super computer, but rather spread out to a
large amount of commodity PCs or general purpose
servers. Google(Barroso et al., 2003) has set an ex-
ample for making use of large clusters of commodity
computers to provide computation power for large
jobs and developed several computation model for
what can be done efficiently in this kind of infras-
tructure. The most famous one is MapReduce. As
we will see later in this paper, MapReduce is suitable
for algorithms that falls into “massive unordered dis-
tributed” (mud) algorithmic model. However, in or-
der to make the MapReduce framework suitable for
most of machine translation algorithms, we need
to have a reasonable data accessing model for both
streaming and structural data.

The report will first investigate some represen-
tative algorithms in machine translation, and show
how MapReduce algorithm can deal with them in
the second section. In the third section we will dis-
cuss supporting software for MapReduce to work ef-
ficiently, including distributed storage for streaming
data and distributed storage and accessing mecha-
nism for structural data. The conclusion is given in
the fourth section.

1.1 Representative Problems in Machine
Translation

1.1.1 Counting
First we start by investigating several common

tasks in machine translation. The simplest one may
be counting the occurrence of unigrams in a large

body of corpus.
The algorithm is straight-forward, first of all, we

should have a “map” from token to its count. Then,
for each word in the corpus, we add the count of the
token in the table by 1.

The unigram count can be extend to many other
“counting” tasks, such as counting the total number
of n-grams or the total number of a particular phrase
in the corpus.

1.1.2 Sorting
The sorting task is also common in machine trans-

lation. For example, when we need to score the ex-
tracted phrases, we need to sort the phrase table to
make sure all English phrase translations for an for-
eign phrase are next to each other in the file.

A merge sorting algorithm can be expressed as
follow:

1. Divide the unsorted list into two sublists of
about half the size

2. Divide each of the two sublists recursively until
we have list sizes of length 1, in which case the
list itself is returned

3. Merge the two sublists back into one sorted list.

Counting and sorting seems to be different, how-
ever, they share a common characteristic. Both algo-
rithm does not need information other than the data
itself, in contrast with decoding/parsing and EM al-
gorithm in next two sections.

1.1.3 Decoding/Parsing
The tasks here are a little more complicated.

However, if we leave the detail of the algorithms
along, this kind of tasks does the following:

1. Load a certain kind of model, which is gener-
ally a map function from token sequence to a
score in the real field, namely

f : Vn → R

2. For each input token sequence in the data
{v1, v2, · · · , vm}, vi ∈ V , find the opti-
mal combination of subsequence set V =
{V1, V2, · · · , Vk}Vi ∈ Vn that cover the whole
input and gives the highest score. Namely

V ∗ = arg max
V

∑
Vk∈V

f(Vk)

The most important operations in the algorithm
are the computation of f(V) and the optimization.
In most case, the f(V) involves looking up a table,
sometimes very large. With difference characteristic
of the f(V), the optimal way to solve the problem
varies.

1.1.4 Iterative Optimization
Another common task is iterative optimization,

the most representative one may be EM algorithm.
The most significant property of EM is that it needs
to iterate the following steps:

1. Compute the likelihood of all the samples, us-
ing the model from previous step. (E Step)

2. Accumulate the likelihood and perform nor-
malization/optimization to get new parameters
for the model. (M Step)

Therefore, it needs to load the model and process
all the data, just like decoding/parsing tasks. Also, it
must go over all the data and collect the counts, that
is similar to counting.

1.1.5 Language Model Training
When training language model, getting the n-

gram counts from data is similar to the counting al-
gorithm, however, language model also need to esti-
mate the smoothing (back-off) factors, and perform
“normalization” over the counts and backoffs. In
this case it is similar to the normalization step in EM
algorithm.

1.2 Comparison of Algorithms
We listed typical algorithms in machine translation.
All these algorithms share a common property, when
dealing with data, which can be arbitrarily large, ev-
ery element in the data is independent of each other.
For example, when parsing data, the result of one
sentence would not affect the result of another sen-
tence, and in EM algorithm, the likelihood of one
sentence in one iteration is independent of another
sentence. Stated in another way, the algorithm is
“unordered”, which means the final result will be the
same if we process the data in different order. This
property is very important for parallel processing of
the data, because it ensures a small fraction of data
can be processed independently by a node without
waiting the result for other fractions.

