

Background 000 Variational Decoding

Experiments 00

Variational Decoding for Statistical Machine Translation

Zhifei Li and Jason Eisner and Sanjeev Khudanpur

Department of Computer Science and Center for Language and Speech Processing Johns Hopkins University

February 3, 2010

Background

Variational Decoding

Experiments

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

- Inherent in natural language, central issue in NLP
- Useful ambiguity resolution: part-of-speech, sense, syntax tree
- Too much resolution: nuisance variable and spurious ambiguity
- MT systems: produce full derivation with each string
- Hidden variables and structure crucial for decoding, user only cares about output string

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Figure: Multiple derivations for "machine translation software"

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

Background

Variational Decoding

Experiments 00

Choosing the Best Translation

- Goal: select string most likely over all possible derivations
- Ideal: measure goodness of string by summing over its derivations (marginalize out spurious ambiguity)
- Reality: computationally intractable (Sima'an, 1996; Casacuberta and Higuera, 2000)
- In practice: use Viterbi path, most likely derivation rather than string
- This work: use variational method to consider all derivations while remaining tractable

Terminology:

- x: some input string
- D(x): set of derivations considered by MT system
- Each $d \in D(x)$ yields some translation string y = Y(d)

Translation:

• $D(x,y) = \{d \in D(x) : Y(d) = y\}$: possible derivations for y

T(y) = {Y(d) : d ∈ D(x)}: possible translations

Maximum A Posteriori (MAP):

• Choose the best output string *y*^{*} for input *x*:

$$y^* = \underset{y \in T(x)}{\operatorname{argmax}} p(y|x)$$

• Requires marginalizing nuisance variable d:

$$y^* = \underset{y \in T(x)}{\operatorname{argmax}} \sum_{d \in D(x,y)} p(y,d|x)$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Shown to be NP-hard (Sima'an, 1996)

Background 00● Variational Decoding

Experiments 00

Approximate Decoding

Viterbi:

• Change sum to max, output string for most likely path:

$$y^* = \operatorname*{argmax}_{y \in \mathcal{T}(x)} \max_{d \in D(x,y)} p(y,d|x)$$

• Simple and tractable, but ignores most derivations

N-best "crunching" May and Knight (2006):

• Sum over most likely derivations:

$$y^* = \underset{y \in T(x)}{\operatorname{argmax}} \sum_{d \in D(x,y) \cap ND(x)} p(y,d|x)$$

Background 000 Variational Decoding •00000000 Experiments 00

Variational Decoding

Variational approximate inference:

- Exact inference under complex model *p* is intractable
- Approximate posterior p(y|x) using tractable model q(y)where $q(y) \in Q$ chosen to minimize information loss

Variational MT decoding:

- $\arg \max_{y} p(y|x)$ required for MAP decoding intractable
- Seek approximate distribution q(y) ≈ p(y|x) minimizing KL divergence:

$$q^* = \operatorname*{argmax}_{q \in \mathcal{Q}} \sum_{y \in \mathcal{T}(x)} p \log q$$

Outline	Introduction	Background	Variatio
0	000	000	0000

Variational Decoding

Experiments 00

Parametrization

Selecting a family of distributions Q:

- Large family: complex q^* to better approximate p
- Smaller family: simple *q*^{*} with conditional independences, easier to compute
- Natural choice for strings: family of *n*-gram models
- As $n \to \infty$, $q^* \to p$ and computation becomes intractable

Parametrization

• Models $q \in Q$ take the form:

$$q(y) = \prod_{w \in W} q(r(w)|h(w))^{c_w(y)}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- $w \in W$: *n*-gram which occurs $c_w(y)$ times in string y
- w may be divided into history h(w) and current word r(w)
- Parameters: normalized conditional distributions q(r(w)|h(w))

• If *p* is empirical distribution over training corpus, *q*^{*} is MLE *n*-gram model:

$$q^*(r(w)|h(w)) = \frac{c(w)}{c(h(w))}$$

- MT systems generate hypergraph HG(x) for input x
- If *p* is represented by HG(*x*), use expected counts:

$$q^*(r(w)|h(w)) = \frac{\overline{c}(w)}{\overline{c}(h(w))} = \frac{\sum_{y,d} c_w(y)p(y,d|x)}{\sum_{y,d} c_{h(w)}(y)p(y,d|x)}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Background 000 Variational Decoding

