
Abstract— This paper defines an activity/attention framework
for context aware computing, and categorizes several
applications we have developed in spatial and temporal
contexts. These context aware applications utilize the services
from the activity/attention framework. The paper also
introduces a generic architecture for pervasive computing,
explores and refines its design space, and describes specific
instantiations of the architecture and provides initial
evaluation of these applications. Two different user interfaces,
visual and audio, have been implemented and contrasted for
the same application.

Index Terms—Context aware computing, pervasive
computing, mobile computing, intelligent agent, location
awareness, multi-modal user interface, privacy

1 INTRODUCTION

The effects of Moore’s Law are apparent everywhere: chip
density, processor speed, memory cost, disk capacity and
network bandwidth are improving relentlessly. As the cost
of computing drops significantly, a resource that has been
ignored until now becomes the limiting factor in computer
systems — user attention, namely the ability of a person to
focus on their primary task.

Distractions occur especially in mobile environments, since
the user is often preoccupied with walking, driving or other
real-world interactions. A pervasive computing
environment that minimizes distraction has to be context
aware. The system needs to know the state of the user to
accommodate their needs.

This paper proposes that context aware applications are
built upon at least two fundamental services, spatial
awareness and temporal awareness. Spatial awareness
includes the relative and absolute position and orientation
of a user. Temporal awareness includes the scheduled time
of public and private events.

An activity/attention matrix is introduced in Section 2 and
illustrated by the example deployed applications.

• Portable Help Desk (PHD)
• Matchmaker

To facilitate the creation of these context aware
applications, two primary services were developed

• Location Service
• Schedule Service

Derived services, based upon the primary services, were
created to address the issue of privacy of location
information and to enable intelligent management of
temporal and spatial information.

• Privacy Guard
• Context Aware Agents

Two different user interfaces, visual and audio, have been
implemented and contrasted for the same application
(PHD).

The applications and services fitting the Activity/Attention
framework were primarily developed to facilitate
collaborative design. An interdisciplinary class of students
at CMU undertook the development of the applications and
services. The students identified services that, based on
personal experience, would facilitate the design process.
The first application, PHD, enables the ability to
instantaneously locate team members on campus. Students
have a large number of meetings held at various times and
various places. They are often confused about where the
next group meeting is to be held. The ability to observe the
teams’ members’ geographical location on campus enables
them to determine where the meeting is and when a
member who is late to the meeting might arrive. The PHD
application is detailed in Section 2.1.1. The ability to
connect a user’s query with an expert is captured in the
Matchmaker system, which employs both temporal and
spatial awareness, as described in Section 2.1.2. Privacy
Guard was developed to enable the user to control their
location information and it is described in Section 2.1.3.
Context Aware Agents employ temporal context
information to proactively inform the user of relevant
information, as described in Section 2.1.4. Location service
has been developed as a primary service, utilizes the
wireless network infrastructure to determine user location,
and is described in Section 3.3. The Carnegie Mellon
Campus has been equipped with 400 wireless networking
access points, enabling wireless coverage for the entire
campus, indoors and outdoors.

Mobile computing poses difficult challenges such as
intermittent and variable-bandwidth connectivity, and client
resource constraints imposed by weight and size
considerations. The software architecture developed in this
project is based on a pervasive software architecture
proposed by the IBM T.J. Watson Research Center.

Asim Smailagic, Daniel P. Siewiorek, Joshua Anhalt, Francine Gemperle
Carnegie Mellon University

Daniel Salber, Sam Weber, Jim Beck, Jim Jennings
IBM T.J. Watson Research Center

Towards Context Aware Computing:
Experiences and Lessons

The prototype developed by the class uses Hewlett Packard
Jornada 680 palmtop computers and the Itsy/Cue wearable
computers communicating via Lucent Wavelan cards on
Wireless Andrew. [7]