However, the algorithms are not completely the
same. For counting and sorting, all the informa-
tion is contained in the data, the program does not
require any additional model. Parsing/decoding re-
quire models to process the data, in many cases the
model itself become the major problem, rather than
the data. A good example is loading and looking
up the language models in decoding. In contrast,
Language model training does not require external
information, however, it requires a complicated pro-
cess over the result got from the data, and in most
case, the result is not “unordered”, and can hardly be
parallelized. For EM, the E-step is similar to pars-
ing/decoding and the M-step is similar to language
model training.

We can see from the analysis that besides data,
another commonly encountered object in machine
translation is the models. In most case the model
is a “map”, how to iterate or randomly access the
map entries is another key point to be solved.

Therefore we can conclude that in machine trans-
lation we are dealing with two important objects:

• Data: Linear, unordered, we can call it “stream-
ing data”

• Knowledge: Non-linear, ordered, structural, we
can call it “structural data’

Figure 1 shows a high-level representation of the
model of process in machine translation.

Figure 1: A general model of process in machine transla-
tion

1.3 Bottlenecks
Knowing the two objects we are dealing with, we
can analyze the bottlenecks in large scale machine
translation. For massive unordered data, the time
complexity is the major problem. As the size of data

grows, the processing time also grows linearly, to
some point a single processor can not finish even
one navigation over the data. However the prob-
lem is more easy to deal with, because the data is
unordered, applying the “divide and conquer” strat-
egy is natural. By partitioning the data and process-
ing them in computer clusters, the problem can be
solved. Figure 2 shows the model of parallelized
machine translation algorithms. Google’s MapRe-
duce library(Dean and Ghemawat , 2008)and open
source project Hadoop(Bialecki et al., 2005) to-
gether with distributed storage for streaming data
such as Google FS(Ghemawat et al., 2003) and
HDFS(Borthaku, 2007) are successful stories on
solving the problem.

Figure 2: Parallelizing the machine translation algo-
rithms

In the other side, the map object is ordered, and
the algorithms on the maps can hardly be paral-
lelized. Therefore, may “normalization” algorithms
have to be performed on a single machine. In many
cases, the maps are super-linear with respect to the
size of data, and requires a huge amount of storage.
When accessing the maps, hash table or other so-
phisticated data structures such as suffix array can
provide fast access to the data, however, the size of
the map often prevents the model from being loaded
by a single machine. That is why caching and filter-
ing technologies are useful for many tasks. To sum-
mary, the map object requires a distributed storage
and fast access. Currently these kind of software is
being actively developed. The “BigTable”(Chang et
al. , 2006) software developed by Google and open
source counterpart “HyperTable” 1 provides a com-
mon solution to most of these problems.

1Documentations are available at http://code.google.com
/p/hypertable/ wiki/HowHypertableWorks

2 MapReduce

MapReduce is proposed by Jeffrey Dean and Sanjay
Ghemawat in Google Inc. It can refer to the pro-
gramming model and the Google implementation of
supporting hardware and software infrastructure for
the model. There is also an opensourced implemen-
tation of the model called Hadoop, written in Java
and is now widely used in the community of “Cloud
Computing”. The MapReduce framework is con-
sidered a good solution for many machine learning
problems.(Chu, 2007).

2.1 Programming Model
The MapReduce model abstracts the computation
into two functions, Map and Reduce, and con-
sider the input and the output to be key/value pairs.
The user should supply the two functions, and the
MapReduce library will take care of partitioning
data, combining intermediate results and other com-
mon tasks.

The Map function takes an input key/value pair
(k, v) and produces a set of intermediate key/value
{K1 : V 1, · · ·Kn : V n} pairs, and the MapRe-
duce library groups all intermediate values associ-
ated with the same intermediate key K and passes
them to the Reduce function. The map function can
only access one key/value pair, and it is impossi-
ble for it to know any properties depend on other
key/value pairs.

The Reduce function accepts an intermediate key
K and a set of values for that key. It merges these
values and outputs a smaller set of values. Notice
that the Reduce function is called for one key K at a
time together with all the values associated with the
value, therefore inside the reduce function, it is im-
possible to know the computational results of other
keys — it actually prohibited the implementation of
algorithms that two keys are interdependent on this
framework.

