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Context

 How do we deal with low parallel data scenario-
— Get more data

* Pay for more translations
* Harvest online for parallel data (In domain vs Out-of domain)
* Obtain Comparable training data

— Try to do better with what you have

* Re-define models (factored)

* Seek annotations to build sharper models (annotate some
word-alignments)



Current paper

e Goal:

— Producing synthesized translations using models
built from existing data

— Self-training applied to MT
— Focus on domain adaptation



Related Work

* Nicola Bertodi and Marcello Federico: Domain
Adaptation for Statistical Machine Translation with
Monolingual Resources (WMT 2009)

— LM and TM adaptation by interpolation (UN corpus to
Europarl)

* Holger Schwenk and Jean Senellart: Translation Model
Adaptation for an Arabic/French News Translation
System by Lightly-Supervised Training (MT Summit
2009)

— Large scale adaptation

* Nicola Ueffing, Haffari, Sarkar: Transductive learning
for statistical machine translation (2007)



Framework
* Repeat until “stopping criteria”

— Estimate : compute a TM using data in current
iteration

— Filter: Sample a set of monolingual sentences that
are relevant to the translation task

— Decode set using MT system trained on to
generate Nbest lists

— Score: rate the translations to produce measures
of confidence

— Select: Choose a subset of good sentence pairs



Stopping Criteria

* Stopping criteria
— Fixed set of iterations
— Score on held out data set

o Effect:

— Too many iterations introduces noise as can be
seen by ‘select’ function later

— Too few iterations may not obtain required benefit

* Held-out data-set: Does it not make it too
specific and closer to Transductive learning?



Filter

e Select from among the monolingual data that
is relevant to the development set

— Assumes DEV and TEST are in-domain

* Average over n-gram coverage (n=1 to 6)



Estimate

e Re-estimation with new data is not done on
entire data

 Models trained are combined independently
and re-optimized on DEV

* PORTAGE
— A typical ‘beam-search based” PBSMT

— Support for multiple LM
— Rescoring of N-best lists



Score

* Length-normalized decoder likelihoods

e Confidence Estimation:

— Word posterior probabilities computed by Levenshtein
alignment between hyp and Nbest entries

— Phrase posteriors (segmentation from SMT system)
— Sentence posteriors
— Language model scores

* Log-linear combination of all the above tuned to
sentence ‘Classification Error Rate’



Select

* I[mportance Sampling:

— Sample with replacement from a distribution of
the translations for a sentence (Nbest list)

e Selection using a threshold
* TopK



Experiments

* Fr-En
— Europarl - 688K (parallel data)
— Hansards — 1130 K (monolingual data)

* Ch-En
— NIST 2006 Evaluation corpus: 3.2M +5M (parallel )
— Subset of Chinese Giga word : 50K (monolingual)



Results
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Figure 11.1 Translation quality using an additional phrase table trained on monolingual
Chinese news data. Chinese-English development set.



In—domain Test Set

Results
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Point for Discussion

* Do Semi-supervised techniques work in NLP?

— Success stories in MT or other areas of NLP

* Stopping criteria for Semi-supervised training