The relevant work in Humanistic Intelligence and context
aware computing includes the following. Steve Mann
introduced the notion of Humanistic Intelligence, proposing
it as a new signal-processing framework in which the
processing apparatus is supportive and dependant on the
user’s natural capabilities of human body and mind [5][6].
Abowd et. al. have designed a software architecture to
enable the creation of context-aware applications [1][2].
Starner et. al. have developed context aware user interfaces
through environment looking cameras and machine vision
techniques [9]. Laerhoven and Cakmakci utilize body-
mounted sensor to determine a users activity and infer their
context [4]. Kortuem et. al. describe a wearable computer
which alters its user interface based on the devices and
services in the user’s environment [3].

2 APPROACH

The Distraction Matrix, shown in Figure 1, categorizes
activities by the amount of attention they require. The
activities are Information, Communication and Creation.
Individual activities are categorized by the amount of
distraction they introduce in units of increasing time: Snap,
Pause, Tangent and Extended. The Snap duration is an
activity that is usually completed in a few seconds, such as
checking your watch for the time. The user should not have
to interrupt their primary activity to perform this activity.
The Pause action requires the user to stop their current
activity, switch to the new but related activity, and then
return to their previous task within a few minutes. Pulling
over to the side of the road and checking directions is an
example of a pause. A Tangent action is a medium length
task that is unrelated to the action that the user is engaged
in. Receiving an unrelated phone call is an example of a
tangent activity. An Extended action is when the user
deliberately switches their task, beginning a wholly new
long-term activity. For the car driver, stopping at a motel
and resting for the night is an extended activity.

As distractions on the left of the matrix take less time from
the user’s primary activity, our intent is to move activities
of the matrix towards the left side (Snap). Our goal is to
evaluate how this process extends to a larger sample of
applications.

2.1 Applications

A set of interactive applications to support mobile team
design activities has been implemented. To complement
each other while reducing user distraction, these
applications address a related set of activities within the
Distraction Matrix.

2.1.1 Portable Help Desk

The Portable Help Desk, or PHD, provides quick
information retrieval. This tool allows a mobile user to
build maps of their immediate area, including static and
dynamic resources and the location of their colleagues,
contact information and resources availability. While
tracking a colleague, their contact information is displayed.
Printer queues, restaurant hours and stock of carbonated
beverages and food in connected vending machines can be
displayed. The PHD application is a spatially aware system.
Figure 2 shows the activities supported by the PHD system
and the attention each demands of the user.

We have built both visual and audio interfaces for the PHD
application. Each interface supports users in different
contexts. A user who is walking around is less distracted
by the hands-free speech interface, while a stationary user
may use the richer visual interface.

Figure 2 illustrates a visual user interface for the PHD
application. People and resources are selected in the left
pane, the results of the queries are presented in the middle
pane while locations of people and resources are displayed
in the right pane. The speech interface is free of the
distraction of a visual interface enabling the user to walk
about and retrieve information that should not be displayed
in a public location. Speech-PHD utilities the same
database of information, so all responses are formatted in
similar manners. Figure 5 is a transcript of the same
queries that were made in Figure 4. This system is aware of
the user’s current location, allowing it to answer questions
such as “Where is the nearest ATM?”

The visionary scenario of the visual and audio-based PHD
systems is to deliver relevant information to the user in both
proactive and user driven manners. Proactive information
is delivered to a user when they are engaging infrastructure
resources such as printers. When a user begins a print job,
PHD will alert the user to a large print queue and suggest a
nearby printer with a shorter print queue. PHD can suggest
a printer near the destination of a user in route. Using
respond to queries such as “Is Fred coming to the meeting?”

A design group waiting for a team member can use PHD to
locate their missing colleague and estimate their time of
arrival. The group has access to the user’s phone numbers.
This helps avoid repeating the beginning of a meeting for
every late member. When the team is getting hungry, they
can lookup the hours of nearby restaurants find an ATM or
just check if the coke machine is full.

