LEARNING FROM ACCELEROMETER DATA
ON A LEGGED ROBOT

Douglas Vail Manuela Veloso !

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213 USA

Email: {dvail2,mmuv} Qcs.cmu.edu

Abstract: Robot calibration for an environment is a tedious task that usually
involves extensive, if not total, human intervention. However, robots have sensing
mechanisms, in particular accelerometers, which could in principle be used to de-
tect specific environmental states. In this paper, we contribute several approaches
for robots to detect their state using accelerometer data. In particular, we use
accelerometer data from a four-legged AIBO robot. We present a surface detector
that identifies the surface under the robot as it walks using a decision tree. We
present the features used for this classification. Additionally, since AIBO robots
can easily become entangled on obstacles or other robots in multi-robot environ-
ments, such as robot soccer, we contribute results that show effective detection of
robot state, again based on accelerometer data. Finally, we examine a third, more
challenging problem: predicting gait velocity from accelerometer data. We use a k-
nearest neighbor approach with a library of labeled accelerometer data for velocity
prediction. We show that while this prediction is complex, accelerometer data can
still be correlated with velocity. Our work, as reported in this paper, demonstrates
the general use of robot accelerometer data for automatically detecting robot or

environment state without tedious manual calibration.

Keywords: robotics, state detection, surface detection, velocity prediction,

accelerometer, k-nearest-neighbors

1. INTRODUCTION

Robots often need to be calibrated for their spe-
cific operating environment in order to achieve
peak performance. The mechanics of the calibra-
tions vary widely, but typically they are time
consuming and may require extensive human in-

1 This research was sponsored by Grant No. DABT63-
99-1-0013, by generous support by Sony, Inc., and by
a National Physical Science Consortium Fellowship with
stipend support from HRL Laboratories. The content of
this publication does not necessarily reflect the position of
the funding agencies and no official endorsement should be
inferred.

tervention. In this paper, we contribute learning
approaches that use robot accelerometer data to
model the state of a robot or the state of its
environment. For our particular experiments, we
have used the four-legged AIBO robot and the
robot soccer domain.

Calibration is needed when designing gaits for the
AIBO robot. In order to achieve a fast, stable
walk, a human must spend several hours running
the robot on the surface where it will be walk-
ing and adjusting the parameters that define the
robot’s gait. This adjustment is something be-
tween random guessing and a black art; experience

speeds the process, but even old hands at walk
tuning are frequently surprised by the form the
fastest walk takes.

In this paper we explore how we can train a
surface detector from robot accelerometer data.
Equipped with the learned model, a robot can
detect the walking surface using its internal ac-
celerometer. With this knowledge, a robot can
either select the correct set of human-generated
walk parameters or, if it can learn on its own, the
robot can optimize its existing gait for the new
surface automatically. Since generating a large
number of parameters sets for various surfaces
is impractical, ideally the robot should learn to
optimize gaits on its own. Having a source of
feedback for this learning is what motivates the
third set of experiments on velocity prediction
discussed in this paper.

Of course, state is not limited to the surface under
the robot’s feet. In a multi-robot environment,
such as robot soccer, robots can get entangled on
each other or become stuck against other objects,
such as walls (while manipulating a target object,
such as the ball). It is very important for the robot
behavior selection mechanism to know its state,
namely if the robot is free, entangled, or stuck.
We show effective state detection using the robot’s
accelerometer.

As we mentioned, feedback is required for the
robot to learn new walk parameters. We explore
using accelerometer data to estimate the robot’s
velocity. This provides an internal source of feed-
back for learning. It is advantageous for the feed-
back to come from an internal source because it
allows the robot to learn anywhere without addi-
tional calibration (e.g. vision, a motion model, and
a map for localization). Localization is required to
generate the initial, labeled training data, how-
ever.

In the remainder of the paper, we will describe the
ATBO robot and its operating environment. We
will examine what sort of data is returned by the
accelerometer. Then, we will briefly review related
work before providing a detailed description of
our surface and state detection. Finally, we will
examine using blocks of accelerometer data to
estimate the robot’s velocity.