The purpose of defining two functions and re-
stricting the parameters they can take is to ensure
the algorithm can be divided and run in different
nodes without impact the result. So, when design-
ing MapReduce program the guideline must be fol-
lowed:

• Carefully define the input key/value, and make
sure the no interdependence exists. For exam-

ple, it is suitable to define every word to be
the key for word counting, while it is invalid
to do so when counting bi-gram occurrence or
sorting the sentences. Also, the intermediate
key should be carefully defined to avoid depen-
dency.

Before the Reduce function can be executed, the
output must be grouped by the keys. The step is
done by sorting all the records using the key. And in
the implementation of Google, the order of final out-
put is also guaranteed to be ordered according to the
keys. The implicit sort procedure can make many
things easy, as we can see later.

Below we will visit several examples of how to
express algorithms with MapReduce. Most of these
examples are taken from (Dean and Ghemawat ,
2008).

2.2 Examples

2.2.1 Distributed WC
Here we want to count the total number of words

in a corpus. We want only one value C for final
output, and we just need one common intermedi-
ate key. We can have two different ways to define
input key/value pair, either be one word of the cor-
pus or one sentence/document of the corpus. For
either case, the intermediate key takes only the com-
mon value. If we define the input value by one
word the intermediate value will be 1, and if we de-
fine the input value by sentence/document, the in-
termediate value will be the word count of that sen-
tence/document. It is easy to see that defining a rea-
sonably larger gratuity for the input can be more ef-
ficient, namely the sentence/document.

The algorithm can be expressed as:

map(String key, String value):
// Key: sentence offset or document name
// Value: content of sentence/document
count = 0;
for each word w in value:
count += 1;
EmitIntermediate("c",count);

reduce(String key, Iterator values):
// Key: common key, "c"
// values: a list of counts
int result = 0;
for each v in values:

result += v;
Emit(result);

2.2.2 Distributed Unigram Count
We can also follow the previous example, how-

ever we replace the common intermediate key by ev-
ery words, and for each word, simply emit an inter-
mediate key/value pair (w, 1), and the reduce func-
tion will sum over all the key/value pairs with the
same w. Therefore we have the following definition:
map(String key, String value):
// Key: sentence offset or document name
// Value: content of sentence/document
for each word w in value:
EmitIntermediate(w,1);

reduce(String key, Iterator values):
// Key: common key, "c"
// values: a list of counts
int result = 0;
for each v in values:
result += v;

Emit(result);

The definition, however, is inefficient. Every occur-
rence of a word will emit one key/value pair, the in-
termediate key/value representation will be almost
two times larger than original corpus. Therefore, an
early combination is needed. You can either build a
Map structure in the map function and count the oc-
currence yourself, or use the optional abstract func-
tion: combiner. The combiner is the same as the re-
duce function, but runs locally to combine the map-
per’s output before passing the result through slow
network connections.

2.2.3 Distributed Sort
The map function extracts the key from each

record and emits a (key, record) pair. And the
reduce function simply emits all pairs unchanged.
Here we make use of the implicit sort procedure of
the library. However, the library may not provide
interface for defining custom comparison function,
therefore the map function is responsible to extract
proper keys.

2.3 Implementations
The MapReduce and Hadoop are primarily for large
cluster of commodity PCs, therefore the machine
failure is common in this case. Also, the storage
is provided by normal hard drivers that may not be
reliable, so they also developed file systems (Google
FS, HDFS) that use replication to provide reliability.

The resource manager is used in both systems,
which is responsible for allocating nodes for jobs
submitted by users and balance the work load so as
to get the maximum throughput from the cluster.

2.3.1 Execution overview

Below is a typical procedure of a MapReduce
job(Dean and Ghemawat , 2008), and the flowchart
of execution is shown in Figure 3.

1. The MapReduce library in the user program
first splits the input files into M pieces, whose
size is controlled by user-supplied parameter.
And then it starts up many copies of the pro-
gram on a cluster of machines.

2. One of the copies of the program is the master
and the rest are workers that are assigned work
by the master. There are M map tasks and R
reduce tasks to assign. The master picks idle
workers and assigns each one a map task or a
reduce task.

3. A worker who is assigned a map task reads the
contents of the corresponding input split. It
parses the key/value pairs out of the input data
and passes each pair to the user-defined Map
function. The intermediate key/value pairs pro-
duced by the Map function are buffered in mem-
ory.

