Phrase Table Training For Precision and Recall: What makes a Good Phrase and a Good Phrase Pair? Yonggang Deng, Jia Xu, Yuqing Gao IBM T.J Watson Research Center ...

Presented by Vamshi Ambati

Context of the Paper

- Phrase Tables are the bread and butter of SMT
- Main questions in creation of one-
 - Which phrase pairs do we extract?
 - How do we parameterize them?
- Desirable characteristics -
 - Precision: Extracted translation pairs should be accurate (Johnson et al. 2007)
 - Recall: Extract as many valid pairs as possible (Deng and Byrne 2005)

Related Work

- Which phrase pairs do we extract?
 - Phrases from Alignment Matrix (Och and Ney 2003)
 - More symmetrization (Koehn et.al 2003)
 - Joint word-alignment and Phrases Extraction (Marcu and Wong 2002, Wu 95)
 - Miscellaneous Phrases from Alignment Matrix (Och and Ney 2003)
 - Syntax based extraction (Yamada and Knight 2002, Lavie et.al 2008)

Related Work

• How do we parameterize them?

- Relative frequency estimation (Och and Ney 2003)
- Lexical Weighting IBM1 or 4 (Koehn et.al 2003)
- Smoothing phrase tables (Foster et.al 2006)
- Additional features to reduce over-estimation (Zhao et.al 2004, Tillmann and Zhang 2006)

Algorithm 1 A Generic Phrase Training Procedure Train Model-1 and HMM word alignment models 2: for all sentence pair (e, f) do Identify candidate phrases on each side 3: for all candidate phrase pair (E, F) do 4: 5: Calculate its feature function values f_k Obtain the score $q(E, F) = \sum_{k=1}^{K} \lambda_k f_k(E, F)$ 6: end for 7: Sort candidate phrase pairs by their final scores q8: Find the maximum score $qm = \max q(E, F)$ 9: for all candidate phrase pair (E, F) do 10: If $q(E, F) \ge qm - \tau$, dump the pair into the pool 11: end for 12:13: end for

- 14: Built a phrase translation table from the phrase pair pool
- 15: Discriminatively train feature weights λ_k and threshold τ

Algorithm Highlights

- **Prepare** IBM Model 1, HMM lexicons that support feature extraction
- List all the n-grams to a predefined length
- Extract features for all possible phrase pairs
- Score each phrase with a log-linear model
- Select best pairs by thresholding the combined score at a cut-off
- Discriminatively learn the weights for log-linear model and cut-off threshold

Feature Functions: Model-based Phrase Pair Posterior

$$A_{(i_1,i_2)}^{(j_1,j_2)} = \{ \mathbf{a} : a_j \in [i_1,i_2] \text{ iff } j \in [j_1,j_2] \}$$

$$P_{\theta}(e_{i_{1}}^{i_{2}} \rightarrow f_{j_{1}}^{j_{2}} | \mathbf{e}, \mathbf{f}) = \frac{\sum_{\mathbf{a} \in A_{(i_{1}, i_{2})}^{(j_{1}, j_{2})}} f(\mathbf{a}, \mathbf{f} | \mathbf{e}; \theta)}{\sum_{\mathbf{a}} f(\mathbf{a}, \mathbf{f} | \mathbf{e}; \theta)} (1)$$

- Sum over hidden alignments which ones?
- Combining bidirectional posteriors as a geometric mean
- IBM Model-1 vs HMM

Feature Functions:

Bilingual Information Metric

f_1 f_2 f_3 那(that) 是(is) 什么(what) what's that e_1 e_2						
	e_1^1	e_1^2	e_2^2	$H_{BL}(f_{j_1}^{j_2})$		
f_{1}^{1}	0.0006	0.012	0.89	0.08		
f_{1}^{2}	0.0017	0.035	0.343	0.34		
f_{1}^{3}	0.07	0.999	0.0004	0.24		
f_2^2	0.03	0.0001	0.029	0.7		
f_2^3	0.89	0.006	0.006	0.05		
f_{3}^{3}	0.343	0.002	0.002	0.06		
$H_{BL}(e_{i_1}^{i_2})$	0.869	0.26	0.70			

$$H_{BL}(e_{i_1}^{i_2}|\mathbf{e},\mathbf{f}) = H(\hat{P}_{\theta_{HMM}}(e_{i_1}^{i_2} \to *))$$

