
Direct Policy Search using Paired Statistical Tests

Malcolm J A Strens1 MJSTRENS@DERA.GOV.UK

Defence Evaluation & Research Agency. 1052A, A2 Building, DERA, Farnborough, Hampshire. GU14 0LX. U.K.
Andrew W Moore AWM@CS.CMU.EDU

School of Computer Sciences, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh. PA 15213.

— — — — —
1 Research performed while visiting Carnegie Mellon University.

Abstract
Direct policy search is a practical way to solve
reinforcement learning problems involving
continuous state and action spaces. The goal
becomes finding policy parameters that
maximize a noisy objective function. The
Pegasus method converts this stochastic
optimization problem into a deterministic one, by
using fixed start states and fixed random number
sequences for comparing policies (Ng & Jordan,
1999). We evaluate Pegasus, and other paired
comparison methods, using the mountain car
problem, and a difficult pursuer-evader problem.
We conclude that: (i) Paired tests can improve
performance of deterministic and stochastic
optimization procedures. (ii) Our proposed
alternatives to Pegasus can generalize better, by
using a different test statistic, or changing the
scenarios during learning. (iii) Adapting the
number of trials used for each policy comparison
yields fast and robust learning.

1. Introduction

“Reinforcement Learning” is a problem description rather
than a specific solution method (Sutton & Barto, 1998).
The problem is to optimize the performance of an agent
through trial-and-error learning of the relationship
between observed states, available actions, and delayed
rewards. This trial-and-error learning can take place in the
physical world, or utilizing a simulation of the agent and
its environment.

One way to categorize RL methods is to distinguish
between model-based and model-free methods. Model-
free (policy search and policy gradient) methods attempt
to find a good policy directly, whereas model-based
methods estimate a model of the interaction (e.g. a
Markov decision process) then compute a policy from this
model (e.g. by dynamic programming). There are also

several methods that come part way between these two
extremes. Q-Learning (Watkins, 1989) estimates state-
action values which summarize rather than estimate an
underlying model. An estimated state-action value
function can also be used to reduce variance of a
stochastic policy gradient (Sutton et al., 2000). The VAPS
method (Baird, 1999) follows policy and state-action
value gradients simultaneously. Ng, Parr and Koller
(1999) introduced another hybrid method that uses time-
slice state-occupancy distributions (model information) to
aid direct search in the space of policies.

Model-based approaches can use either a certainty-
equivalent or full Bayesian representation during model
estimation (Barto, Bradtke & Singh, 1995; Dearden,
Friedman & Andre, 1999). Intermediate to these two
extremes are Interval Estimation methods that estimate
confidence bounds on important quantities. In the
Bayesian approach, ideal exploratory behavior is difficult
to compute; some schemes use a sample from the model
distribution (Strens, 2000) or backpropagation of
uncertainty (Meuleau & Bourgine, 1999; Dearden et al.,
1999). The main drawbacks of the full Bayesian approach
are the representational problem of choosing an
appropriate model class and the computational complexity
of estimating the posterior distribution over models, then
finding good policies.

The model-free approach is rather different and calls upon
a simplicity argument: the aim of learning is to solve the
learning problem (e.g. find the best policy), irrespective
of the deep structure in the observed data (i.e. the system
model). Why should one have to understand the world in
order to exploit it? If the learning process can directly
yield a solution without performing an intermediate
system identification process, then the results can be
robust even when the underlying system is too complex to
estimate. This is the idea behind support vector machines
in supervised learning, and a justification for direct policy
search methods in reinforcement learning. There is much
current research into policy gradient methods (Baxter &
Bartlett, 1999; Sutton et al., 1999), but finding an

analytical policy gradient in our application problem
seems intractable, due to continuous, partially observable
states and actions. Therefore we concentrate on direct
search methods.

A further important consideration is that, in RL
applications, a system simulation may also be available. A
simulation might seem only to be a way to speed-up
learning, eliminating real-time constraints. But simulation
is much more important than this; a simulation provides a
working model, as a slave process to the reinforcement
learner. The learner can restart the simulation in any state,
observe its hidden state, or even control its random
number generator. This provides model-free policy search
methods with the working model that they are missing,
and provides a justification for why system identification
may not be necessary: the human designer of the
simulation has already provided an accurate system model
at an appropriate level of abstraction.

This implies that policy search methods will be successful
if they are closely integrated with the simulation. We
concentrate on one particular form of integration:
comparison of policies using identical hidden start states
and sometimes identical random number sequences. This
allows paired statistical tests to be used, making
optimization procedures both faster and more reliable.

