Semi-supervised Learning to Machine Translation

Paper by: Nicola Ueffing, Gholamreza Haffari, Anoop Sarkar, 2008

Advanced MT Seminar 2010 Presenter: Vamshi Ambati

Context

- How do we deal with low parallel data scenario-
 - Get more data
 - Pay for more translations
 - Harvest online for parallel data (In domain vs Out-of domain)
 - Obtain Comparable training data
 - Try to do better with what you have
 - Re-define models (factored)
 - Seek annotations to build sharper models (annotate some word-alignments)

Current paper

- Goal:
 - Producing synthesized translations using models built from existing data
 - Self-training applied to MT
 - Focus on domain adaptation

Related Work

- Nicola Bertodi and Marcello Federico: Domain Adaptation for Statistical Machine Translation with Monolingual Resources (WMT 2009)
 - LM and TM adaptation by interpolation (UN corpus to Europarl)
- Holger Schwenk and Jean Senellart: Translation Model Adaptation for an Arabic/French News Translation System by Lightly-Supervised Training (MT Summit 2009)

Large scale adaptation

• Nicola Ueffing, Haffari, Sarkar: Transductive learning for statistical machine translation (2007)

Framework

- Repeat until "stopping criteria"
 - Estimate : compute a TM using data in current iteration
 - Filter: Sample a set of monolingual sentences that are relevant to the translation task
 - Decode set using MT system trained on to generate Nbest lists
 - Score: rate the translations to produce measures of confidence
 - Select: Choose a subset of good sentence pairs

Stopping Criteria

- Stopping criteria
 - Fixed set of iterations
 - Score on held out data set
- Effect:
 - Too many iterations introduces noise as can be seen by 'select' function later
 - Too few iterations may not obtain required benefit
- Held-out data-set: Does it not make it too specific and closer to Transductive learning?

Filter

 Select from among the monolingual data that is relevant to the development set

Assumes DEV and TEST are in-domain

• Average over n-gram coverage (n=1 to 6)

Estimate

- Re-estimation with new data is not done on entire data
- Models trained are combined independently and re-optimized on DEV
- PORTAGE
 - A typical 'beam-search based' PBSMT
 - Support for multiple LM
 - Rescoring of N-best lists

Score

- Length-normalized decoder likelihoods
- Confidence Estimation:
 - Word posterior probabilities computed by Levenshtein alignment between hyp and Nbest entries
 - Phrase posteriors (segmentation from SMT system)
 - Sentence posteriors
 - Language model scores
- Log-linear combination of all the above tuned to sentence 'Classification Error Rate'

Select

- Importance Sampling:
 - Sample with replacement from a distribution of the translations for a sentence (Nbest list)
- Selection using a threshold
- Top K

Experiments

- Fr-En
 - Europarl 688K (parallel data)
 - Hansards 1130 K (monolingual data)
- Ch-En
 - NIST 2006 Evaluation corpus: 3.2M +5M (parallel)
 - Subset of Chinese Giga word : 50K (monolingual)

Results Ch-En

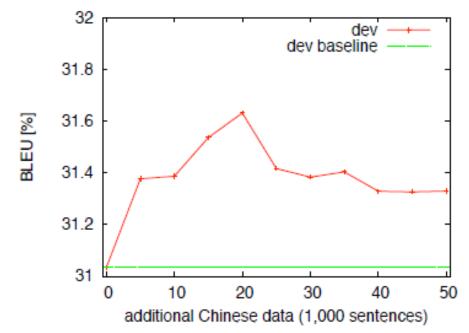
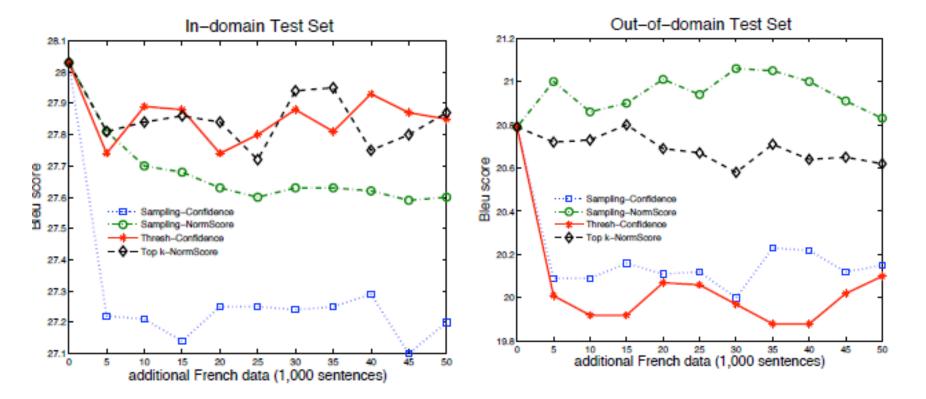


Figure 11.1 Translation quality using an additional phrase table trained on monolingual Chinese news data. Chinese–English development set.

Results Fr-En



Point for Discussion

- Do Semi-supervised techniques work in NLP?
 Success stories in MT or other areas of NLP
- Stopping criteria for Semi-supervised training