2.1.2 Matchmaker

The Matchmaker is an application that helps a user with a
question rapidly identify an expert user with the knowledge
to help solve an unexpected problem. The suitability of an

F
igure 1—

D
istraction M

atrix

Time

Snap Pause Tangent Extended
Information

ac
ti

ve

• Receiving
• Notifying
• Monitoring
• Serendipity

− Message arrival
− Information accessible
− Auction
− Stocks, Sports, Matching

similar needs
− Free food

− Audio, Walkman

− Transferring files from
network

− Reading news

• Seeking − Line length
− Bus arrival
− Locate person

− Exam calendar
− Software/hardware help
− Calendaring
− Navigation

− Looking for Class Notes
− Who else is doing this

now?
− Access personal data

• Browsing
• Finding

− Information on web or built
environment

− Poster, bulletin board
information

− Web Research
− Reviewing Class Notes

p
as

si
ve

• Verifying
− Recall previous queries
− Double checking information

Communication

ar
ti

fi
ci

al

• Initiating

• Participating

− S.O.S. Emergency

− Instant messaging

− Introductions

− Queries

− Team building
− Collaborative work
− Event planning
− Assassins game
− Social Planning

− Chatting (public or private)

in
fo

rm
al

• Broadcasting

− Information exchange
− Scheduling

− Posting information to
bulletin board

− Advertising

fo
rm

al

• One to One communications with an individual

• One to Group communications with select group, team or family

• One to All Possible broadcast communications with unknown people

Creation

• Recording − Remember this!
− Add a todo or call list

− Class note taking
− Meeting

− Generating messages

• Synthesizing − Forwarding x to y − Filling out survey
− Registration

− Summarizing lecture

W
o

rk

• Generating
− New ideas
− Adding information to

existing projects

− Mobile tool building

Figure 2—Distraction Matrix for Portable Help Desk

Figure 3—Distraction Matrix for Matchmaker

Time

 Snap Pause Tangent Extended

Information

A
ct

iv
e

• Receiving
• Notifying
• Monitoring
• Serendipity

− Receive request for

help
− Completion of task

notification

• Seeking − User searches through
list of possible
solutions returned by
system

− User tries suggested
solutions

• Browsing
• Finding

 − Finding someone to
help

P
as

si
ve

• Verifying

Communication

A
rt

if
ic

ia
l • Initiating

• Participating

 − Expert and user
collaborate

In
fo

rm • Broadcasting

F
o

rm
al

• One to One – communications with an individual

• One to Group – communications with select group, team or family

• One to All Possible – broadcast communications with unknown people

Creation

• Recording − User initiates query

• Synthesizing

o
rk

•

Time

 Snap Pause Tangent Extended

Information

A
ct

iv
e

• Receiving
• Notifying
• Monitoring
• Serendipity

− “Fred is coming”
− Print queue alert

• Seeking − Seek Resources − Accessing personal
data

• Browsing
• Finding

− Check print queue − Find Person

P
as

si
ve

• Verifying

Communication

rt
if

ic
i • Initiating

• Participating

In
fo

rm • Broadcasting

F
o

rm
al

 • One to One – communications with an individual

• One to Group – communications with select group, team or family

• One to All Possible – broadcast communications with unknown people

Creation

• Recording − Requesting event
notification

• Synthesizing − Selecting printer from
suggested list

rk

Figure 4—Portable Help Desk user interface

Figure 5—Speech Portable Help Desk transcript

expert user may depend on many factors such as technical
expertise, friendliness, proximity, and availability. The
Matchmaker infers expertise and skills by observing an
expert’s track record rather than by asking him explicitly.
This application utilizes temporal context in determining
the availability of an expert and spatial context in
determining the distance between the user and expert.