2. Direct Policy Search

We assume that learning is organized in trials variable,
finite duration; furthermore a scalar return signal is
available from the simulation at the end of each trial. We
do not need to distinguish between the various
formulations for return (e.g. integral of discounted
reward, average reward, or total reward). The policy

()as,?p is a stochastic function parameterized by ? for
choosing action a given observed state s. In general, s, a
and ? are continuous vector-valued quantities. The value

()?V is the expected return when ?π is used to control the
simulation, given a prior distribution for starting states. In
a partially observable setting, this prior distribution is
defined over hidden states, rather than observation states.
The RL problem is to find *? that maximizes ()?V .

Let random variable θF denote the return from a
simulation trial (with start state chosen from the prior).
Policy search is a stochastic optimization problem: using
the same policy in two simulation trials can yield different
returns. The difference is attributable to stochasticity in
the environment, or different starting states. Let { if } be
the returns from N simulation trials (a sample of size N
from θF). The value of a policy is the limit of the
empirical average return as N approaches infinity:

() [] ∑
=

∞→==
N

i
iN f

N
FEV

1

1
limθθ

2.1 Estimating the Value of a Pol icy

Limits on computation time require a finite N to be used
in computing the sum, hence we obtain inaccurate or
noisy estimates of ()?V . Choosing larger values of N
implies that a smaller number of policies can be examined
in a given total simulation time. The practical goal is an
optimization method that will, with high probability, find
a value of ? such that ()*?V - ()?V is small, given the
availability of a fixed number of simulation runs. The
simplest approach would be to choose very large N so that
a deterministic function optimization method can be
applied reliably. Another possibility is direct application
of a stochastic optimization method, modeling inaccuracy
in the sum as noise. Both of these naïve approaches will
be shown to be an inefficient use of simulation trials.

2.2 Paired Comparison of Policie s

Paired statistical tests are means for making a comparison
between two samples (from the same or different
populations), when there is some direct relationship
between individuals of one sample and individuals of the
other. For example, in determining whether a medical
treatment has worked, it is possible to make some
measurement (e.g. blood pressure) before and after the
treatment on the same individual. The measurements
before and after treatment are likely to be highly
correlated on an individual basis: the presence of an
increase or decrease in a measurement is more important
than its absolute value. By taking advantage of this
pairing between measurements, stronger statistical
comparison tests can be made than if the association is
ignored and only whole-group statistics are used. This
“before-and-after” comparison is not the only setting in
which paired tests are useful: whenever comparing two
samples in which a pairwise association exists, and this
association implies a correlation between measurements,
paired tests can be used.

Many optimization methods (for policy search) do not
require accurate evaluation of the objective function;
instead they require comparative information: i.e. tests of
the form “is policy A better than policy B?”. It may be
possible to make these decisions reliably with smaller N
than is needed to reliably estimate ()?V . The difference in
return from any two simulation trials has 3 causes: (i)
different policies; (ii) different start states; (iii)
stochasticity in the environment. When comparing two
policies, the effects of (ii) and (iii) might be greater than
the effect of (i), so it can take many trials to “integrate
out” these effects and obtain a true measure of the
difference. If, when comparing two policies, the same,
fixed start states are used, then the variability in the
outcome will be reduced. This is a form of pairing, and so
paired statistical tests can be applied.

Some optimization procedures (e.g. downhill simplex
method, differential evolution, and discrete grid methods)
require only comparisons between policies, and some of
these are robust even when the comparison is sometimes
wrong. We will call these methods “procedural pair-wise
comparison” to distinguish them from the optimization
methods that require the function value (e.g. quadratic
approximation methods, simulated annealing, and some
direction-set/conjugate gradient methods). Powell (1998)
describes many direct search methods.

Let the random variable x,θF denote the result of a
simulation trial with start state x. If x is drawn from the
known prior, a draw from x,θF is an unbiased estimator
for ()?V . Paired statistical tests model the difference
between two policies evaluated with the same x:

xxx ,,21 21~),(θθ FF??D − . N such differences are obtained,
each with a different x. Paired statistics can (i) indicate
whether the differences are significant at some confidence
level, or (ii) estimate the probability that () ()21 ?V?V > . This
allows the optimization procedure to take more trials until
significance is reached, or abandon a comparison when
significance cannot be achieved. We will investigate the
use of the Paired t test and the Wilcoxon non-parametric
signed rank sum test for comparing policies.