4. Periodically, the buffered pairs are written to
local disk, partitioned into R regions by the
partitioning function. The locations of these
buffered pairs on the local disk are passed back
to the master, who is responsible for forwarding
these locations to the reduce workers.

5. When a reduce worker is notified by the mas-
ter about these locations, it uses remote pro-
cedure calls to read the buffered data from the
local disks of the map workers. When a reduce
worker has read all intermediate data, it sorts it
by the intermediate keys so that all occurrences
of the same key are grouped together. If the
amount of intermediate data is too large to fit
in memory, and external sort is used.

Figure 3: The execution flowchart of Google MapReduce library(Dean and Ghemawat , 2008)

6. The reduce worker iterates over the sorted in-
termediate data and for each unique interme-
diate key encountered, it passes the key and the
corresponding set of intermediate values to the
user’s Reduce function. The output of the Re-
duce function is appended to a final output file
for this reduce partition.

7. When all map tasks and reduce tasks have been
completed, the master wakes up the user pro-
gram. At this point, the MapReduce call in the
user program returns back to the user code.
Now the output of the MapReduce execution
is in R output files, user may combine them
to be an output, or use them directly for other
MapReduce tasks.

The execution procedure shows a first merit of
MapReduce: the partitioning of data and combina-
tion of data is taken care of by the library, so users
do not need to perform these tedious tasks again and
again.

2.3.2 Fault Tolerance
In case that a task use one thousand commodity

PCs, the failure becomes common, and the library
must allow the fault to append and handle it grace-
fully. Google’s MapReduce and Hadoop both im-
plemented fault tolerance. Generally speaking, the
master will keep on contacting the workers and if

one worker does not responce or report a failure,
the tasks in the worker will be reassigned to other
workers. In contrast, if the master is failed, the job
itself cannot be recovered. However, because only
one machine out of one thousand is the master, the
probability of master failure is rare.

3 Data IO and Memory

As we have seen in the previous section, the MapRe-
duce provides a good programming model for many
tasks. However, by investigating the examples
shown above, all the tasks falls in the first category
we discussed in the section 1, namely the tasks that
require only the information from the data. Then,
what about the other kind of processes like pars-
ing, decoding and word alignment? These kind of
processes requires reading external data, sometimes
quite large. In this section, we will first visit the
Google FS and HDFS, and then discuss the merit
and deficiency of these file systems.

3.1 Distributed Streaming File System for
MapReduce

3.1.1 Design
MapReduce is especially good for dealing with

“mud” namely “massive, unordered, distributed”
problems, therefore they focuses mainly on pro-
vide good support for stream reading/writing of

large files. Considering the hardware on which the
file systems are built is unreliable commodity PCs,
replication is also important. Below is the design as-
sumptions of Google FS quoted from (Ghemawat et
al., 2003):

• The system is built from many inexpensive com-
modity components that often fail. It must con-
stantly monitor itself and detect, tolerate, and
recover promptly component failures on a rout-
ing basis.

• The system stores a modest number of large
files. We expect a few million files, each typi-
cally 100MB or larger in size. Small files must
be supported, but does not need to optimize for
them.

• The workloads primarily consist of two kinds
of reads: large streaming reads and small ran-
dom reads. In large streaming reading, succes-
sive operations from the same client often read
through a contiguous region of a file. A small
random read typically reads a few KBs at some
arbitrary offset. Performance-conscious appli-
cations often batch and sort their small reads
to advance steadily through the file rather than
go back and forth.

• The workloads also have many large, sequen-
tial writes that append data to files. Typical
operation sizes are similar to those for reads.
Once written, files are seldom modified again.
Small writes at arbitrary position in a file are
supported but do not have to be efficient.

• The system must efficiently implement well-
defined semantics for multiple clients that con-
currently append to the same file. Atomicity
with minimal synchronization overhead is es-
sential. The file may be read later or be read
through simultaneously.

• High sustained bandwidth is more important
than low latency. Most target applications
place a premium on processing data in bulk at
a high rate, while few have stringent response
time requirements for an individual read or
write.

In the design of HDFS, the assumption is even
strict, which states:

“HDFS applications need a write-once-read-many
access model for files. A file once created, written,
and closed need not be changed. This assumption
simplifies data coherency issues and enables high
throughput data access. A MapReduce application
or a web crawler application fits perfectly with this
model. There is a plan to support appending-writes
to files in the future.”