1.1 The AIBO Robot: Sensors, Software, and
Environment

The commercially available Sony AIBO ERS210a
is a small, quadruped robot that resembles a small
dog or cat. The CPU is a MIPS processor running
at approximately 400 mhz. The robot has 15
degrees of freedom - three for each of the legs
and an additional three from the head. We do

Table 1. Selected Walk Parameters

Per Leg Parameters

Neutral Position | A point in space that the foot must

pass through in the ground stroke.

Lift Velocity The desired foot velocity when a

foot leaves the ground.

Down Velocity The desired foot velocity when a

foot touches the ground.

Global Parameters

Body Angle The angle between the robot and

ground along the x axis.

Body Height The height of the body midpoint.

‘Walk Period The time to complete a full cycle.

not count the tail, mouth, or LEDs in this tally
since they are not directly relevant to walking.
The head is heavy enough, in proportion to the
body, to affect the robot’s balance as it walks.

In addition to its camera, the robot also has an
accelerometer. The accelerometer returns a real
valued estimate of the robot’s acceleration along
the x, y, and z axes. The values are limited to
the range of [-2,2] gravities for each axis and are
sampled at 125 hertz. We define positive x as
the direction that the robot is facing, positive y
as directly away from the robot’s left side, and
positive z as up from the floor. Figure 1 shows
sample accelerometer data.

During the experiments, the robot ran code built
on top of our RoboCup Legged League team,
CMPack’03. This allowed us to run the robot on
an approximately 3 by 4 meter soccer field and
take advantage of our existing code for vision [1]
and localization [5]. CMPack’03 also provided
a parameterized walk engine that allows us to
specify different parameterized walks. The walk
engine uses these walk parameters to calculate the
ground path of each foot, how to move each foot
through the air between steps, and the order in
which to move the feet [2].

There are a total of 54 parameters that fully
describe each walk. The parameters are divided
into two groups: per leg parameters, which apply
to every leg and global parameters that apply to
the whole robot. Table 1 lists several of the most
important parameters.

1.2 Related Work

Surface detection is important for legged robots.
Sinha and Bajcsy argue that robots should use
their legs to characterize surfaces as well as tra-
verse them [7]. The material properties of a sur-
face determine how the robot should move on that
surface. In particular, they determine if a surface
is penetrable, by using a probe; how conformant
the surface is, by measuring the amount of force

required to deform it; and they detect slip using
an accelerometer on the robot’s foot.

In addition to detecting slippage, accelerometers
have also been used to generate kinematic models
for robotic arms. Canepa et al [4] describe how
accelerometers were used in conjunction with joint
encoders to generate a model of the segment
lengths and relative orientations of the joints of
a 7-DOF robot arm.

Moving further afield, Veltink et al have examined
using Bayesian methods on accelerometer data
to classify rehab patient movements as either
dynamic activities, such as walking or climbing
stairs, or as static activities, such as sitting or
standing in place [8]. Cakmaki et al were able to
determine when a person was checking their watch
by using statistics gathered on accelerometer data
with the goal of saving power by turning off the
display when it was unneeded [3].

2. SURFACE DETECTION

We introduce our surface detection algorithm and
discuss the tradeoffs in its design. We present
experimental results showing the robots perfor-
mance discriminating between a cement floor,
the carpet in our laboratory, and the carpet on
a RoboCup field. Figure 1 shows accelerometer
data from the two carpeted surfaces as an exam-
ple; the algorithm must distinguish between these
two classes of data. We present additional results
showing that our surface detection method may be
applied to other problems. Specifically, we use it to
detect if a robot is freely playing soccer, bumping
into a wall, or entangled with another robot.

2.1 Algorithm Details

Surface detection is a classification problem. We
would like the robot to identify the surface under-
neath it based on accelerometer data as it walks.
Since we need to know the surfaces in advance to
label them, we also require sample data from each
surface so that we can use supervised learning to
train our classifier. This is not an unreasonable as-
sumption, especially if the goal of surface identifi-
cation is to chose a pregenerated set of parameters
for movement on each particular surface.

Since the data arrives as a stream, we window
it into discrete chunks when creating the feature
vector for the classifier. Larger data windows
increase accuracy at the cost of increased latency
when detecting change. We chose to use a one
second sliding window.