The Paired t test works with the sum of the N differences
and indicates whether the mean difference is non-zero,
assuming a Normal distribution. The Wilcoxon test uses
the ranks of the difference magnitudes to test whether the
median difference is non-zero. If the difference
distribution is symmetrical, this is equivalent to testing
whether its mean is non-zero. The actual difference
distribution for small N is often highly irregular and
unlikely to be either Normal or symmetrical, so it is not
clear which test is best. The natural choice is the Paired t
test because it uses the asymptotically correct statistic for
large N. However, the Wilcoxon test pays more attention
to small improvements across all scenarios, than to large
changes of return in any one. Hence it might be more
reliable for small N.

2.3 Pegasus

If causes of variability (ii) and (iii) (above) are eliminated
when comparing two policies, then the whole difference
in simulation return is attributable to the change in policy.
The Pegasus approach converts the stochastic
optimization problem into a deterministic one by
evaluating policies over a fixed set of start states
(scenarios) to eliminate (ii) and using fixed random
number sequences to eliminate (iii). We write yf ,, xθ for
the deterministic return of simulating policy ? from start
state x using random number seed y (for a deterministic
random number generator).

Given N start states }{ ix (sampled from the known prior)
and N unique seeds }{ iy , the return from simulation
becomes a sum of deterministic functions:

(){ }() ∑
=

=
N

i
yiiPEG iif

N
yV

1
,,

1
, xx θθ

A deterministic optimization method can then be used to
find the maximum of ()?VPEG . A perceived advantage of
the Pegasus method is that the gradient of ()?VPEG can be
computed numerically, so a wide selection of
optimization methods are available. However, in m
dimensions, computing a numerical gradient requires at
least mN function evaluations. (For our application, this
equates to 12 x 128 = 1536 simulation runs.) There is also
a risk that ()?VPEG is not smooth because a small change in
policy can affect the way the fixed sequence of random
numbers are used. ()?VPEG is likely to be much less
smooth than ()?V , because ()?V averages over all random
number sequences and starting conditions. This could
seriously affect convergence of gradient-descent methods.

The number of scenarios required for ()?VPEG to be a good
estimate for ()?V is a polynomial in horizon time, and in
various measures of the complexity of states, actions,
rewards, system dynamics, and policies (Ng & Jordan,
1999). We will assess Pegasus with numbers of scenarios
much less than that required by the bound. Paired
statistical tests can be applied to the set of differences
{ iiii yy ff ,,,, 21 xx θθ − }. This provides a search algorithm with
additional information that can be related to the true
optimization objective - maximizing ()?V , not ()?VPEG .
(The paired statistical tests infer information about the
expected return over the whole population of scenarios,
given only the returns from a sample.)

The actual values)},{(ii yx can be changed repeatedly
during the course of an optimization procedure, in order
to reduce the risk of a type of overfitting that we identify
in our experiments with Pegasus. The disadvantage is that
the objective function changes each time, affecting
convergence properties of the optimization procedure.

3. Optimization procedures

We have identified several ways to approach the policy
search: (i) stochastic optimization of ()?V ; (ii) procedural
pair-wise comparison of policies with stochastic policy
differences),(21 ??Dx ; (iii) optimizing a closely related
stationary deterministic function ()?VPEG ; (iv) procedural
pair-wise comparison of policies with a non-stationary
deterministic objective function (Pegasus with changing
scenarios). The ideas (i) through (iv) need to be combined
with an optimization procedure. We chose three different
procedures to demonstrate several ways in which paired
statistical tests can help in the search for a good policy.

3.1 Random Search

Random search is the simplest method to implement and
is used, firstly, as a control to demonstrate that each task
is non-trivial. Values for ? are chosen uniformly from a
region of interest (set to the whole parameter space in

control experiments). The corresponding policies are
compared, using a fixed number of scenarios, with the
best policy found so far, which is replaced accordingly.
We later show that random search with a dynamic region
of interest can be made into an effective policy search
algorithm by adapting N, using paired statistical tests and
asymmetric confidence intervals. The bounds of the
region of interest are shrunk towards the current best
point at regular intervals. Each dimension of the region of
interest reduces by a factor of 2 , and this happens 20
times during learning.