For large projects and design groups, no single individual
has the expertise to perform every task. The Matchmaker
system connects a user’s query with an expert who is
located near the user, who is available, and who has a
profile listing the skills needed and has a history of
answering similar questions. By choosing an expert who is
near the user initiating the question, the expert’s time is not
used for moving to the user. After contacting the expert
with the question, the Matchmaker system then requests
feedback from the chosen expert to determine if they are
best suited to the question. The database updates its profile
of the queried expert in order to increase the accuracy of
choosing experts. The Matchmaker system reduces the
time and increases the efficiency of locating help.

The Matchmaker system has been instantiated, enabling
users to efficiently contact CMU’s School of Computer
Science Computing Support Group (CSG) to resolve their
queries. The CSG maintains an extensive database of
previously answered requests; this information enabled the
system to generate profiles of the CSGs experts. Figure 3
shows some of the activities supported by the Matchmaker
system.

Figure 6 shows the Matchmaker system architecture. The
user’s query gets sent to the server, along with the location
of the problem. The server sends the query to the
Information Retrieval partition that searches the database
for similar past queries, experts who have answered these
queries and experts with similar knowledge. The returned
list of experts is sent to the Matchmaking partition. The
location of these experts and their schedules are compared
to the context of the query. The chosen expert is then
notified of the request.

2.1.3 Privacy Guard

While PHD offers a valuable service to collaborating work
groups, the location sensing ability of the system is also a
liability. As such, Privacy Guard has been developed to
allow users to protect their information. Privacy Guard
enables basic privacy policies in addition to advanced
expressions describing users, groups and time periods
where the user’s location can and cannot be reported. The
architecture of Privacy Guard is illustrated in Figure 7.

User ExpertCentral Server

Informat ion

Match
Making

Location

DB

Avail abilit y

Figure 6— Matchmaker system architecture

Location information and permissions are securely sent to a
central server. When the server receives a query for a
user’s location, the server compares the client with the
permissions of the target. The client then receives the
location of the target or a refusal to answer the request.

User: “Locate Fred.”
Speech-PHD: “Fred is located in Hamburg Hall”

User: “ What is Bryan’s phone number?”
Speech-PHD: “Bryan’s phone number is 412-802-

6819”

Server

AP

AP

AP

Client

Target

Triangulation

Query

Response
or refusal

Location Information

Permissions

Figure 7— Privacy Guard architecture

2.1.4 Context Aware Agents

Busy groups tend not to have abundant time to browse their
calendars, check for new e-mail or read bulletin boards.
Context Aware Agents address this by delivering relevant
information to the user when it is needed. Appointments,
urgent e-mail and interesting events on a public calendar
are shown to the user when they are not engaged in more
important tasks. These proactive agents deliver information
to the user instead of the user polling the relevant sources.
These proactive agents monitor public and private calendars
and e-mail accounts. The goal is to provide intelligent
calendar management, including scheduling and resolving
conflicts with other user’s calendars while accounting for
the location and available resources for the meeting. These
agents are services that are derived from the temporal
awareness services including public and private calendars.

The following three Context Aware Agents have been
implemented.
− Notification Agent alerts users if they are passing

within a certain spatial distance to a task on their to-
do list. If a user is walking near their mailbox, the
agent alerts the user if they have a package to collect.

− Meeting Reminder Agent alerts the user if they are
likely to miss a meeting. The system determines time
to a meeting including travel time from their current
location.

− Activity Recommendation Agent recommends
possible activities/meetings that a user might like to
attend based on their interests. For example, the user
has set his Activity Recommending Agent to inform
him when free food is available. As the user walks
through a building, the system identifies a meeting
with free food upstairs. The user is notified.

Figure 8 shows an example user interface for the Activity
Recommendation Agents. The user defines their interests
enabling the agent to recommend upcoming activities.
Interests are categorized by activity and keywords. This
interface displays upcoming recommendations or the user is
automatically notified of activities.

The focus of this work is the development of context aware
agents that function as services. This enables simpler
applications to utilize agents’ context awareness.