For simplicity, the random write is disabled. How-
ever, for many tasks, the append-writing may still be
needed.

3.1.2 Implementation

For both file systems, the data are segmented
into several chunks. The chunks are stored
“chunkservers”, which are common machines in the
network. A master is responsible for supplying the
chunk location to clients, and the client, after re-
ceive the location of the chunk, goes directly to the
chunkserver for the data.

Figure 4 is the architecture of Google FS.

Figure 4: The architecture of Google FS(Ghemawat et
al., 2003)

In order to ensure the integrity of data, and (pos-
sibly) for accelerating simulatenous reading, the
chunks are replicated in several nodes.

After reading all the information above, we can
observe a strong relationship between the two dis-
tributed file system and MapReduce. Here, the data
are already chunked and in many cases, tasks can
run locally to avoid the network traffic. Therefore,
the design and implementation fits the streaming IO
perfectly.

3.1.3 Performance

Several experiments are performed in (Ghemawat
et al., 2003), and the results show that as the number
of clients increases, the aggregate read rate is very
closed to the network limitation, as shown in Figure
52. The writing rate is also very high if take replica-
tion into account. However the appending operation
is not so promising. Therefore, the decision of not
supporting appending operation by HDFS is reason-
able.

Figure 5: The aggregate throughputs of different opera-
tions on Google FS(Ghemawat et al., 2003)

2As you can see in the plot, the network limitation of differ-
ent operation is different. That is because when write operation
is performed, replication also require network bandwidth, and
append operation requires modification on the metadata tables
and also requires may seeking operations.

3.2 The IO of structured data
Given that Google FS and HDFS are good for
streaming data, the efficient solution, it still does not
solve the problem that external knowledge source is
required. In case that the size of external knowl-
edge is small – or modest, as long as it can be loaded
into memory, it is possible to replicated them to local
disk and read it into memory. However, this solution
is not perfect for huge tables. For example, in de-
coding, the phrase tables are too large to be loaded
into memory. The same problem exists in language
models, for long-span n-gram language models, the
number of entries may be tens of gigabytes.

A common solution for handling the huge lan-
guage models or phrase tables are to filter the entries
according to the sentence to be translated, however,
in current framework, for each sentence or several
sentences we need to perform a complete naviga-
tion on the whole model. Therefore, we do require a
more efficient IO for these kind of models.

In this section we will discuss a distributed
storage system for structural data implemented by
Google, with the name “BigTable”. And also the
opensource counterpart “HyperTable” which based
on Hadoop.

3.2.1 Data Model
The “BigTable” is designed to be a sparse, dis-

tributed, persistent multidimensional sorted map.
The data model of BigTable can be treated as a four-
dimension table, the four dimensions are:

1. Row: The primary key. The table is segmented
into several chunks or so-called “tablets”, and
each tablet will contain a region of rows.
Therefore, a certain row will not be stored sep-
arately.

2. Column family: Secondary key. The number of
column family should be fixed3, in that sense it
can be treated as “columns” in databases. As
we will see later, the column family is so called
“access control” unit, and can be randomly ac-
cessed in high speed.

3. Column: One column family may contain any
number of columns. We can also treat it as a the

3Although insertion and deletion is permitted, the overhead
is very high and is discouraged.

row of a second table. The name of the column
can be any arbitrary string. For example, if we
defined a column family called “target phrase”
in a phrase table, the columns can contain the
content of target phrase as the key. (However,
that will not be efficient, according to the ac-
cess method.)

4. Timestamp: By accessing from Row → Col-
umn Family → Column, we already reach the
“cell”. However, one cell can contain several
version of values, and it is indexed by an in-
teger number called “Timestamp”, which may
represent the time that the record is append.

5. Value: The value does not have any enforced
data type or structure, instead it is treated as
binary stream.

To summarize, the data model of big table is a
four-dimension table, the first and third dimension
are strings, the second dimension is (semi-)fixed,
and the fourth dimension is of integer type.