3.2 The Downhill Simplex Method

The downhill simplex method (DSM) is a direct search
method which “crawls” up or down a function, without
computing numerical gradients (Nelder & Mead, 1965).
The state of the algorithm is not a single point, but a
simplex of m+1 vertices in the m-dimensional search
space. New points are proposed based on geometrical
operations on the vertices of the simplex. A simplex
vertex is replaced by the new proposal based on
comparisons with the worst, second-worst or best existing
vertex. Usually the proposal is a linear combination of
one vertex with the centroid of the others, but
occasionally progress stops and all vertices are moved
towards the best. Likas & Lagaris (1999) have used a
similar algorithm for policy search.

DSM is very efficient in terms of the number of function
evaluations required and is reasonably robust to incorrect
decisions. However, it has several failings including the
risk of stagnation and the fact that it only finds a local
minimum. These risks can be reduced by improvements
such as random restarts and oriented restarts (Kelley,
1997; Wright, 1995). DSM can be implemented using
only pair-wise comparisons of policies, rather than
reference to the actual function value. With some
modification, parametric or non-parametric paired tests
can be used for these comparisons.

3.3 Differential Evolution

Differential Evolution (DE) is a method based on the
principles of genetic algorithms, but with crossover and
mutation operations that work directly on continuous-
valued vectors (Storn & Price, 1995). It has been shown
to be effective for global optimization of reasonably
complex functions. DE’s proposals are much more
random than DSM, but more sophisticated than the
random search described above. DE keeps a larger
population of points than DSM (at least 2m). At any given
time, one candidate in the population is chosen
(systematically) for improvement. A separate, random
“parent” is chosen from the population. Then the vector
difference between two more randomly chosen population
points is added to the parent (weighted by a scalar
parameter, F). Some implementations add two or more

such vector differences. Crossover takes place between
this and the candidate, to obtain a proposal point. A test is
then performed for whether this is better than the
candidate, and if so, the proposal replaces the candidate.
Crossover is implemented here by selecting each element
of the proposal vector from either the candidate or the
new vector with some pre-specified probability ρ .

DE has a very useful property; replacing any one
population member due to an occasional incorrect
comparison is not catastrophic. It may suffice that the
comparison be unbiased, and correct only slightly more
often than 50%. This means that it should be possible to
use many fewer trials (or even N=1) for each comparison,
given a reasonable population size. It is again possible to
use paired statistical tests for the individual comparisons.

4. Multi-Pursuer Evader Problem Description

We have designed an application problem in which two
pursuers must co-operate to defeat a reacting evader. This
yields a 12-dimensional policy search problem (6
dimensions for each pursuer). The evader’s policy is fixed
but stochastic. This is a highly simplified version of
guiding missile salvoes against reacting targets. Space
permits us only to give a brief description.

4.1 Simulation

Two pursuers and one highly maneuverable evader move
in a 2-dimensional plane. The pursuers start close to the
origin, always with the same initial direction of motion,
but slightly different speeds. The initial location of the
evader is chosen randomly. The pursuers move twice as
fast (on average), so they have much larger ‘turning
circles’ than the evader. At each time step (0.002 s), the
evader and pursuer positions are updated, and every 4th
time step, each chooses an action in the range [-1,1].
These actions are scaled by the maximum accelerations to
give a turning effect.

Each trial ends when 4 seconds have elapsed (failure), or
one of the pursuers has come within one “miss distance”
(2=D meters) of the evader (success). We assume that
the pursuers have perfect information about the position
of the evader and vice versa. There is a latency of 0.008
seconds in the measurement process. The goal is to find
optimal policies for the pursuers, in order to maximize
expected return. The return from a simulation trial is
given by)/(2 min DrD + where minr is the distance of the
closest pursuer from the evader at the end of the trial. The
return is in the range]1,0[.

The evader stochastically switches between 4 internal
states, based on the distance of the closest pursuer. The
pursuers are unable to observe this hidden state. The
evader continues in its initial direction of motion until the

closest pursuer is within approximately 300 meters, when
it switches to the “evade” state with a certain probability
at each time step. In the evade state, the evader turns
directly away from the closest pursuer, to maximize the
time before they meet. If the closest pursuer is within
approximately 20 meters, stochastic transitions into a
maneuver state are possible. The evader enters a circular
trajectory (maximum turning rate) to throw the pursuer
off course. Similar rules allow the evader to return to its
original course after a successful maneuver.

