Unsupervised Tokenization for Machine Translation

Author: Tagyoung Chung et al.

Presenter: Jae Dong Kim

April 14, 2010

Introduction

- Observations
 - Chinese
 - no space
 - Korean, Hungarian
 - with space but coarse granularity
 - a single word consists of multiple morphemes \rightarrow
 - corresponds to separate words in English
 - compound words
 - Tokenization for MT
 - the first step
 - one to one mapping of words will be ideal
 - gold standard tokenization does not necessarily help MT
 - statistical methods require hand-annotated data

Introduction

- This work
 - unsupervised methods to find an appropriate tokenization for MT
 - method using parallel data vs. method using monolingual data
 - Chinese
 - no space
 - Korean
 - smaller-scale tokenization

Tokenization

- isolating languages
 - English, Chinese
 - one word equals a single token
- agglutinative languages
 - Hungarian, Japanese, Korean
 - token boundary is ambiguous
 - szekrenyemben (in my closet : closet-myinessive) → szekreny em ben
 - meok-eoss-da (ate : eat-past-indicative) → meok eoss da ??

- Learning Tokenization from alignment
- Input : English words e₁ⁿ, Foreign characters c₁^m
- Unobserved variables: word-level alignments, tokenizations
- tokenization with a string: s^m

$$\mathbf{f} = \mathbf{s} \circ \mathbf{c}$$
 where $\ell = \sum_{i=1}^m s_i$

- string of foreign words: f¹
- Using IBM model $1 \rightarrow P(a) = 1/n$, but P(f|e)?

$$P(\mathbf{f}|\mathbf{e}) = \sum_{\mathbf{a}} P(\mathbf{f}, \mathbf{a} \mid \mathbf{e})$$
$$= \sum_{\mathbf{a}} \prod_{i} P(f_i \mid e_{a_i}) P(\mathbf{a})$$
$$= \prod_{i} \sum_{j} P(f_i \mid e_j) P(a_i = j)$$

 posterior prob. of a word beginning at position i, ending at position j, and being generated by English word k:

$$P(\mathbf{s}_{i\dots j} = (1, 0, \dots, 0, 1), a = k \mid \mathbf{e})$$
$$= \frac{\alpha(i)P(f \mid e_k)P(a = k)\beta(j)}{P(\mathbf{c} \mid \mathbf{e})}$$

$$\alpha(i) = \sum_{\ell=1}^{L} \alpha(i-\ell) \sum_{a} P(a) P(c_{i-\ell}^{i} \mid e_{a})$$
$$\beta(j) = \sum_{\ell=1}^{L} \sum_{a} P(a) P(c_{j}^{j+\ell} \mid e_{a}) \beta(j+\ell)$$

$$\alpha(i) = P(\mathbf{c}_1^i, s_i = 1 \mid \mathbf{e})$$
$$\beta(j) = P(\mathbf{c}_{j+1}^m, s_j = 1 \mid \mathbf{e})$$

$$ec(c_i^j,e_k) \mathrel{+}= \frac{\alpha(i)P(a)P(c_i^j \mid e_k)\beta(j)}{\alpha(m)}$$

The M step simply normalizes the counts:

$$\tilde{P}(f \mid e) = \frac{ec(f, e)}{\sum_{e} ec(f, e)}$$

• $a^* \rightarrow s^* \rightarrow optimal segmentation of f$

$$\mathbf{a}^* = \operatorname*{argmax}_{\mathbf{a}} P(\mathbf{f}, \mathbf{a} \mid \mathbf{e})$$

- vs. HMM
 - a target word generates a source token
 - transition \rightarrow segmentation
 - emission \rightarrow alignment
 - HMM-like dynamic programming to do inference

Monolingual
– P(s) are equally likely

 $P(\mathbf{s} \mid \mathbf{c}) \propto P(\mathbf{c} \mid s) P(\mathbf{s})$

$$P(\mathbf{f}) = P(f_1) \times \ldots \times P(f_\ell)$$

$$P(f_i) = \frac{count(f_i)}{\sum_k count(f_k)}$$

$$s^* = \operatorname*{argmax}_{s} P(f)$$

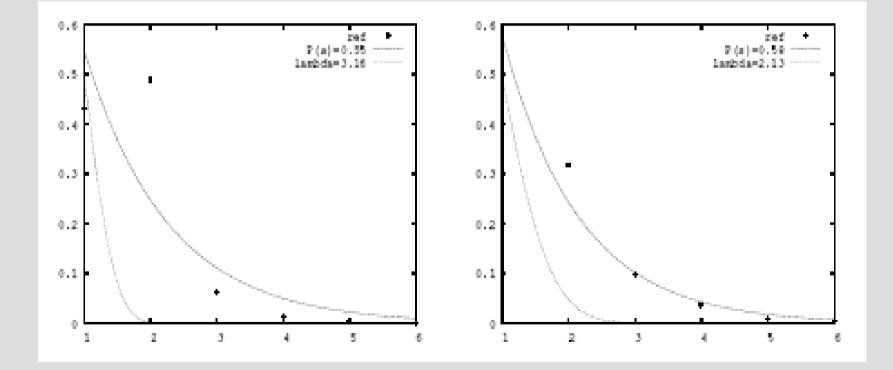
New data

 sentence to be translated is monolingual

$$P(f) = \sum_{e} P(f \mid e) P(e)$$

Preventing Overfitting

Variational Bayes


$$\begin{split} \theta_{\mathbf{e}} \mid \alpha &\sim \mathrm{Dir}(\alpha), \\ f_i \mid e_i = e &\sim \mathrm{Multi}(\theta_{\mathbf{e}}). \end{split}$$

$$\tilde{P}(f \mid e) = \frac{\exp(\psi(ec(f, e) + \alpha))}{\exp(\psi(\sum_{e} ec(f, e) + s\alpha))}$$

