
We Can Teach Software Better

Mary Shaw
Carnegie Mellon University

Appeared in Computing Research News, 4,4 September 1992 (pp. 2, 3, 4, 12)

Introduction

In recent issues of CRN, Bill Wulf and Dave Patterson ask some questions about undergraduate
computer science programs: Are we teaching the best content in the best way?  Can we do so
without fragmenting the discipline or creating administrative obstacles?  [Wulf 91, Patterson 92]  As
they observe, the last two decades have seen radical changes in hardware technology, networking,
system interconnection, and sophisticated applications, but our curricula generally ignore these
changes. Further, software production problems lead the list of problems in developing computer
applications.  Wulf and Patterson ask why our current programs don't teach these improved
technologies to the students who will need to apply them.

I would like to look specifically at education in software development: programming, programmed
systems, and the engineering of software.  This is not the whole of computer science, but it
includes a large share. The typical software curriculum features dinosaur courses, classroom
presentations that don't use new technology, naive approaches to software development,
innocence of engineering design considerations, a severe shortage of examples relevant to anyone
but a systems programmer, and ignorance of the system context of most useful software.

Focus on Ideas, not Artifacts

Let's organize our courses around ideas rather than around artifacts.  This helps make the
objectives of the course clear to both students and faculty.  Engineering schools don't teach boiler
design -- they teach thermodynamics.  Yet two of the mainstay software courses -- "compiler
construction" and "operating systems" -- are system-artifact dinosaurs.

We do not need forty students per university per semester who think they are compiler builders, as
the description of the usual compiler course would suggest.  Indeed, most of the faculty who design
these courses will say, when pressed, that the real objectives include learning about:

the structure of a well-understood medium-sized system,
describing interactions of several modules,
more sophisticated algorithms and data structures (related to symbol tables, parse trees,
and graph traversal),
practical problems of applying a well-understood piece of theory (syntactic analysis),

and similar topics that apply equally well to other kinds of software.  Compilers were among the first
sizable well-understood software systems, so this was the logical when these courses were first
developed.  Unfortunately, the course title, investment in textbooks, and old habits seem to make it
impossible to replace the compiler now that there are other good examples.

In the Carnegie-Mellon curriculum design, we proposed to redistribute the conventional
comparative programming language and compiler material, plus new material, to three new
courses.  [Shaw 1985]  First, a junior-level course about the nature of languages and interfaces
would introduce programming language structures, "little languages", and user interface problems.
Second, a follow-on course about transducers of programs would cover editors, macro systems,
programming environments, test data generation, and program generators as well as compiling
techniques sufficient to handle a simple language.  Finally, we specified a senior elective for the
specialized programming language and compiler topics such as code optimization, fine points of
language design, and detailed interactions between languages and their implementations.



Shaw: We Can Teach Software Better 2

In that curriculum design we also proposed re-organizing the topics usually covered in operating
systems and database courses, bringing in selected topics from hardware and formal methods.
We planned courses on time and resource allocation, on issues of large data, on communication
and networks, and on classes of program organizations.  Thus, for example, one course on "time
and resources" would bring together ideas about coordinating multiple processes competing for
resources.  This includes synchronization mechanisms (locks, semaphores, monitors, rendezvous),
scheduling (deadlock, starvation, fairness, contention), real-time response, hardware interrupts,
clocks, transactions, programming language constructs for concurrency, and temporal logic.  These
reorganizations were somewhat speculative; their challenge has not yet been answered.  I continue
to believe they are good ideas.

This is not, of course, to say that we should abandon the applications.  Some engineering schools
have gone too far, producing students who know only principles and can't design a boiler.
However, we are far from having that problem.  We do need a healthier balance that  emphasizes
important ideas  and places them in the context of good practice.

Improve the Way we Teach Software Development

Any student who claims an education in software must be good at software development.  This
includes proficiency in both programming and engineering design.  The best software engineering
education we can provide undergraduates emphasizes these topics, which are integral to the
computer science curriculum.  These changes do not require separate software engineering
courses, let alone separate curricula.  Moreover, they will improve the curriculum for all students
who learn about software, not just the majors.

