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® Why do we care about labels in MT?
® Background

® | earning

® |nference

® Results




® Yes, but...

® VWe use parsers

® Hypergraph decoders act like parsers

® Grammar induction and nonterminal
granularity is also an issue in SCFG MT




® (Over)fit to Penn Treebank by maximizing
likelihood of trees that linguists made up
to annotate strange WS/ language




® | exicalize grammar:

e (S-did (NP-he (N-he he)) (VP-did) (V-did did))

® Markovize grammar:
® (S (NPAS (NANP he))
® Cluster grammar (this work):

® (S-2 (NP-13 (N-9 he))




Learning: Initialization

® Fix structure
® |abel with PTB symbols

® But we wouldn’t have to!




® Annotations are latent

® One tree becomes many fuzzy trees

® E:P(annotated rule in context)

® |nside-Outside is O(n) -- fixed structure

® M: Re-estimate preference of annotated
RHS’s for this LHS [ Ax— By Gz

2y 2 #{Ax = By’CZ’
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® Oops, we overfitted... and ran out of memory
® We don’t need |6 types of commas
® Merging allows us to:

® Consider dependencies among splits

® Split more

® Approximate likelihood loss efficiently

® |gnore interactions in same tree, same symbol




Learning: Smoothing

® |nterpolate with average of annotations
® 0.01 goes to other annotations

® Gives significant gain in results
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® Extra annotations are nuisance variable

® Options:

® Max Derivation
® Variational Inference

® Maximum rules expected correct
(Again, may feel a bit like MBR)




® Coarse-to-fine pruning

® Threshold pruning of low probability
symbols

® |6X speedup, little effect on quality




VBZ DT

VBZ-0 gives sells takes DT-0 the The a
VBZ-1 comes goes works DT-1 A An  Another
VBZ-2 | includes owns 18 DT-2 The No This
VBZ-3 puts provides takes DT-3 The Some  These
VBZ-4 says adds Says DT-4 all those some
VBZ-5 | believes means thinks DT-5 some  these both
VBZ-6 expects makes calls DT-6 That This each
VBZ-7 plans expects wants DT-7 this that each
VBZ-8 18 'S gets DT-8 the The a
VBZ-9 'S 1S remains DT-9 no any some
VBZ-10 has ’S is DT-10 an a the
VBZ-11 does Is Does DT-11 a this the
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