

Variational Decoding for Statistical Machine **Translation**

Zhifei Li and Jason Eisner and Sanjeev Khudanpur

Department of Computer Science and Center for Language and Speech Processing Johns Hopkins University

February 3, 2010

[Introduction](#page-2-0)

[Background](#page-5-0)

[Variational Decoding](#page-8-0)

[Experiments](#page-18-0)

- Inherent in natural language, central issue in NLP
- Useful ambiguity resolution: part-of-speech, sense, syntax tree
- Too much resolution: nuisance variable and spurious ambiguity
- MT systems: produce full derivation with each string
- • Hidden variables and structure crucial for decoding, user only cares about output string

Figure: Multiple derivations for "machine translation software"

 $(1 - 4)$ $(1 -$

 \mathbb{R}^{n-1} 2990

Choosing the Best Translation

- Goal: select string most likely over all possible derivations
- Ideal: measure goodness of string by summing over its derivations (marginalize out spurious ambiguity)
- Reality: computationally intractable (Sima'an, 1996; Casacuberta and Higuera, 2000)
- In practice: use Viterbi path, most likely derivation rather than string
- This work: use variational method to consider all derivations while remaining tractable

Terminology:

- x : some input string
- $D(x)$: set of derivations considered by MT system
- Each $d \in D(x)$ yields some translation string $y = Y(d)$

Translation:

• $D(x, y) = \{d \in D(x) : Y(d) = y\}$: possible derivations for y

KORK ERKER ADE YOUR

• $T(y) = {Y(d) : d \in D(x)}$: possible translations

Maximum A Posteriori (MAP):

• Choose the best output string y^* for input x:

$$
y^* = \operatorname*{argmax}_{y \in T(x)} p(y|x)
$$

• Requires marginalizing nuisance variable d :

$$
y^* = \underset{y \in T(x)}{\text{argmax}} \sum_{d \in D(x,y)} p(y, d|x)
$$

KORK ERKER ADE YOUR

• Shown to be NP-hard (Sima'an, 1996)

Approximate Decoding

Viterbi:

• Change sum to max, output string for most likely path:

$$
y^* = \underset{y \in T(x)}{\text{argmax}} \max_{d \in D(x,y)} p(y, d|x)
$$

• Simple and tractable, but ignores most derivations

N-best "crunching" May and Knight (2006):

• Sum over most likely derivations:

$$
y^* = \underset{y \in T(x)}{\text{argmax}} \sum_{d \in D(x,y) \cap ND(x)} p(y, d|x)
$$

[Outline](#page-1-0) [Introduction](#page-2-0) [Background](#page-5-0) **[Variational Decoding](#page-8-0)** [Experiments](#page-18-0)

KORK ERKER ADE YOUR

Variational Decoding

Variational approximate inference:

- Exact inference under complex model p is intractable
- Approximate posterior $p(y|x)$ using tractable model $q(y)$ where $q(y) \in \mathcal{Q}$ chosen to minimize information loss

Variational MT decoding:

- arg max_v $p(y|x)$ required for MAP decoding intractable
- • Seek approximate distribution $q(y) \approx p(y|x)$ minimizing KL divergence:

$$
q^* = \underset{q \in \mathcal{Q}}{\operatorname{argmax}} \sum_{y \in \mathcal{T}(x)} p \log q
$$

Parametrization

Selecting a family of distributions Q :

- Large family: complex q^* to better approximate p
- Smaller family: simple q^* with conditional independences, easier to compute
- Natural choice for strings: family of *n*-gram models
- As $n \to \infty$, $q^* \to p$ and computation becomes intractable

Parametrization

• Models $q \in \mathcal{Q}$ take the form:

$$
q(y) = \prod_{w \in W} q(r(w)|h(w))^{c_w(y)}
$$

KORK ERKER ADE YOUR

- $w \in W$: *n*-gram which occurs $c_w(y)$ times in string y
- w may be divided into history $h(w)$ and current word $r(w)$
- Parameters: normalized conditional distributions $q(r(w)|h(w))$

• If p is empirical distribution over training corpus, q^* is MLE n-gram model:

$$
q^*(r(w)|h(w)) = \frac{c(w)}{c(h(w))}
$$

- MT systems generate hypergraph $HG(x)$ for input x
- If p is represented by HG(x), use expected counts:

$$
q^*(r(w)|h(w)) = \frac{\overline{c}(w)}{\overline{c}(h(w))} = \frac{\sum_{y,d} c_w(y)p(y,d|x)}{\sum_{y,d} c_{h(w)}(y)p(y,d|x)}
$$

[Outline](#page-1-0) [Introduction](#page-2-0) [Background](#page-5-0) **[Variational Decoding](#page-8-0)** [Experiments](#page-18-0)

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Maximum Likelihood Estimation