Although represented as a 4-dimension structure,
the randomly access to cells may not be performed
directly. The publication contains several sample of
BigTable APIs and shows that the randome access
may only available for column family. For example,
the following code shows the operation required for
reading from BigTable:
Scanner scanner(T);
ScanStream *stream;
stream =

scanner.FetchColumnFamily("anchor");
stream->SetReturnAllVersions();
scanner.Lookup("com.cnn.www");
for (; !stream->Done(); stream->Next()) {

printf("%s %s %lld %s\n",
scanner.RowName(),
stream->ColumnName(),
stream->MicroTimestamp(),
stream->Value());

}

A scanner is a abstraction to iterate over all an-
chors in a particular row, and the ScanStream has the
functionality of fetching a column family and then
use the Lookup() function to search for a particu-
lar column value within the column family. We can
see from the code that the random access may only
applicable on column family and the column value
can only be accessed by performing search inside
the column family.

3.2.2 Storage Structure

The BigTable is based on Google FS to store its
data and log files. As stated before, the whole ta-
ble is splitted into several “tablets”, and each tablet
contains a range of row values. The tablets may be
stored in different locations. nodes which hosts the
Google file system (“chunk servers”). Instead of re-
ferring to Google FS’s chunk location query inter-
face, the BigTable has its own hierarchy way of stor-
ing chunks. A file is stored in master which contains
only the pointer to “Root Tablet”. The “Root Tablet”
contains the location of all the tablets in a special ta-
ble named “METADATA” table. The “METADATA”
table (which is also a “BigTable”) provides location
information for all user tables. The “Root Tablet”
itself is the first tablet of METADATA table, and is
treated specially. Therefore, a query for the location
for a user table will only need to go through 3 levels.
By applying the hierarchy query method, the client
do not need to send request to the Google FS’s mas-
ter node frequently, and the METADATA table itself
is distributed stored and distributed accessed. By in-
corporating caching mechanism in the clients, the
tablet information can be fast accessed and the GFS
access is minimized.

The storage structure of a tablet is called “Google
SSTable”, which is actually a local ordered im-
mutable map from keys and values. The keys and
values are both unstructured byte streams. There is
a block index within the SSTable and it is loaded
into memory, each block stores a range of key/value
pairs. When looking up for records, the binary
search is performed on the index to find the appro-
priate block and then the block is loaded into mem-
ory and then another binary search is carried out to
find the records. Alternatively the whole table can
be loaded into memory and allows for faster access.

3.2.3 Performance

The performance of BigTable is determined by
the total number of tablet servers, and also whether
the whole tablets are loaded in memory. As shown
in Table 1 and Figure 6, the performance of ran-
dom reading when all the tablets are in memory is
almost 30 times as fast as loading the data from
disk. Intuitively, when using 500 tablet servers, up
to 3,000,000 records can be fetched in a second.

Table 1: The number of 1000-byte values read/write per
second per tablet server(Chang et al. , 2006)

Figure 6: The number of 1000-byte values read/write per
second of the whole system(Chang et al. , 2006)

3.2.4 Advantages and possible applications
The BigTable provides a good framework for

solving the problems of accessing large structured
data, and alleviates the problem of memory and disk
IO for these tasks. We may take the decoding prob-
lem as an example.

In order to decode a sentence, we may require the
following information:

1. All the possible phrase pairs given all the
source phrases from the sentence.

2. All the possible reorder model entries given all
the source phrases from the sentence.

3. The language model entries for all the possible
translations of the source sentence.

All these information can be prohibitively large to
be loaded into memory and therefore we need to un-
dergo a filtering procedure. Current method of do-
ing the filtering is simply navigate the whole model
and choose those entries meet the requirement. It
may be highly inefficient to perform the operation
for each sentence and generally several sentences are
grouped and the program will provide the filtered

results for every sentence in a specific file. Alter-
natively, by incorporate the BigTable, we can build
several tables for these information, for example, we
can have a table of phrase pairs:

• Row: Source Phrases

• Column Family: One single constant value

• Column: Target Phrases

• TimeStamp: The id of features

• Cell Value: The value of the feature

Then when one sentence is inputted, all the source
phrases are extracted, a large number of queries are
formed and sent to several different tablet servers.
These tablet servers look up local storage for the re-
quired entries and return them through the network.