To cut down on the amount of data passed to
the learner, we used statistics to described the

Walking on the Field

M‘”&

&

Acceleration (g)

Time (sec)

Walking on the Carpet

oo+

Acceleration (g)

Time (sec)

Fig. 1. Two seconds of accelerometer data gath-
ered while the robot marched in place on the
two carpeted surfaces. The acceleration along
the x axis has a positive mean because the
robot’s stance leans forward slightly.

sensor reading distribution in each window instead
of the data window itself as the feature vector. We
used the variance in x, y, and z accelerations as
well as the (x, y), (x, z), and (y, z) correlation
coefficients over each window as the six features.
The correlation coefficients were calculated as:

Yo (@i—)(yi—7)
Vo(@)-o(y)

We chose to use decision trees for learning due
to their simple representation and classification
speed. Labeled training data was passed to the
C4.5 decision tree learning program to generate
the tree [6]. Every sensor frame when new ac-
celerometer data becomes available, the sliding
window is shifted and the decision tree is used
to generate a new surface classification.

cor(x,y) =

As an aside, it is possible to calculate each of the
six features iteratively so that updates only re-
quire calculations involving the oldest accelerome-
ter data point and the newest data point. Coupled
with the speed of the decision tree this makes it
practical to run the classifier at the sensor frame
rate.

2.2 Fxperimental Results

To test our surface prediction algorithm, we gath-
ered five minute segments of accelerometer read-
ings while the robot marched in place on each
surface. We created a decision tree using C4.5
and used 10-fold cross validation to quantify the
accuracy of our final classifier. That is, we divided
the data into ten 30 second segments, trained a de-
cision tree using 9 of the segments and evaluated
the tree on the remaining, unseen segment. We
repeated this until each segment had been used
to evaluate a decision tree trained on the other
nine data segments.

Table 2. Surface Recognition Perfor-
mance

Overall Performance
84.9%
15.1%

Correct

Incorrect

Detailed Performance

Samples classified as:

True Class Cement | Carpet | Field
Cement 91.0% 3.1% 5.9%
Field 4.8% 81.1% | 14.1%
Carpet 7.1% 11.7% | 81.2%

Table 3. RoboCup Domain State Detec-
tion Performance

Overall Performance
Correct 92.3%
Incorrect 7.7%

Detailed Performance

Samples classified as:
True Class Playing | Hooked Wall
Playing 97.8% 1.8% 0.4%
Hooked 1.4% 92.4% 6.2%
Wall 0.3% 15.7% 84.0%

The evaluation results are presented in table 2. As
we would expect, the classifier has more trouble
disambiguating between the two carpeted surfaces
as they are very similar and produce similar
accelerometer data. See figure 1.

Table 3 shows the results when the classifier is
trained to recognize different states that occur in
a soccer game. The states considered are when the
robot is freely playing, i.e. walking, kicking, and
turning; when the robot is running into a wall;
and when a robot is entangled with another robot.
The classifier is less accurate when disambiguating
between the two collision states than determining
when the robot is freely playing.

3. VELOCITY PREDICTION

We trace the design of our velocity prediction al-
gorithm from examining the initial data to choos-
ing and evaluating a prediction algorithm.

3.1 Generating Velocity Data and Choosing KNN

Initially, we logged data from uniformly gener-
ated parameter sets. Since there are many more
slow walks than fast ones, the median velocity
of these random walks was biased toward lower
velocities. To create a more uniform distribution
of velocities, to aid learning, we manually created
ten parameter sets with a widely spaced set of
velocities. We added Gaussian noise to each pa-
rameter to generate walks for our trials. Figure 2
shows cumulative distributions of walk velocities

Velocities from Randomly Generated and Modified-Known Walks
1.2 T T T

Uniformly Generated +
Gaussian Noise ©

1k ———"
s
o
#‘f***w
08| o |
#

0.6

Percent of Walks

0.4

02

-100 100 150 200 250

Velocity (mm/sec)

Fig. 2. Cumulative distributions of velocities from
walks defined by randomly chosen parameters
and walks created by perturbing a set of ten
existing walks with Gaussian noise. Notice
that the walks derived from the existing pa-
rameters are more uniformly spaced over the
range of velocities.

for the purely random walks versus the velocities
for the walks generated by adding Gaussian noise
to ten human designed walks; the ten walks with
added noise produce a more uniform set of output
velocities.