4.2 Pursuer Policy Parameterization

The two pursuers must co-operate to defeat the evader by
developing a strategy that “hedges” against possible
maneuvers by taking different paths. The observed state
for each pursuer is a vector of 5 measurements:

a. Relative angle of the target φ
b. A function of evader range: ()100exp ir−
c. A function of sight line rate: ()φπ &016.0tanh
d. Range rate: 500ir&
e. Relative range of pursuers () ()Drrrr ii ++−

Only (e) conveys information about one pursuer to the
other, through the mean pursuer distance r . We construct
a 6-element vector s from these measurements and a
constant (equal to 1) in the sixth element. The policy for
pursuer i is then given by ()iia s⋅= α2tanh in parameters
α , ignoring time subscripts and latency for clarity.

The policy deterministically maps the observed state
through a linear function, then a sigmoid squashing
function (tanh), to yield an action for the pursuer.
Concatenating the values of α for the two pursuers yields
a 12-element vector ? (the target for optimization). (DSM

required an intermediate linear transformation of ? to
eliminate one symmetry in the policy space.)

4.3 Example

Figure 1 shows the paths taken by pursuers and evader in
a simulation trial of a partially trained system. The
pursuers start close to the origin, whereas the evader’s
initial state is chosen randomly. The evader observes the
pursuers early in the trial and starts to fly away from
them. As the pursuers get closer, the evader then makes
two successful maneuvers, each throwing the pursuers off
course. It is eventually defeated when the evaders
approach simultaneously from very different directions.
Arrows show final velocity vectors.

There are many interesting variations on this system: the
evader can learn new behavior (a competitive game) or
the pursuers could learn one at a time (a co-operative
game). Harmon & Baird (1996) address some of these
issues, and apply residual advantage learning to a similar
pursuer-evader game. Initial learning can also be made
faster by searching only for one pursuer’s policy, giving
the other pursuer a “left-handed” version of it.

5. The Mountain Car Problem

We also tested our methods the mountain car problem
(Figure 2). The goal is to cause an under-powered car to
climb a hill. The car must gain kinetic energy by
accelerating in alternating directions, each time reaching
higher positions on the valley walls. We started with the
formulation given by Sutton & Singh (2000). The car’s
state consists of its one-dimensional position p and
velocity v. It moves under gravity and its own
acceleration ta on a hill with height)3sin(p . However,
using their formulation, a near-optimal policy was
obtained trivially, by setting 1+ta to have the same sign as

tv , maximizing the car’s energy. (The reason for this is
that when it reaches the left bound for p, velocity is reset,
so useful energy is automatically maximized.)

A more difficult control problem is obtained if we cause
the trial to end with failure at the left bound, and also give
lower return if the car reaches its goal state with excess
energy (Munos & Moore, 1999). Uniform noise was also
added to the acceleration representing the effect of wind
turbulence. Even with these changes the policy search

100m

pursuers

evader

Figure 1. Pursuer-evader simulation trial.

-1.2 0.5

a

v

goal

Figure 2. The mountain car problem.

problem was solved easily with a few Pegasus scenarios.
Therefore we also introduced hidden state, in the form of
the car’s mass M, and the steepness of the slope, S. The
dynamics are given by:

(){ }[]
[]11

1 3cos5.2]1,1[10

++

+
+=

∂−−++=
ttt

tttt

vpboundp
MtpSUavboundv

The bound operator ensures 07.007.0 ≤≤− v and
5.02.1 ≤≤− p ; }1,1{−∈ta ; 001.0=∂t . Initially 0=v , p

has]0,7.0[−U ; log M and log S are drawn from]1,1[−U .
Trials end when }5.0,2.1{−∈p or 1024=t . The return
from each trial is 0 for an immediate failure, and 1 for
stopping perfectly at the hilltop. Shaping returns are also
used1. The deterministic policy, parameterized by ? , is
given by a thresholded polynomial in p̂ and v̂ (re-scaled
versions of p and v in the range [-1,1]):

()()θ⋅= ?pvpvpvvpppsigna 3232 ˆ̂,ˆ̂,̂ˆ,̂,ˆ,ˆ,̂,1

6. Experimental Comparison

We will first evaluate whether there is a benefit to using
pairing of scenarios and/or random number seeds, and
compare the options for paired tests (Paired t or
Wilcoxon). Then we will consider how N can be adapted
during learning in random search and DSM. Finally, we
apply paired testing to speed-up DE.

6.1 Evaluation of Criteria for Comparing Policies

The aim of the first experiment is to compare the different
criteria when comparing policies with a small, fixed,
number of scenarios. This should show whether there are
any benefits in using paired testing, and which paired test
should be used. The DSM optimization procedure was
used except in the control experiments (random search).