In this case, the filtering task for one sentence is
handled by several CPUs, and each CPU can pro-
cess request from many decoding servers. Every
CPU can play both role and therefore maximize the
throughput of the CPU power. The most important
advantage, however, is the memory usage. Consider
a phrase table with a size of 100 GB, which can
hardly be loaded into memory even for most up-to-
date servers. If it is distributed stored in 200 tablet
servers, only 512MB memory is required for each
node to load the whole table into memory and the
filtering can be done in a very high speed without
accessing disk. The resulting phrase pairs for every
sentence, may be much smaller, typically less than 1
GB - which means the network transferring load is
also not a big issue.

We can also provide the similar structures for
language models and reordering models, and dis-
tributed them on the same set of servers, in that case,
the workload can be even more balanced.

3.3 An ideal infrastructure for machine
translation

By summing up the technologies we described
above, we may discuss an ideal infrastructure for
machine translation and how it handle our tasks per-
fectly.

The infrastructure should contain the following
three components:

1. MapReduce library and supporting software

2. Support software and library for fast access of
streaming data

3. Support software and library for fast access of
structural data

And also one important factor is the scale of the clus-
ter, which should be large enough for actual “parallel
processing” be carried out.

In the “Google side” the three components are
MapReduce, Google FS and BigTable, and in the
open source side, we have Hadoop, HDFS and
HBase/HyperTable.

In case that we have all the three components,
most problems in machine translation can be han-
dled in a distributed way. For example, the training
of word alignment models can be done by spawning
a bunch of aligning tasks using the MapReduce li-
brary as the “Map” function, the library takes care
of splitting the training data into fragments. The
map function asks for the model parameters through
the structural data accessing interface, and produces
counts as intermediate keys. Finally the normaliza-
tion process is called as “Reduce” function, where
the counts are recombined and normalized. After
that a new “BigTable” is produced for each model,
which enables next round of optimization to be car-
ried out.

As described above, the decoding can also be
done in a efficient way, the models are stored in
structural tables and the decoding routines are writ-
ten into the form of “Map” functions. The decoder
may query the phrase table entries and other knowl-
edge directly and a filtering process is carried out
implicitly. The library will take care of balancing
the load of every “decoding server”.

Other tasks such as parsing, sorting, counting can
also be fit into the framework easily. And the most
advantage of this infrastructure is that it can make
full use of all the computational resource it have, one
node can be a decoder server, a tablet server or a
chunk server in the same time. This characteristic
may be essential for real world applications.

4 Conclusion

In this report we investigated several represen-
tative algorithms in machine translation, and re-
viewed MapReduce programming framework which

is proved to be efficient for many machine learning
technologies, and introduced two important imple-
mentations of these technologies - Google’s MapRe-
duce library and Apache’s Hadoop.

The report also visited the supporting facilities
that make MapReduce framework work efficiently,
including the distributed streaming data storage sys-
tem and distributed structural data storage system.
The implementations for both storage systems are
also introduced, including Google FS and HDFS for
streaming data, BigTable and HyperTable for struc-
tural data.

Considering the current clusters such as Yahoo
M45 and Intel BigData, the Hadoop system and
HDFS is already implemented and made good use
of, whereas the structural data storage systems is not
yet included in the systems. Therefore, a request
for these functionality is reasonable and may enable
may algorithms be port to Hadoop more easily.

References
Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce:

Simplified Data Processing on Large Clusters. Com-
munications of the ACM, vol. 51, no. 1 (2008), pp.
107-113

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.
Hsieh, Deborah A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, Robert E. Gruber. 2006.
Bigtable: A Distributed Storage System for Structured
Data. 7th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), 2006, pp.
205-218.

Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung.
2003. The Google File System. Proceedings of the
19th ACM Symposium on Operating Systems Princi-
ples, 2003, pp. 20-43.

Luiz Andre Barroso, Jeffrey Dean, Urs Hlzle. 2003. Web
Search for a Planet: The Google Cluster Architecture
IEEE Micro, vol. 23 (2003), pp. 22-28.

A Bialecki, M Cafarella, D Cutting, OOMalley. 2005.
Hadoop: a framework for running applications on
large clusters built of commodity hardware. Wiki at
http://lucene.apache.org/hadoop.

Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, Yuanyuan
Yu, Gary Bradski, Andrew Y. Ng, Kunle Olukotun
2007. Map-Reduce for machine learning on multicore
Advances in Neural Information Processing Systems,
2007

Dhruba Borthaku 2007. The hadoop distributed
file system: Architecture and design Wiki at
http://lucene.apache.org/hadoop.