While choosing a method for velocity prediction,
we examined several statistics describing the dis-
tribution of sensor readins for each walk. These
statistics are displayed in figure 3. There are few
clear trends in this data. The mean x-axis acceler-
ation increases with velocity, but it also has a high
variance that limits its usefulness as a predictor.
There is also a correlation between high variance
in the sensor readings and low velocity, but some
of the walks show low variance no matter what
velocity they produce.

Due to the lack of clearly visible trends in the
distribution of accelerometer data, we chose to use
k-nearest neighbors for velocity prediction. The
intuition is that since it is difficult to create a
model to represent the data, we will use the data
to model itself.

3.2 Applying K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a non-parametric
method for function approximation. It depends on
having a database of inputs along with the correct
output for each of those inputs. When a query
occurs, KNN finds the closest k input vectors in
its database to the query input. It then merges the
labels of these k closest points from the database
to predict the correct output value.

KNN requires a few building blocks. First, it
requires an input vector. In our case, we use
a 63 dimensional input vector that consisted of

Mean Accelerometer Readings

Acceleration (g)
)
=

T T T TR T
LG

) .
-50 0 100 150 200 250
Time (sec)

Variance in Accelerometer Readings

Variance (g"2)

-50 0 50 100 150 200 250
Time (sec)

Fig. 3. Accelerometer data statistics for many dif-
ferent walks. The mean x acceleration shows a
positive correlation with velocity but is very
noisy. High variance is associated with low
speeds.

the means, variances, and covariances of the ac-
celerometer data for a given window while a walk
was being tested. We added the 54 walk parame-
ters to these statistics to form the complete vector.
In other words, an input vector, a takes the form:

a={a...a9}
{aj...a3} = {7,7,z}
{as...a6} = {02,002}
{ag...a0} = {03, 0%.,00.
{a11...a63} = {54 Walk Parameters}

T,7, and Z are the mean values of the data win-

dow. Similarly, o2, 037 and o2 are the variances of
: : 27 2 2

the accelerations. Finally, o, , 03, and o, repre-

sent the covariances between each component of

the acceleration vector.

The database is a list of these feature vectors
with a label. The label is the average velocity of
the robot during the time window in which the
statistics of the feature vector were calculated. In
other words, L = {(a1,v1), (az,v2), ..., (Gn,vs)}
The a’s represent input vectors and the v;’s are
the velocities associated with each input vector. n
is the size of the library. Labels were calculated
from the robot’s localization while the training
data was gathered.

With an input vector format and database de-
fined, the next task is to define a distance func-
tion that maps from two input vectors to a real-
valued heuristic distance between the two inputs.
We chose to use the Euclidean distance between
the vectors where the individual differences in
the components are first divided by the standard
deviation of that particular component in our
database. Dividing each delta by the standard
deviation of that component normalizes the com-
ponents so that they are all weighted [approx-
imately] equally in the final distance function.
Writing out the equations, we have:

a and b are the two input vectors being compared.
For each component, we find the difference in
that component and then divide by the standard
deviation of that component (oy,) in the library.
Note that since we square the difference this is
equivalent to dividing the squared difference by
the variance of the component.

The final component of our KNN algorithm is a
method to combine the k closest saved values into
a single prediction. We used a Gaussian kernel to
perform the combination:
—d2
w; = ﬁ celz5?) i e [1..k]
Upred = Z?:l (Zvl;#)

W
j=1 7

Once the algorithm has been defined, the only
thing left is to pick a value for k. Assuming that
the value of k that performed best at predicting
the velocities of walks in the database will also
work well for predicting the velocity of unseen
walks, we examined the median absolute error
of predictions as k was varied. We picked the
value of k that minimized this error metric after
an exhaustive trial of values. For our particular
experiments, we chose a value of 6.

3.8 Cross-Validation for Evaluation

Leave one out cross-validation is trivial to imple-
ment with KNN; simply remove the query point
from the database before making each query. Fig-
ure 4 shows the results of evaluating the trial data
using cross-validation. The data points are sorted
according to their true velocity, as determined
by localization when the data was gathered. The
predicted velocity returned by the KNN algorithm
is shown for each trial. The mean absolute error
of these predictions is 26.4 mm/sec. The RMS
error was 35.2 mm/sec. Given that the median
true velocity of the trials was 100.4 mm/sec, the
predictor shows a large amount of error.