Software Development Skills

Programming skills provide the base for software systems education.  Even a cursory look at what
programmers know and do reveals problems in the current software curriculum.  Shortcomings
include:

Programming from scratch:  Most courses teach students to code from scratch, rather than
by modifying existing programs or by working from model solutions.  Moreover, students
rarely read good programs.  It's as if we asked students to write good prose without first
reading good prose.
Equating program text with software:  A complete software product includes not only the
code, but also the analysis that led to the design, the user documentation, the test suites,
and records of design decisions that will be important to the maintainer.  Students too often
focus on the code, do ad hoc testing, neglect the user documentation, and ignore
everything else.
Learning abstract skills at the expense of specific content:  Our curricula are very strong in
techniques for formulating solutions from first principles.  We present too few well-known
examples of good solutions for study and emulation.  We fail to teach respect for and
reliance on existing results such as code libraries.
Programming before reasoning:  Although the situation is improving, coding and debugging
still seems to win out over specification, analysis, and careful construction or derivation.

We can cure these problems without major disruption to our course structure by changing the
emphasis within individual courses:

Study good examples of software systems:  Doing this properly requires case studies
organized for presentation.  Meanwhile, do careful guided reading of good code and make
assignments that start from running code provided with the assignment.
Learn more facts:  Software developers won't use resources they don't know about.  Teach
more specific facts such as available subroutine libraries and interface standards.
Reinforce these with assignments that require students to use them.
Incorporate reference material as it becomes available:  There is currently a dearth of good
reference material to help software developers avoid re-invention.  As such material



Shaw: We Can Teach Software Better 3

becomes available, use it.  Meanwhile, teach students to use reference manuals, library
documentation, and the like effectively.
Present theory and models in the context of practice:  Emphasize durable ideas that will
transcend a major shift of technology.  Students often learn them best when they appear in
concrete examples; good examples will themselves be worth remembering for reuse.

Engineering Skills

Practical, useful software doesn't happen by accident.  It requires design skills not unrelated to
traditional engineering design.  Some of the engineering shortcomings of our curricula are similar to
the programming shortcomings: failure to study good systems, failure to develop reasoning skills,
failure to understand maintenance and support issues.  Some others are:

Implementing the first design:   Problems often admit of more than one solution.  The best
solution in a given setting often depends heavily on facts about the user or the intended
use of the system.
Designing for the implementor:  Implementors often chose solutions that match their own
tastes, not the needs of the customer.
Failing to understand problem scale:  Class assignments usually emphasize functionality
but neglect performance requirements, especially scale requirements such as size and
throughput.
Writing throwaway exercises:  When assignments are discarded as soon as they are
graded, students have no incentive for creating comprehensible, well-documented,
maintainable software.
Ignoring reliability, safety, and other system requirements:  Class assignments usually
focus on getting correct results for correct inputs.  They occasionally require rudimentary
checking of inputs, and they occasionally require performance measurement.  Students
rarely do systematic analyses of reliability and safety.  Similarly, class assignments
address asymptotic performance of algorithms and sometimes speedy code, but many
students never confront a requirement for practical real-time response.

We can address these flaws, too, within the existing course structure:
Require consideration of at least two serious designs:   Make students choose between
design alternatives.  Require these choices to address customer needs.
Require consultation with end users:  Use projects with actual clients.  Unless end users
have a voice in reviewing a design, students won't understand that their needs and
preferences are different from the students' own.
Teach back-of-the-envelope estimation:  Students often believe that they can't do any
analysis until all the facts are in hand.  Teach them to do quick estimates of usage levels,
throughputs, sizes, bandwidths.  Show them how this can provide early guidance about
scale and performance.
Modify and combine programs as well as creating them:  Teach students to work with
program structures devised by others, to reuse components, to adhere to standards, and to
value good documentation.
Test student implementations with bad data:  Run test cases chosen by the instructor, not
just demonstration data from the student.  Include not only correct inputs, but also
erroneous and even malicious inputs.  Do this not only for isolated assignments, but as a
matter of course.
Make assignments with embedded system requirements:  Bad data isn't the only source of
real-world demands.  Make assignments that expose students to nondeterminism, end-to-
end time requirements, and race conditions.



Shaw: We Can Teach Software Better 4

Make the Content More Interesting and Relevant

Patterson suggests a number of new courses that should be more available to students.  To his list
I'd add real-time systems, architectures of software systems, parallel computation, and human-
computer interaction.  Each of us probably has a few favorite topics.

We can't add fresh material to a curriculum that is already full.  We have accumulated a lot over the
last 25 years; tradition and inertia make it hard to prune.  Patterson suggests contracting lower-
level courses.  We can also add new material by replacing the examples that carry the ideas.  After
all, our main goal is mastery of the basic concepts of the discipline; the specific examples matter
less.

For example, instead of making the introductory programming course optional, we could refocus it
on more interesting examples.  Most students who enter the university with programming
experience have skills in writing code, but they often lack much of what the course objectives
(should) specify: real mastery of the concept of algorithm, a certain kind of problem-solving skill,
and a systematic approach that leads to readable, understandable, maintainable code.  Why don't
we start by studying good programs that do things students find interesting, then move on to
changes that make them even more interesting?  In addition to introducing algorithmic reasoning
and problem solving, we could set better standards of style and teach the use of some of the
simpler tools.