Experiments 00

Maximum Likelihood Estimation

Dynamic programming MLE(HG(x)) run inside-outside for hypergraph HG(x)1 2 for v in HG(x)⊳ each node 3 for $e \in B(v)$ \triangleright each incoming hyperedge $c_e \leftarrow p_e \cdot \alpha(v) / Z(x) \triangleright$ posterior weight 4 5 for $u \in T(e)$ \triangleright each antecedent node 6 $c_{e} \leftarrow c_{e} \cdot \beta(u)$ 7 > accumulate soft count 8 for w in e \triangleright each *n*-gram type 9 $\bar{c}(w) + = c_w(e) \cdot c_e$ $\overline{c}(h(w)) + = c_w(e) \cdot c_e$ 10 11 $q^* \leftarrow \mathsf{MLE}$ by formula 12 return q^*

- Inside-outside provides inside weight β(v), outside weight α(v) for nodes v, and total weight of all derivations Z(x)
- Runtime linear in size of HG(x)

Translating x:

- Construct q^* from HG(x) and use in place of p
- Crucial: restrict search space to original hypergraph

$$y^* = \underset{y \in T(y)}{\operatorname{argmax}} q^*(y)$$

Choosing q^* : reality vs BLEU

 Best approximation of p(y|x): single n-gram model q* with n as large as possible

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• BLEU metric gives partial credit over lower-order *n*-grams

Interpolate different orders of models to improve score:

 $y^* = \underset{y \in T(y)}{\operatorname{argmax}} \sum_n \theta_n \cdot \log q_n^*(y)$

- Geometric interpolation weights θ_n MERT-tunable
- Choose *n* to optimize score for metric of choice

Background

Variational Decoding

Variational Approximation vs Viterbi

- Viterbi and variational approximation both approximate p(y|x), make different assumptions
- Viterbi: correct probability of *one* derivation, *ignores* most derivations
- Variational approximation: consider *all* derivations, uses only *aggregate statistics*

Desirable: interpolate further with Viterbi

$$y^* = \operatorname*{argmax}_{y \in \mathcal{T}(y)} \sum_n heta_n \cdot \log q_n^*(y) + heta_v \cdot \log p_{\mathsf{Viterbi}}(y|x)$$

Outline 0 Introduction 000 Background 000 Variational Decoding

Experiments

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Similarity to Minimum-Risk Decoding

• Alternative to MAP: minimum Bayes risk

$$y^* = \arg\min_y \mathsf{R}(y) = \arg\min_y \sum_{y'} I(y, y') p(y'|x)$$

- Expected loss of y if true answer is y'
- Tromble et al. (2008) use *n*-gram based loss function, interpolate *n*-gram probabilities
- Similarity: both use interpolated *n*-gram probabilities to select best translation

Variational Decoding

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Similarity to Minimum-Risk Decoding

MBR:

- Uses *n*-gram posterior probabilities, must be calculated over entire lattice
- Does not normalize over history
- Approximations of average *n*-gram precisions

Variational:

- Optimal *n*-gram probabilities calculated once using inside-outside
- Normalizes over history
- Proper probabilistic *n*-gram model

0		÷			
U	u	L			6
0					

Background 000 Variational Decoding

Experiments

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Main Results

Decoding scheme	MT'04	MT'05
Viterbi	35.4	32.6
MBR (K=1000)	35.8	32.7
Crunching (N $=$ 10000)	35.7	32.8
Crunching+MBR (N =10000)	35.8	32.7
Variational (1to4gram+wp+vt)	36.6	33.5

Table: BLEU scores for decoding schemes

- Chinese-to-English translation task using Joshua MT toolkit
- Training data: 1M sentence pairs sampled from NIST OpenMT corpora
- Tuning data: NIST MT03 set

Outline 0	Introduction 000	Background	Variational Decoding	Experiments 0●

KL Divergence

Measure	$\bar{H}(p,\cdot)$				$\bar{H_d}(p)$	Ē(p)
bits/word	q_1^*	q_2^*	q_3^*	q_4^*		\approx
MT'04	2.33	1.68	1.57	1.53	1.36	1.03
MT'05	2.31	1.69	1.58	1.54	1.37	1.04

Table: Cross-entropies for various q

- KL(p||q) = H(p,q) H(p)
- Estimate of H(p) serves as bound for perfect approximation
- Higher order models better approximate *p*, best improvement from unigram to bigram

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Background 000 Variational Decoding

Experiments 00

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Variational Decoding for Statistical Machine Translation

Zhifei Li and Jason Eisner and Sanjeev Khudanpur

Department of Computer Science and Center for Language and Speech Processing Johns Hopkins University

February 3, 2010