Dynamic programming $MLE(HG(x))$ 1 run inside-outside for hypergraph $HG(x)$ 2 for v in $HG(x)$ \triangleright each node 3 for $e \in B(v)$ \triangleright each incoming hyperedge 4 $c_e \leftarrow p_e \cdot \alpha(v)/Z(x)$ \Rightarrow posterior weight
5 for $u \in T(e)$ \Rightarrow each antecedent 5 for $u \in \mathcal{T}(e)$ \triangleright each antecedent node
6 $c_e \leftarrow c_e \cdot \beta(u)$ 6 $c_e \leftarrow c_e \cdot \beta(u)$
7 \triangleright accumulate sof \triangleright accumulate soft count 8 for w in e \triangleright each *n*-gram type 9 $\bar{c}(w)$ + = $c_w(e) \cdot c_e$ 10 $\bar{c}(h(w))_{+} = c_w(e) \cdot c_e$ 11 $q^* \leftarrow \text{MLE}$ by formula 12 return q^*

- Inside-outside provides *inside* weight $\beta(v)$, *outside* weight $\alpha(v)$ for nodes v, and total weight of all derivations $Z(x)$
- Runtime linear in size of $HG(x)$

Translating x :

- Construct q^* from HG(x) and use in place of p
- Crucial: restrict search space to original hypergraph

$$
y^* = \operatorname*{argmax}_{y \in T(y)} q^*(y)
$$

Choosing q^* : reality vs BLEU

• Best approximation of $p(y|x)$: single *n*-gram model q^* with *n* as large as posible

KORK ERKER ADE YOUR

• BLEU metric gives partial credit over lower-order *n*-grams

Interpolate different orders of models to improve score:

$$
y^* = \underset{y \in T(y)}{\text{argmax}} \sum_n \theta_n \cdot \log q_n^*(y)
$$

- Geometric interpolation weights θ_n MERT-tunable
- Choose *n* to optimize score for metric of choice

[Outline](#page-1-0) [Introduction](#page-2-0) [Background](#page-5-0) **[Variational Decoding](#page-8-0)** [Experiments](#page-18-0)

KOD KARD KED KED E VOOR

Variational Approximation vs Viterbi

- Viterbi and variational approximation both approximate $p(y|x)$, make different assumptions
- Viterbi: correct probability of one derivation, *ignores* most derivations
- Variational approximation: consider all derivations, uses only aggregate statistics

Desirable: interpolate further with Viterbi

$$
y^* = \underset{y \in \mathcal{T}(y)}{\text{argmax}} \sum_n \theta_n \cdot \log q_n^*(y) + \theta_v \cdot \log p_{\text{Viterbi}}(y|x)
$$

Similarity to Minimum-Risk Decoding

• Alternative to MAP: minimum Bayes risk

$$
y^* = \arg\min_{y} R(y) = \arg\min_{y} \sum_{y'} I(y, y') p(y'|x)
$$

- Expected loss of y if true answer is y'
- Tromble et al. (2008) use *n*-gram based loss function, interpolate n-gram probabilities
- Similarity: both use interpolated *n*-gram probabilities to select best translation

[Outline](#page-1-0) [Introduction](#page-2-0) [Background](#page-5-0) **[Variational Decoding](#page-8-0)** [Experiments](#page-18-0)

KOD KARD KED KED E YORA

Similarity to Minimum-Risk Decoding

 $MBR·$

- Uses *n*-gram posterior probabilities, must be calculated over entire lattice
- Does not normalize over history
- Approximations of average n -gram precisions

Variational:

- Optimal *n*-gram probabilities calculated once using inside-outside
- Normalizes over history
- Proper probabilistic *n*-gram model

[Outline](#page-1-0) [Introduction](#page-2-0) [Background](#page-5-0) [Variational Decoding](#page-8-0) [Experiments](#page-18-0)

KOD KARD KED KED E VOOR

Main Results

Table: BLEU scores for decoding schemes

- Chinese-to-English translation task using Joshua MT toolkit
- Training data: 1M sentence pairs sampled from NIST OpenMT corpora
- • Tuning data: NIST MT03 set

KL Divergence

Measure	$H(p, \cdot)$				$H_d(p)$	H(p)
bits/word	a_{1}^*	q_2^*				\approx
MT'04	2.33	1.68	1.57	1.53	1.36	1.03
MT'05	2.31	1.69	1.58	1.54	1.37	1.04

Table: Cross-entropies for various q

- KL $(p||q) = H(p, q) H(p)$
- Estimate of $H(p)$ serves as bound for perfect approximation
- Higher order models better approximate p , best improvement from unigram to bigram

KORK ERKER ADE YOUR

Variational Decoding for Statistical Machine **Translation**

Zhifei Li and Jason Eisner and Sanjeev Khudanpur

Department of Computer Science and Center for Language and Speech Processing Johns Hopkins University

February 3, 2010