Figure 8— Activity Recommendation Agent user
interface example

3 EXPLORATION OF PERVASIVE COMPUTING

ENVIRONMENT

The major goal of our architecture is to enable users to
move their work seamlessly between devices. Input and
output modalities may transition between visual and
auditory user interfaces. This architecture has been
implemented to address issues with pervasive computing
and wireless infrastructures. The architecture moves the
application to a network-connected server, leaving only a
minimal interface on the client device. Any device
implementing the interface can then reattach the server
running the application. The wireless infrastructure
introduces bandwidth limitations and intermittent operation.
The architecture includes elements that preserve the flow of
data between the server and the devices. Optimizing data
for the capabilities of a device maximizes performance of
mobile devices.

3.1 Original Architecture

The original architecture describes four layers as shown in
Figure 9. The bottom of the figure has a range of mobile
and fixed devices. They are not required to be
homogeneous in hardware architecture or operating system.
The second layer contains device proxies. For every device
there is a device proxy. These represent a transcoding layer

present for each device. The third layer is the user proxy
layer. Every user has their personal user proxy.
Applications and a user’s state can be stored in this layer.
The fourth layer represents the services layer. Shared
applications, utilities and servers are implemented here. All
requests between layers are made in hypertext transfer
protocol, HTTP. Data structures such as an integer,
character and string may be sent and received in these
requests. Each request includes user identification and
device identification.

services

user proxies

device proxies

devices

Figure 9—IBM’s original architecture

IBM’s implementation of this architecture is in Java.
Devices execute the service manager. The service manager
prepares requests and interprets responses for client
applications running on the device. When sending a
request, user identification and device identification are
included in the HTTP request. The device proxies use
WEBI, an HTTP proxy developed by IBM. This proxy
intercepts user’s requests, passes them through a series of
user specified filters and forwards the transcoded requests
and responses. The user proxy receives a request, starts an
application or forwards it to a service. If the requested
service is not well known or defined in the user’s
preferences, the user proxy invokes the Service Location
Protocol to locate the requested service.

3.2 Revised Architecture

The IBM architecture allows user preferences and long-
term state to be stored in the user proxy or in a service. The
decision was made to create a unified database as a service.
A fifth layer was added to the architecture above the
services, see Figure 10. The new architecture is called
Handy Andy, from the name of the wireless network project
on the CMU campus, Handheld Andrew. All services and
user proxies are granted access to the database based on the
privileges of the user authenticated to them. This prevents
common data such as user name, address and contact
information to be duplicated across systems. Updating this
information can be done with a single application.
Conflicts pertaining to the format of stored information
became apparent, as competing applications had preferred

data sizes and types. By using an SQL database, stored
procedures could translate actual stored data into any
format requested by a service.

services

database

user proxies

device proxies

devices

Figure 10—Handy Andy architecture

Idealink is a virtual meeting space tool optimized for small
screens of portable devices. The user interface is a shared
whiteboard, which can be archived for later review. The
tools of the interface are designed to utilize a minimum of
screen area while preserving a whiteboard metaphor. The
system is implemented within a client/server architecture.
This could be accomplished with an application running on
the target devices and a server that distributes screen
updates to the clients as shown in Figure 11. The Handy
Andy architecture enables additional features and ease of
implementation within pervasive, wireless environments.
Figure 12 shows the architecture elements in use by a
typical Idealink session within the Handy Andy
architecture.

server

clients

Figure 11—Basic Idealink architecture

The Handy Andy architecture allows the system to be more
flexible. Problems inherent in wireless networks, such as
broken connections and limited bandwidth, are
automatically dealt with. Each user has one or more
devices running the Idealink user interface. The devices
may utilize color or black and white displays; their screen
sizes could range from a watch size liquid crystal display to
a wall size projected image. The device proxy instantiates
filters that scale the size of screen updates, and it adjusts the
color depth according to the device properties. The devices
do not use valuable clock cycles and battery power for these
operations. If the communications channel between the
device proxy and the device is broken, the device proxy

caches updates until the connection is reestablished. If the
user wishes to use a different device to participate in the
Idealink session, they can start the Idealink user interface
on any of their devices, and continue the meeting. The user
proxy knows what meeting is taking place by the user’s
calendar, this allows the system to automatically negotiate
who is to be included in the Idealink session. The user
proxy stores preferences, including the tool palette layout,
keystroke combinations selected by the user. The Idealink
service combines each user’s additions to the session and
distributes these updates to each client. At the end of the
meeting, the service archives the session in the database.

