Using Syntax to Improve Word Alignment Precision for Syntax-Based Machine Translation

Author: Victoria Fossum et al.

Presenter: Jae Dong Kim

March 17, 2010

Introduction

- GIZA++ union
 - state-of-the-art syntax-based statistical MT (Galley et al., 2006)
 - hierarchical phrase-based system(Hiero)
- GIZA++ refined
 - phrase-based SMT (Och, Koehn)
- GIZA++ alignment improvement
 - union \rightarrow deleting links
 - intersection \rightarrow adding links

Introduction

- GIZA++ union
 - low precision
 - incorrect links
 - large size rules
 - few rules
 - rules with poor generalization ability

VP VP VBZ PRT starts RP out from DT INTS IN INP U DT INS IN IN INP INP							
Rules Extracted Using GIZA++ Union Alignments	Rules Extracted After Deleting Dotted Link						
$ \begin{array}{c} R1: & \xrightarrow{VP} & \xrightarrow{\to x0 \times 1} \underset{R}{\to g} \underset{M}{\to g} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						

This work

- GIZA++ union \rightarrow link deletion
 - supervised
 - features
 - size of largest rule
 - total number of rules
 - structural features
 - lexical features

Link Deletion Algorithm

Definition

- *branch*: a contiguous 1-to-many alignment
- A and A' are <u>neighbor</u>s if they differ only by the deletion a link or branch
- For each sentence
 - $A = A_{initial}$ (GIZA++ union)
 - Score(A) = $\sum_{i=0}^{n} \lambda_i \cdot h_i(A, parse(e), f)$
 - Considering all A', greedily deleting the link / or branch of links b maximizing the score of the resulting alignment A' = A\/ or A'=A\b
 - Do until no further increase of score is possible

Features

- Syntactic
 - ruleCount
 - sizeOfLargestRule
 - # internal nodes

Features

- Structural
 - wordUnaligned
 - # unaligned words
 - one-to-many Links
 - # 1-to-many in GIZA++ union > # 1-to-many in gold standard
 - zeroNeighbors
 - oneNeighbor
 - twoNeighbors

Features

- Lexical
 - highestLexProbRank
 - # max-probable links
- History
 - linksDeleted
 - a link or a branch is delete in each step
 - stepsTaken

Constraints

- Protecting Refined Links from Deletion
 - to keep higher precision
- Stoplist
 - Alignment links for the most common words that have no real translational equivalent are removed in pre-processing
 - all links in the set {a, an, the} X {de, le} were deleted from A_{initial}

Perceptron Training

- Averaged perceptron learning
 - weight for the most informative feature (ruleCount) ← 1.0, the others ← 0.0
 - In each pass over the training set
 - learn weights for each sentence

$$\lambda_i = \lambda_i + h_i^{A_{oracle}} - h_i^{A_{1-best}}$$

average the weights

Experimental Setup

- Language Pairs
 - two Chinese-English data sets
 - one Arabic-English data set
- Gold standard
 - each set contains a small subset of manually aligned sentence pairs → split into a training set and a test set
- Evaluation
 - alignment quality
 - translation quality

Evaluation Metrics

- Weighted Fully-Connected F-Measure
 - AER is not directly related to BLEU
 - F-measure(H⁺)=(α /precision(H⁺) + (1- α)/recall(H⁺))⁻¹
 - α =0.5 for Cn/En and α =0.1 for Ar/En
- Rule F-Measure
 - P,R,F against rules extracted from gold alignment and gold parses
- BLEU

Data

Language	Train	Test
Chinese-English A	400	400
Chinese-English B	1500	1500
Arabic-English	1500	1500

Language	Train	Tune	Test1	Test2
Chinese English A	9.8M/newswire	25.9k/NIST02	29.0k/NIST03	-
Chinese-English B	12.3M/newswire	42.9k/newswire	42.1k/newswire	-
Arabic-English	174.8M/newswire	35.8k/NIST04-05	40.3k/NIST04-05	53.0k/newswire

Results

Language	Alignment	Prec	Rec	α	F-measure	Links Del/ Sent	Grammar Size	Tune	BLEU Test1	Test2
Chi-Eng A	GIZA++ union	54.76	75.38	0.5	63.44	1	23.4M	41.80	41.17	-
Chi-Eng A	GIZA++ union + link deletion	79.59	71.16	0.5	75.14	4.77	59.7M	43.06	41.93	-
Chi-Eng B	GIZA++ union	36.61	66.28	0.5	47.16	_	28.9M	39.59	41.39	—
Chi-Eng B	GIZA++ union + link deletion	65.52	59.28	0.5	62.24	4.19	73.0M	40.97	41.88	-
Ara-Eng	GIZA++ union	35.34	84.05	0.1	73.87	_	52.4M	54.73	50.9	38.16
Ara-Eng	GIZA++ union + link deletion	52.68	79.75	0.1	75.85	1.35	64.9M	55.57	51.08	38.72

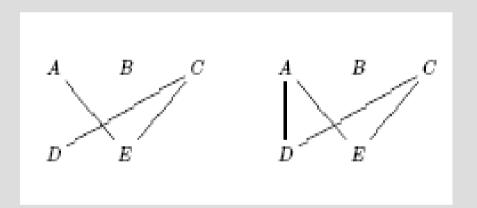
Table 3: Results of link deletion. Weighted fully-connected alignment f-measure is computed on alignment test sets (Table 1); BLEU score is computed on translation test sets (Table 2).

Results

Allenment	Parse	Rule				
Alignment		Precision	Recall	F-measure	Total Non-Unique	
gold	gold	100.00	100.00	100.00	12,809	
giza++ union	collins	50.49	44.23	47.15	11,021	
giza++ union+link deletion, α =0.5	collins	47.51	53.20	50.20	13,987	
giza++ refined	collins	44.20	54.06	48.64	15,182	

Table 4: Rule precision, recall, and f-measure of rules extracted from 400 sentence pairs of Chinese-English data

Results


- Link deletion
 - Translation quality
 - GIZA++ union & link deletion > GIZA++ union
 - Alignment quality
 - improves fully-connected alignment precision
 - decreases fully-connected alignment recall
 - increases weighted f-measure overall

Discussion

- Why is recall more important for Arabic-English?
 - Greg used the *refined* one in WMT10 for French-English
- Rule recall for GIZA++ refined is higher than this approach → how about rule filtering on rules extracted from GIZA+ + refined?

Backup (1)

- Fully-connected links
 - to overcome the same translation with different F