The methods compared were (i) random search (using
Pegasus-style comparisons), (ii) Pegasus, (iii) Pegasus

— — — — —
1 Return was ()4096t for exits at the left (proportional to

trial duration); ()4
max 4991.04159.025.0 ++ p if trial duration was 1024

steps (a function of maximum position reached), and ()tv142.71−

for reaching the hilltop (dependent on terminal velocity).

modified to use the Wilcoxon statistic, (iii) fixed
scenarios, but no pairing of random number seed, and (v)
unpaired comparison (random scenario for every trial).
An independent test set was used to evaluate the policies
learnt by each of the methods. Each test example was a
Pegasus-style configuration (start state and random
number seed), and the same test set was used for all the
methods. Therefore test set performance for a given
policy was deterministic. On-line returns (during
learning) in the subsequent results will usually be lower
than test performance because they includes the cost of
exploration. For each RL method, test performance is
always measured using the best policy found so far (i.e.
currently believed best based on performance during
learning).

Table 1 shows results for the pursuer-evader problem,
expressed as a % of the return which would be achieved if
every trial led to capture of the evader2. Each is the
average of 16 runs (with standard error), and the test set
size is 1024 (minimizing test bias). Results are shown
after 2048 and 65536 trials (equivalent to 32 or 1024
policy evaluations). The best test set performance is
obtained by using the Wilcoxon test when comparing
policies. This is significantly better than the standard
Pegasus algorithm after 65536 trials. It is also apparent
that on-line performance of the standard Pegasus
algorithm can be highly misleading; on-line performance
reaches 60% but test performance never exceeds 34%.
Using the Wilcoxon test, there is much less evidence of
this type of overfitting (4%). The results for 2048 trials do
indicate that Pegasus-style pairing of random number
seeds significantly improves learning rates, but best
performance at 65536 trials was obtained if only the start
states were paired.

We also verified that overfitting in Pegasus decreases
with the number of scenarios: 34% for 16; 30% for 32;
26% for 64; 8% for 128; (not shown in table). (A simple
way to reduce overfitting is to change the Pegasus
scenarios occasionally during learning, but this can affect
convergence of the DSM.)

Table 2 shows results for the mountain car problem
(Returns are scaled by 100.0 to express as a percentage.)
Many fewer scenarios (8) and trials (about 200) were
needed to obtain good results. With this number of
scenarios, significant overfitting (11%) was again
apparent when using Pegasus. The Wilcoxon test slightly
improved test performance, but did not decrease
overfitting. The method using paired scenarios performed
best (but not significantly better than with unpaired
scenarios or modified Pegasus).

— — — — —
2 The actual achievable return is less than 100% because

some starting states provide an impossible task for the pursuer.

Table 1. Pursuer-evader results using DSM and random search.

RETURN (%) 2048 TRIALS 65536 TRIALS

N = 64 ON-LINE TEST ON-LINE TEST

RANDOM SEARCH 1.5 ± 0.2 7.2 ± 2.0 13 ± 0 28 ± 2
PEGASUS 28 ± 1 33 ± 1 60 ± 3 34 ± 2

PEGASUS (WX) 5.3 ± 0.1 34 ± 3 46 ± 2 42 ± 1
SCENARIOS (WX) 4.3 ± 0.2 17 ± 0 44 ± 1 41 ± 1

UNPAIRED 4.6 ± 0.2 20 ± 1 40 ± 2 40 ± 2

6.2 Adapting the Number of Scenarios

In the next set of experiments, we try to make better use
of computation time by adapting the number of trials used
to evaluate each policy. Ideally, we would decide how
reliable each policy comparison needs to be, and increase
N until the corresponding confidence level is reached (in
the Paired t test). Note that in the context of minimizing
expected cross-validation error this kind of adaptive
paired test has been used with success (Moore & Lee,
1994).

The random search method is very suited to this form of
adaptation because it compares new proposals with the
best point found so far; usually only a small number of
trials will be required for enough statistical significance to
reject a proposal. The confidence levels do not need to be
the same for acceptance and rejection. We required 90%
(two-tailed) significance level for rejecting a (worse)
proposal, but 99% (two-tailed) significance for accepting
a (better) proposal (subject to 1<N<256). This is highly
efficient because we know that only a very small
proportion of proposals will be accepted, so N will only
be large when the comparison is required to be very
reliable.