service

database

user proxies

device proxies

devices

Figure 12—Idealink architecture with Handy Andy

3.3 Location Sensing Service

The Location Service generates a key parameter of context
information. To determine the location of a user, their
computer measures the signal strength to all available
wireless access points. The location sensing compares
measured signal strengths to recorded training signal
strengths to determine the location of a user. For every
location, there is a unique reading of signal strengths
gathered from a group of access points. For this training,
the user’s location is manually input into the computer and
about 17 samples are taken and averaged. A table is
generated, recording what signal levels to expect at
different locations. This only has to be done once and can
be saved for use in later sessions and on other platforms.
During use, measured values are compared to those in the
table and differences are computed. The entry with the
smallest difference is taken to be the current position. [8]
This architecture is illustrated in Figure 13. The client
requesting the location of a target sends their request to a
server. The server may use a caching mechanism to answer
the request, or send the request to the target user. The
target user’s computer determines its location and sends the
results to the server. The server completes the transaction
by sending the location of the target to the client.

The method utilized to determine the location from signal
strength information is significantly more accurate than
standard GPS [8]. This accuracy is reflected in Table 1.

Server

AP

AP

AP

Client

Target

Triangulation

Request

Response

Request

Response

Figure 13—Client-side location service architecture

Accuracy Strength (dBm) Distance (feet)
68.6 % +/- 0.939 +/- 5
95.4 % +/- 1.146 +/- 10
99.9 % +/- 2.817 +/- 15

Table 1—Accuracy of location measurements

3.4 Client/Server Speech Issues

Speech-PHD requires significant computing resources for
the automatic speech recognizer (ASR) and for text-to-
speech conversion. When in development, no mobile
device had the needed computing power, memory and non-
volatile storage. CMU’s Sphinx ASR [10] and the Festival
Text-to-Speech software were used. Placing the ASR and
text-to-speech software on a server solved the resource
limitations, but introduced network latency. Latency was
measured from the end of the user’s query until the system
began its response; this is listed in Table 2. Transferring
the entire speech utterance for both the query and the
response required almost 5 seconds. By modifying Sphinx
to stream the user’s query, and marinating Festival’s
behavior of transferring the entire response utterance,
latency was reduced to 2 seconds. By modifying Festival to
also stream the speech utterances, the delay was reduced by
a total factor of 25.

Latency (sec) Transfer File
Query

Streaming Query

Transfer File
Response

5 2

Streaming
Response

- .2

Table 2—Speech-PHD network speech latency

3.5 Lessons Learned

The Handy Andy architecture provides a useful framework
to develop persistent applications. The architecture is
extremely broad in its description, allowing applications to
be implemented in a very portable manner.

A successfully implemented device proxy has the ability
maximize the usefulness of a device while offloading
expensive conversions to a network side server. Simple
applications only need to be implemented in the user proxy
or as a service.

There was a tendency to make the device proxy do more
than it was capable of. Speech and user interface
adaptation were two filters that were explored. Current
automatic speech recognizers are not accurate with
unlimited vocabularies. Most ASRs require the knowledge
of the user’s language in the form of a language model.
This would have to be provided by the application and
therefore would no longer be transparent to the application
programmer.

The database enabled data to be shared among users and
services. The interface for the data could be customized for
each service, limiting issues with proprietary application
protocol interfaces, APIs. The data inherited the security
model of the database, allowing user permissions to be
specified and enforced. While this was convenient for
programming, it introduced a single point of failure for the
system. The database limited performance and exposed all
shared data to security risks.

