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Ambiguity

• Inherent in natural language, central issue in NLP

• Useful ambiguity resolution: part-of-speech, sense, syntax tree

• Too much resolution: nuisance variable and spurious
ambiguity

• MT systems: produce full derivation with each string

• Hidden variables and structure crucial for decoding, user only
cares about output string
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Translation Ambiguity

Figure: Multiple derivations for “machine translation software”
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Choosing the Best Translation

• Goal: select string most likely over all possible derivations

• Ideal: measure goodness of string by summing over its
derivations (marginalize out spurious ambiguity)

• Reality: computationally intractable (Sima’an, 1996;
Casacuberta and Higuera, 2000)

• In practice: use Viterbi path, most likely derivation rather
than string

• This work: use variational method to consider all derivations
while remaining tractable
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Background

Terminology:

• x : some input string

• D(x): set of derivations considered by MT system

• Each d ∈ D(x) yields some translation string y = Y(d)

Translation:

• D(x , y) = {d ∈ D(x) : Y(d) = y}: possible derivations for y

• T(y) = {Y(d) : d ∈ D(x)}: possible translations
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Decoding

Maximum A Posteriori (MAP):

• Choose the best output string y∗ for input x :

y∗ = argmax
y∈T (x)

p(y |x)

• Requires marginalizing nuisance variable d :

y∗ = argmax
y∈T (x)

∑
d∈D(x ,y)

p(y , d |x)

• Shown to be NP-hard (Sima’an, 1996)
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Approximate Decoding

Viterbi:

• Change sum to max, output string for most likely path:

y∗ = argmax
y∈T (x)

max
d∈D(x ,y)

p(y , d |x)

• Simple and tractable, but ignores most derivations

N-best “crunching” May and Knight (2006):

• Sum over most likely derivations:

y∗ = argmax
y∈T (x)

∑
d∈D(x ,y)∩ND(x)

p(y , d |x)
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Variational Decoding

Variational approximate inference:

• Exact inference under complex model p is intractable

• Approximate posterior p(y |x) using tractable model q(y)
where q(y) ∈ Q chosen to minimize information loss

Variational MT decoding:

• arg maxy p(y |x) required for MAP decoding intractable

• Seek approximate distribution q(y) ≈ p(y |x) minimizing KL
divergence:

q∗ = argmax
q∈Q

∑
y∈T (x)

p log q
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Parametrization

Selecting a family of distributions Q:

• Large family: complex q∗ to better approximate p

• Smaller family: simple q∗ with conditional independences,
easier to compute

• Natural choice for strings: family of n-gram models

• As n→∞, q∗ → p and computation becomes intractable
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Parametrization

• Models q ∈ Q take the form:

q(y) =
∏

w∈W

q(r(w)|h(w))cw (y)

• w ∈W : n-gram which occurs cw (y) times in string y

• w may be divided into history h(w) and current word r(w)

• Parameters: normalized conditional distributions
q(r(w)|h(w))
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Estimation

• If p is empirical distribution over training corpus, q∗ is MLE
n-gram model:

q∗(r(w)|h(w)) =
c(w)

c(h(w))

• MT systems generate hypergraph HG(x) for input x

• If p is represented by HG(x), use expected counts:

q∗(r(w)|h(w)) =
c̄(w)

c̄(h(w))
=

∑
y ,d cw (y)p(y , d |x)∑

y ,d ch(w)(y)p(y , d |x)
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Maximum Likelihood Estimation

Dynamic programming MLE(HG(x))
1 run inside-outside for hypergraph HG(x)
2 for v in HG(x) B each node
3 for e ∈ B(v) B each incoming hyperedge
4 ce ← pe · α(v)/Z (x) B posterior weight
5 for u ∈ T (e) B each antecedent node
6 ce ← ce · β(u)
7 B accumulate soft count
8 for w in e B each n-gram type
9 c̄(w)+ = cw (e) · ce

10 c̄(h(w))+ = cw (e) · ce

11 q∗ ← MLE by formula
12 return q∗

• Inside-outside provides inside weight β(v), outside weight α(v) for
nodes v , and total weight of all derivations Z (x)

• Runtime linear in size of HG(x)
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Decoding

Translating x :

• Construct q∗ from HG(x) and use in place of p

• Crucial: restrict search space to original hypergraph

y∗ = argmax
y∈T (y)

q∗(y)

Choosing q∗: reality vs BLEU

• Best approximation of p(y |x): single n-gram model q∗ with n
as large as posible

• BLEU metric gives partial credit over lower-order n-grams
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Interpolation

Interpolate different orders of models to improve score:

y∗ = argmax
y∈T (y)

∑
n

θn · log q∗n(y)

• Geometric interpolation weights θn MERT-tunable

• Choose n to optimize score for metric of choice
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Variational Approximation vs Viterbi

• Viterbi and variational approximation both approximate
p(y |x), make different assumptions

• Viterbi: correct probability of one derivation, ignores most
derivations

• Variational approximation: consider all derivations, uses only
aggregate statistics

Desirable: interpolate further with Viterbi

y∗ = argmax
y∈T (y)

∑
n

θn · log q∗n(y) + θv · log pViterbi(y |x)
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Similarity to Minimum-Risk Decoding

• Alternative to MAP: minimum Bayes risk

y∗ = arg min
y

R(y) = arg min
y

∑
y ′

l(y , y ′)p(y ′|x)

• Expected loss of y if true answer is y ′

• Tromble et al. (2008) use n-gram based loss function,
interpolate n-gram probabilities

• Similarity: both use interpolated n-gram probabilities to select
best translation
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Similarity to Minimum-Risk Decoding

MBR:

• Uses n-gram posterior probabilities, must be calculated over
entire lattice

• Does not normalize over history

• Approximations of average n-gram precisions

Variational:

• Optimal n-gram probabilities calculated once using
inside-outside

• Normalizes over history

• Proper probabilistic n-gram model
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Main Results

Decoding scheme MT’04 MT’05

Viterbi 35.4 32.6

MBR (K=1000) 35.8 32.7
Crunching (N =10000) 35.7 32.8
Crunching+MBR (N =10000) 35.8 32.7

Variational (1to4gram+wp+vt) 36.6 33.5

Table: BLEU scores for decoding schemes

• Chinese-to-English translation task using Joshua MT toolkit

• Training data: 1M sentence pairs sampled from NIST
OpenMT corpora

• Tuning data: NIST MT03 set
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KL Divergence

Measure H̄(p, ·) H̄d(p) H̄(p)
bits/word q∗1 q∗2 q∗3 q∗4 ≈

MT’04 2.33 1.68 1.57 1.53 1.36 1.03
MT’05 2.31 1.69 1.58 1.54 1.37 1.04

Table: Cross-entropies for various q

• KL(p||q) = H(p, q)− H(p)

• Estimate of H(p) serves as bound for perfect approximation

• Higher order models better approximate p, best improvement
from unigram to bigram
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