Figure 3 compares the adaptive method against fixed-N
(using 16 or 64 Pegasus scenarios). Although fixed N=16
may learn faster initially, the solution it finds generalizes
poorly (test set performance is 35%). Fixing N=64 learns
more slowly, but eventually obtains better test set
performance (36%). The adaptive method averaged only
N=25, but gave test set performance of 42%, so it
generalized much better than fixed N=64. With unpaired
comparisons and N=16, final test performance was only
26%. This demonstrates that paired statistical tests can be
used to convert a very simple optimization procedure into
a powerful policy search method. This adaptive random
search also found near-optimal policies for the mountain
car (82.5±0.2% after 4096 trials).

6.3 Adapting N in the Downhill Simplex Method

DSM is not suited to this type of adaptation of N using
only confidence levels, because most comparisons are
between a new proposal and the worst point in the
simplex. Many of these comparisons will not yield
statistically significant results even with very large
numbers of scenarios. However, it is still useful to change
N during learning. An upper limit on N is increased
during learning (from 16 to 128), with a confidence level
fixed at 95%. This means that we initially accept
overfitting in order to speed-up learning. At each

doubling of the limit, the DSM is restarted (at the best
policy found so far; see Figure 4). Each restart helps the
system to find a policy with better generalization
performance.

Using Pegasus-style comparisons, final test performance
was 48% (Wilcoxon) or 45% (Paired t); significantly
better than all results we obtained with fixed values of N.
Pairing only the start states (and not the random number
seeds), 50% performance was attained (both tests). This
improvement was significant for the Paired t test, but not
for the Wilcoxon test.

6.4 Differential Evolution Result s

We applied differential evolution to the pursuer-evader
problem with a population size of 32, ρ = 0.5, F = 0.2,
and using 2 vector differences in the mutation step. Using
Pegasus-style paired comparisons with N=2, convergence
was achieved. Each comparison used unique scenarios.
Test performance after 65536 trials was 47±2%. This
performance was certainly a result of using paired
comparisons; using unpaired comparisons gave 27±2%

These results are surprising, because we normally expect
genetic search methods to learn much more slowly than
direct search methods. The reason for the good
performance is that DE is able to utilize unreliable
comparisons much better than direct search methods.
Using N=2 allowed many more policies to be evaluated
than with a direct search method (for which N is much
larger). Even if a large proportion of comparison
decisions are wrong, the fitness of the population as a
whole will increase as each nearly3 unbiased comparison
is made. The “population-averaging” effect of genetic
methods is not only helping to search a large space of
solutions, but also to account for bias in the returns
obtained during Pegasus-style policy comparisons.
Therefore stochastic search methods can use Pegasus-

— — — — —
3 As N becomes small, DE will prefer policy A to policy B

if the return of A is larger in the majority of scenarios. This does
not necessarily mean A has higher expected return.

Table 2. Mountain car results (DSM and random search).

RETURN (%) 4096 TRIALS

N = 8 ON-LINE TEST

RANDOM SEARCH 38.8 ± 1.4 35.5 ± 4.8
PEGASUS 90.3 ± 1.7 79.5 ± 0.9

PEGASUS (WILCOXON) 92.2 ± 0.9 81.0 ± 0.8
SCENARIOS (WILCOXON) 83.9 ± 0.4 82.2 ± 0.4

UNPAIRED 80.7 ± 0.7 81.8 ± 0.6

Error! Not a valid link.

Figure 3. Adapting N in random search (pursuer-evader).

0

0.1

0.2

0.3

0.4

0.5

0.6

0 8192 16384 24576 32768 40960 49152 57344 65536
Trials

P
er

fo
rm

an
ce

Training
Test
Restarts

Figure 4. DSM with increasing N (pursuer-evader).

style comparisons with small numbers of trials per policy
very effectively.

DE was less reliable on the mountain car problem (with
4096 trials). In a typical configuration, it yielded 73% test
performance (standard error 3%). However in 7 of the 16
runs it found near-optimal policies (average 81.8%).

7. Conclusions

Best overall performance on our pursuer-evader
application (50% average; 68% maximum) was obtained
using DSM, with paired start states, Wilcoxon
comparisons and adaptive N. DE with N=2 also
performed very well. The mountain car problem was
solved easily by most methods.

We have shown that paired statistical tests provide a
significant advantage over naïve comparison of policies.
Although Pegasus is based on pairing of both start states
and random number seeds, it was usually better to pair
only the start states, unless other measures were taken to
prevent overfitting. The Wilcoxon signed rank sum test
often outperformed the comparison of average returns
(i.e. the Paired t test statistic) used by Pegasus. The
improvement was attributable to a reduction in
overfitting.