4 FUTURE DIRECTIONS

Proactive agents in the shown system are not able to access
system level functions such as starting new applications on
the behalf of the user. System level security must be
addressed in such a way that enables user beneficial
proactive agents while protecting the user’s system.

While context information is useful for generating more
intelligent behavior in systems, this information is a
liability for the users of the system. Location information is
a prime example. The security of this information must be
addressed at all levels of the system, including the
architecture, protocols, inferred preferences and user
specified preferences.

The location service is not optimized at this time.
Requiring the tracked client to return it’s current location
for every request uses power and compute cycles of the
limited mobile devices. Ideas for increasing the efficiency
and scalability of the location service include caching and
predicting the location of users.

5 CONCLUSIONS

In this paper we report on a novel framework for context
aware computing, and categorization of developed
applications within its spatial and temporal domains. Three
context aware applications have been developed that utilize
the services from the context aware framework. Two
different user interfaces, visual and audio, have been
implemented and contrasted for the same application. The
paper introduces a generic architecture for pervasive

computing, explores and refines its design space, and
proceeds towards specific instances and evaluation of the
architecture. A Distraction Matrix has been defined as a
metric of user’s attention resources, as pervasive computing
environment that causes minimal distraction, needs to be
context aware.

6 ACKNOWLEDGEMENTS

We would like to acknowledge the funding support of IBM
Research, National Science Foundation, and the Defense
Advanced Research Project Agency. We would also like to
acknowledge the students from the Rapid Prototyping of
Computer Systems and Mobile Computing courses for their
contributions to the project. We thank Mike Karasick for
his continuous support to the project.

7 REFERENCES

[1] Anind K. Dey, Daniel Salber and Gregory D. Abowd. In
the Proceedings of the 1st International Workshop on
Managing Interactions in Smart Environments (MANSE
'99), Dublin, Ireland, December 13-14, 1999. pp. 114-128.

[2] Anind K. Dey, Daniel Salber, Masayasu Futakawa and
Gregory D. Abowd. GVU Technical Report GIT-GVU-99-
23. Submitted to the 12th Annual ACM Symposium on
User Interface Software and Technology (UIST '99), June
1999.

[3] Kortuem, G., Segall, Z., Bauer, M. “’Intelligent’
Enviroinments.” Second IEEE International Conference on
Wearable Computing (ISWC), October 1998.

[4] Van Laerhoven, K. and Cakmakci, O. "What shall we
teach our pants?" In Proc. of the fourth International
Symposium on Wearable Computers, ISWC 2000, Atlanta,
ISBN 0-7695-0795-0; IEEE Press, pp.77-83.

[5] Mann, Steve, “Humanistic Intelligence: ‘WearComp’ as
a new framework and application for intelligent signal
processing.” Proceedings of the IEEE, Vol. 86, No. 11,
November, 1998, pp 2123-2151.

[6] Mann, Steve. Humanistic Intelligence. Proceedings of
Ars Electronica, Sep 8-13 1997. Invited plenary lecture,
Sep. 10, http://www.wearcam.org/ars/hi.html.

[7] Smailagic, A., Siewiorek, D., “User-Centered
Interdisciplinary Design of Wearable Computers”, ACM
Mobile Computing and Communications Review, Vol.3,
No.3, 1999, pp 43-52.

[8] Small, J., Smailagic, A., Siewiorek, D.P., “Determining
User Location For Context Aware Computing Through the
Use of a Wireless LAN Infrastructure”, Submitted to ACM
Mobile Networks and Applications, 2001.

[9] Starner, Thad, Schiele, Bernt and Pentland, Alex.
"Visual Context Awareness in Wearable Computing."
Second IEEE International Conference on Wearable
Computing (ISWC), October 1998.

[10] http://www.speech.cs.cmu.edu