Figure 5 shows a histogram of the absolute errors
during evaluation. The majority of the predic-
tions are within 20 mm/sec of the true value. So
while the predictions would be a noisy source of
feedback for walk optimization, they do provide
useful information. Additionally, increasing the
size of the library of known points may increase
the accuracy of predictions. It took approximately
30 seconds for the robot to generate each point.
Since it is possible to run several robots at once, it
is possible to gather a large amount of data fairly
quickly.

Velocity Prediction Performance
250 T T T

e e
Predicted +

200 - + ,

150 |

100 o

Velocity (mm/sec)
T
.

-100 L L L L L L
0 100 200 300 400 500 600 700

Walk ID

Fig. 4. A comparison of true walk velocity and
predicted walk velocity, sorted by the true
velocities. Negative velocities occurred when
the robot dug its front feet into the carpet
and pushed itself backwards while moving its
feet forward.

Histogram of Absolute Prediction Error
0.18 T T T

Percent of Walks

I H
80 100

Error (mm/sec)

Fig. 5. A histogram of the absolute error when
leave one out cross-validation is used to eval-
uated 605 sets of walk parameters.

4. CONCLUSION

We have shown that a legged robot can identify
the type of surface that it is walking on by using
accelerometer data. The classifier uses a set of six
statistics to summarize windows of sensor data
and passes these statistics as features to a decision
tree. Due to the online calculation of the feature
vector and speed of the classifier, it is possible to
run our algorithm at the full sensor frame rate of
the robot using a minimal amount of CPU cycles.

We also show that our algorithm for surface de-
tection can be generalized to detect other state
information. Specifically, we presented an example
from the domain of robot soccer, where the state
was one of playing freely, entangled with another
robot, or bumping into a wall.

Finally, we presented preliminary results showing
how accelerometer data can be used for velocity
prediction using a k-nearest neighbors approach.
While the velocity prediction were noisy, future
work using a larger library of examples or a

different weighting of features in the distance
metric may help overcome this noise.

ACKNOWLEDGMENTS

The authors would like to thank Sonia Chernova,
James Bruce, and Scott Lenser for sharing their
AIBO expertise and good advice.

REFERENCES

[1] James Bruce, Tucker Balch, and Manuela
Veloso. Fast and inexpensive color image seg-
mentation for interactive robots. In Proceed-
ings of IROS-2000, Japan, October 2000.

[2] James Bruce, Scott Lenser, and Manuela
Veloso. Fast parametric transitions for smooth
quadrupedal motion. In A. Birk, S. Coradeschi,
and S. Tadokoro, editors, RoboCup-2001: The
Fifth RoboCup Competitions and Conferences.
Springer Verlag, Berlin, 2002.

[3] Ozan Cakmakci, Joelle Coutaz, Kristof Van
Laerhoven, and Hans-Werner Gellersen. Con-
text awareness in systems with limited re-
sources. In Proceedings of AIMS-2002, Artifi-
cial Intelligence in Mobile Systems, 2002.

[4] G. Canepa, J.M. Hollerbach, and A.J.M
Boelen. Kinematic calibration by means of
a triaxial accelerometer. In Proceedings of
ICRA-1994, the Internationall Conference on
Robotics and Automation, 1994.

[5] Scott Lenser and Manuela Veloso. Sensor re-
setting localization for poorly modelled mo-
bile robots. In Proceedings of ICRA-2000, the
International Conference on Robotics and Au-
tomation, April 2000.

[6] J. R. Quinlan. C4.5 — Programs for Machine
Learning. The Morgan Kaufmann series in ma-
chine learning. Morgan Kaufman Publishers,
1993.

[7] Pramath R. Sinha and Ruzena K. Bajcsy.
Robotic exploration of surfaces and its appli-
cation to legged locomotion. In Proceedings of
ICRA-1992, the Internationall Conference on
Robotics and Automation, 1992.

[8] Peter H. Veltink, Hans B.J. Bussmann, Wiebe
de Vries, Wim L.J. Martens, and Rob C. Van
Lummel. Detection of static and dynamic ac-
tivities using uniaxial accelerometers. In IEEE
Transactions on Rehabilitation FEngineering,
volume 4, 1996.