Patterson says new course models won't be adopted unless they have textbooks.  Certainly there
is inertia and social pressure.  But any teacher who knows an area can put together a readings
collection.  And any teacher willing to put in just a little effort can use one that someone else has
prepared.  Undergraduate seniors and most juniors should be perfectly capable of reading papers
from IEEE Software and Computer; these journals are edited for the practitioner.  I've done two
courses this way recently (a software engineering project course and a course on architectures for
software systems), and I'm happier with the papers than with textbooks.  Descriptions with reading
lists appear in appropriate places, so anyone who doesn't want to work from scratch can work from
these [SBC 91, SGOSS 92].  It's true that a textbook stabilizes a course -- but published collections
of readings can do that, too.

We don't encourage interdisciplinary study.  It's true that a student can construct a double major by
using the electives of one major to satisfy the requirements of the second.  But this falls short in
two ways:  first, it prevents the student from exploring the interesting byways of either major;
second, and more seriously, it has no way to teach the computational aspects of the other
discipline.  A few computer science departments are now setting up joint majors with other
departments.  More should.  Both departments must be willing to reduce the normal requirements
and to develop one or more advanced computational courses that rely on prerequisites in both
departments.

What we do not need is fragmentation within computer science.  The current pressure for separate
software engineering programs and departments rejects the historical productive interaction
between the practical and theoretical sides of the discipline.  I believe this interaction is one of the
reasons for our rapid development over the past three decades.  None of my proposals even hints
that separate curricula or departments are appropriate.  In fact, many of these changes would be
harder to make in separate curricula than in a unified program.  As Wulf argued, separating
software engineering from computer science is absolutely counter-productive, both intellectually
and administratively.

Use Our Own Technology in Courses

We are poor users of our own technologies.  Except for compilers, editors, and the occasional
syntax-directed editor, parser generator, or grading program, software education makes little use of
software technology.  Many other possibilities spring to mind: subroutine or component libraries,
integrated environments, simulations, program skeletons, test harnesses, spreadsheets and project
planning software, educational-strength versions of industrial tools, and living case studies are just
a few.  Some courses take advantage of these opportunities, but this is far from the norm.  We



Shaw: We Can Teach Software Better 5

have lots of excuses for not doing so: "it's not available at my school", "we can't afford it",  "it isn't
compatible with my textbook", and so on.

These seem to be roundabout ways of saying we don't realize that these technologies are a vital
part of modern software practice.  Yes, there are practical problems: a single instructor can't
acquire or develop a sophisticated environment for a single course.  But we can do a great deal for
a single course, and we should undertake facility development for education as seriously as we
take facility development for research.  The same problems with getting support for software and
maintenance will, alas, reappear.

For a decade or more, we've been talking about distributing software for particular courses -- often
coupled to particular textbooks.  I recall offering code to support the major examples in a textbook
in 1981.  However, there was no effective distribution mechanism, and almost no one took me up
on the offer.  Publishers tell me that the instructor's materials, including answers to exercises and
overhead projection masters, are major factors in selling textbooks.  We should be targeting the
day that the portable software support is an even stronger selling point.

Summary

We can do many things to revitalize the software curriculum.  Most don't require complete
replacement or separate departments.  As it stands, we are serving no one well.  Our courses don't
represent the best of computer science, they are only marginally relevant, and they are too often
neither fresh nor exciting.

References

GSOSS 92
David Garlan, Mary Shaw, Chris Okasaki, Curtis M. Scott, and Roy F. Swonger.  "Experience with a
Course on Architectures for Software Systems."  Proc. Sixth SEI Workshop on Software Engineering
Education, Springer-Verlag 1992 (to appear).

Patterson 92:
David A. Patterson.  Has CS changed in 20 years?  Computing Research News, 4, 2 (March 1992), pp.2-
3.

SBC 91
Mary Shaw, Bernd Bruegge, and John Cheng.  A Software Engineering Project Course with a Real
Client."  Software Engineering Institute Educational Materials Package CMU/SEI-91-EM-4, Carnegie
Mellon University, July 1991.

Shaw 85:
Mary Shaw (ed). The Carnegie-Mellon Curriculum for Undergraduate Computer Science.  Springer-Verlan
1985.

Wulf 91:
William A. Wulf.  SE programs won't solve our problems.  Computing Research News, 3, 5 (November
1991), p.2.