 $H(P) = -\sum_{x} P(x) \log P(x)$

Feature Functions:

Monolingual Information Metric

- Predictive Uncertainty
- Ex: 'we want to have a table near the window'

 $H_{LM}(w_1^{n-1}) = H(P(\cdot|w_1^{n-1})).$

 $PU(w_1^N, i) = H_{LMF}(w_1^i) + H_{LMB}(w_N^{i+1})$

Feature Functions:

Word Alignments Induced Metric

- Within phrase pair consistency ratio (WPPCR)
- Computed using Viterbi Alignments
- Viterbi case: WPPCR=1
- Soft case: WPPCR is low for precise phrases

Experiments

- IWSLT 2006 Chinese-English : 40K
- Tune parameters (phrase-score and decoding) on o6dev set
- Test on o4dev,o4test, o5test,o6test
- Decoder:
 - Stack based decoder
 - Pharoah-style features (14?)
- LM:
 - Trigram, Kneser-Ney smoothing

Translation Results

BLEU Scores							
Table	04dev	04test	05test	06dev	06test		
HMM	0.367	0.407	0.473	0.200	0.190		
Model-4	0.380	0.403	0.485	0.210	0.204		
New	0.411	0.427	0.500	0.216	0.208		
	METEOR Scores						
Table	04dev	04test	05test	06dev	06test		
HMM	0.532	0.586	0.675	0.482	0.471		
Model-4	0.540	0.593	0.682	0.492	0.480		
New	0.568	0.614	0.691	0.505	0.487		

Table 3: Translation Results

Phrase table size vs Quality

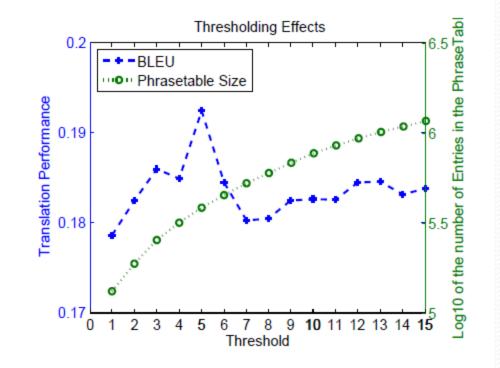


Figure 1: Thresholding effects on translation performance and phrase table size

Effect of Features

Features	04dev	04test	05test	06dev	06test
basic	0.393	0.406	0.496	0.205	0.199
+align	0.401	0.429	0.502	0.208	0.196
+align_BLT	0.411	0.427	0.500	0.216	0.208

Table 4: Translation Results (BLEU) of discriminative phrase training approach using different features

• Word-alignment seems to be a crucial feature

Effect of Recall

Mode PP 75K	1	PP2 250K		New PP3 32K	
Features	04dev	04test	05test	06dev	06test
PP2	0.380	0.395	0.480	0.207	0.202
PP1+PP2	0.380	0.403	0.485	0.210	0.204
PP2+PP3	0.411	0.427	0.500	0.216	0.208
PP1+PP2+PP3	0.412	0.432	0.500	0.217	0.214

Table 5: Translation Results (BLEU) of Different Phrase How are s Pair Combination

Discussion

- Training
 - Decoder features were not trained along with phrase features
- Recall vs. Features vs. Parameterization
- Threshold to filter phrase table
 - What is the right way to do this
- Is this a Joint -
 - phrase extraction+ word alignment
 - Phrase extraction + decoding