By fixing the confidence interval used in the paired
statistical tests, we also showed that the number of trials
for each policy could be adapted to speed-up learning (for
random search and DSM). The appropriate confidence
interval depends on the nature of the search algorithm.

Most importantly, we showed that paired statistical tests
were very effective at improving the performance of
stochastic optimization methods such as random search
and DE. Random search can use asymmetric confidence
intervals to obtain an appropriate number of trials for each
proposed policy automatically. In differential evolution,
the number of scenarios can be very small (if each
comparison is made using different scenarios) because
the DE population has a powerful averaging effect. This
leads us to believe that stochastic optimization methods
(but not necessarily differential evolution), combined with
paired statistical tests, will be a powerful tool for policy
search in many more than 12 dimensions.

Acknowledgements

This research was funded by UK Ministry of Defence
(Corporate Research Technology Group 3).

References

Baird, L. C. (1999). Reinforcement learning through
gradient descent. Doctoral Dissertation, Carnegie
Mellon University, Pittsburgh.

Barto, A. G.; Bradtke, S. J., & Singh, S. P. (1995).
Learning to act using real-time dynamic programming.
Artificial Intelligence 72, 81-138.

Baxter, J., & Bartlett P. L. (1999). Direct gradient-based
reinforcement learning: I. Gradient estimation
algorithms (Technical report.) Research School of
Information Sciences and Engineering, Australian
National University.

Dearden, R., Friedman, N., & Andre D. (1999). Model
based Bayesian exploration. Proceedings of Fifteenth
Conference on Uncertainty in Artificial Intelligence.
San Francisco: Morgan Kaufmann.

Harmon, M. E., & Baird III, L. C. (1996). Multi-player
residual advantage learning with general function
approximation (Technical Report WL-TR-1065).
Wright Laboratory, Ohio.

Kelley, C. T. (1997). Detection and remediation of
stagnation in the Nelder-Mead algorithm using a
sufficient decrease condition (Technical Report CRSC-
TR97-2). North Carolina State University.

Likas, A., & Lagaris, I. E. (1999). Training reinforcement
neurocontrollers using the polytope algorithm. Neural
Processing Letters, 9, vol. 9:2, 119-127.

Meuleau, N., & Bourgine, P. (1999). Exploration of
multi-state environments: local measures and back-
propagation of uncertainty. Proceedings of the Twelfth
International Conference on Machine Learning. San
Francisco: Morgan Kaufmann.

Munos R., & Moore, A. W. (1999). Variable resolution
discretization for high-accuracy solutions of optimal
control problems. Proceedings of the Sixteenth
International Joint Conference on Artificial
Intelligence. San Francisco: Morgan Kaufmann.

Nelder J. A., & Mead R. (1965). A simplex method for
function minimization. Journal of Computing, 7, 308-
313.

Ng A., & Jordan M. (2000). PEGASUS: A policy search
method for large MDPs and POMDPs. Proceedings of
the Sixteenth Conference on Uncertainty in Artificial
Intelligence.

Ng A., Parr R., & Koller D. (1999). Policy search via
density estimation. Advances in Neural Information
Processing Systems 11 (Proceedings of the 1998
Conference). MIT Press.

Powell, M. J. D. (1998). Direct search algorithms for
optimization calculations. Acta Numerica, 7, 287-336.

Storn, R., & Price, K. (1995). Differential evolution - a
simple and efficient adaptive scheme for global
optimization over continuous spaces (Technical Report
TR-95-012), International Computer Science Institute,
Berkeley, California.

Strens, M. J. A. (2000). A Bayesian framework for
reinforcement learning. Proceedings of the Sixteenth
International Conference on Machine Learning. San
Francisco: Morgan Kaufmann.

Sutton, R. S., & Barto, S. (1998). Reinforcement learning.
Cambridge, MA: MIT Press.

Sutton, R. S., McAllester, D., Singh, S., Mansour, Y.
(2000). Policy gradient methods for reinforcement
learning with function approximation. Advances in
Neural Information Processing Systems 12
(Proceedings of the 1999 Conference), 1057-1063. MIT
Press.

Watkins, C. J. C. H. (1989). Learning from delayed
rewards. Doctoral Dissertation, Department of
Psychology, Cambridge University, U.K.

Wright, M. H. (1995) Direct search methods: once
scorned, now respectable. In D. Griffiths & G. Watson
(Ed.), Numerical Analysis, Pitman Research Notes in
Mathematics. London: Addison Wesley Longman.