Preventing Overfitting

• Token Length $\phi_1(\ell) = P(s)(1 - P(s))^{\ell-1}$

 $\phi_2(\ell) = 2^{-\ell^{\lambda}}$

Preventing Overfitting

- Token Length
 - Model 2 $P(f) \propto P(f_1)\phi(\ell_1) \times \ldots \times P(f_n)\phi(\ell_n)$
 - Model 1

$$\begin{aligned} \alpha(i) &= \sum_{\ell=1}^{L} \alpha(i-\ell)\phi_1(\ell) \sum_a P(a)P(c_{i-\ell}^i \mid e_a) \\ \text{and the expected count of } (c_i^j, e_k) \text{ is} \\ ec(c_i^j, e_k) + &= \frac{\alpha(i)P(a)P(c_i^j \mid e_k)\beta(j)\phi_1(j-i)}{\alpha(m)} \end{aligned}$$

$$P(s) = \frac{1}{m} \sum_{i}^{m} \frac{\alpha(i)\beta(i)}{\alpha(m)}$$

Data

- Chinese-English
 - FBIS newswire data
 - Dev, Test: 1,000 with 10 refs. each
- Korean-English
 - collected from news websites
 - Training set: 60K 2,200
 - Dev, Test: 1,100 with 1 ref. each

Experimental Setup

- Moses
 - GIZA++ was run until the perplexity on dev set stopped decreasing
- Maximum size of a token (L)
 - 3 for Chinese, 4 for Korean
- Compared to supervised segmenters
 - Chinese: LDC, Xue's, PKU & CTB
 - Korean: Rule-based Morphological Analyzer

Results

	Chinese		Korean
	BLEU	F-score	BLEU
Supervised			
Rule-based morphological analyzer			7.27
LDC segmenter	20.03	0.94	
Xue's segmenter	23.02	0.96	
Stanford segmenter (pku)	21.69	0.96	
Stanford segmenter (ctb)	22.45	1.00	
Unsupervised			
Splitting punctuation only			6.04
Maximal (Character-based MT)	20.32	0.75	
Bilingual $P(f \mid e)$ with $\phi_1 P(s) = learned$	19.25		6.93
Bilingual $P(f)$ with $\phi_1 P(s) = learned$	20.04	0.80	7.06
Bilingual $P(f)$ with $\phi_1 P(s) = 0.9$	20.75	0.87	7.46
Bilingual $P(f)$ with $\phi_1 P(s) = 0.7$	20.59	0.81	7.31
Bilingual $P(f)$ with $\phi_1 P(s) = 0.5$	19.68	0.80	7.18
Bilingual $P(f)$ with $\phi_1 P(s) = 0.3$	20.02	0.79	7.38
Bilingual $P(f)$ with ϕ_2	22.31	0.88	7.35
Monolingual $P(f)$ with ϕ_1	20.93	0.83	6.76
Monolingual $P(f)$ with ϕ_2	20.72	0.85	7.02

Results

- performance with p(f|e) < performance with p(f)
 - consistency is important
- bilingual is better
 - learning boundaries from the target language
- the second length factor was better
 need for heavy discount for longer tokens
- higher $F \rightarrow higher BLEU$?

Future Work

- applied to one language of the pair
 - one isolating, one synthetic
 - could be extended to tokenization for both languages.
- the most simple alignment model
 - more complex model

Discussion

- Does the basic model 1 encourage 1 to 1 mapping?
- De-segmentation for MT performance?
 - ex) segmentation for alignment, and then, de-segmentation on English

Korean Tokenization

English	the two presidents will hold a joint press conference at the end of their summit talks.
Untokenized Korean	양국 경상은 회담이 끝난뒤 공동 기자회견을 갖고 회담 결과를 공식 발표한다.
Supervised	양국 정상 은회단 이 끝나 ㄴ 뒤 공동 기자회견 을 갖 고 회단 결과 를 공식 발표 차 ㄴ다.
Bilingual $P(f \mid e)$ with ϕ_1	양국 경상은 회담 이 끝난 뒤 공동 기자회견 을 갖고 회담 결과 를 공식 발표한 다.
Bilingual $P(f)$ with ϕ_2	양국 경상 은회탑 이 끝난 뒤 공동 기자회견 을 갖고회탑 결과 를 공식 발표 한다.
Monolingual $P(f)$ with ϕ_1	양국 집 상 은 회담 이 끝난 뒤 공동 기자회견 을 갖고 회담 결과를 공식 발표한 다 .
Monolingual $P(f)$ with ϕ_2	양국 경상 은 회담 이 끝난 뒤 공동 기자회견 을 갖고 회담 결과를 공식 발표 한다.