
 Chapter 1

OWL-S AND AGENT-BASED SYSTEMS

David Martin, Mark Burstein, Sheila McIlraith, Massimo Paolucci,
Katia Sycara
Members of the OWL-S Coalition

Abstract: Over the last decade, research in agent-based systems (ABS) has spawned a
multi-faceted field, addressing a broad range of challenges and generating a
varied array of technical approaches. Web service technologies, in contrast,
KDYH�DULVHQ�LQ�D�PRUH�LQFUHPHQWDO�IDVKLRQ��ZLWK�PRUH�PRGHVW�DLPV� �DOWKRXJK�
the vision statements associated with Web services sometimes overlap
significantly with those of ABS. Work on Semantic Web services aims to
provide richer specifications of services, so as to enable fuller, more flexible
automation of service provision and use, support the construction of more
powerful tools and methodologies, and promote the use of semantically well-
founded reasoning about services. This chapter provides an overview of OWL-
S, a Semantic Web services ontology, and discusses its connections with work
on agent-based systems. We argue that OWL-S takes some significant,
although limited, steps towards a foundation for the deployment of agent
technologies on the Web.

1. INTRODUCTION

Over the last decade, research in agent-based systems (ABS) has spawned a
multi-faceted field, addressing a broad range of challenges and generating a
varied array of technical approaches. ABS research topics may be divided,
roughly, into those having to do with individual agents, and those having to
do with multiagent systems (MAS). The agenda of ABS has been ambitious
and, in many respects, visionary. ABS researchers have sought to endow
individual agents with characteristics such as autonomy, proactivity, and
cooperativeness. In the area of MAS, the focal areas have included agent
communication languages, extended conversations between agents, shared
knowledge, shared activities, interoperation frameworks, and various kinds
of middle-agents. (Excellent overviews and reference lists for ABS can be

2 Chapter 1

found at http://agents.umbc.edu/introduction and
http://www.aaai.org/AITopics/html/agents.html.)

In pursuing this agenda, most ABS approaches have emphasized various
forms of reasoning employing rich representations of knowledge — about

agent capabilities, tasks, beliefs, commitments, communications, and so

forth. In this sense, ABS have always relied on “semantically rich”

representations and techniques.

Web service (WS) technologies, in contrast, have arisen in a more

LQFUHPHQWDO� IDVKLRQ�� ZLWK� PRUH� PRGHVW� DLPV� � DOWKRXJK� WKH� YLVLRQ�
statements associated with Web services sometimes overlap significantly

with those of ABS. Web Services Description Language (WSDL) [11], in

essence, allows for the specification of the syntax of the input and output

messages of a basic service, as well as other details needed for the

invocation of the service. WSDL does not, however, support the

specification of workflows composed of basic services. In this area, the

Business Process Execution Language for Web Services (BPEL4WS) [2] has

the most prominent status. With respect to registering Web services for

purposes of advertising and discovery, Universal Description, Discovery and

Integration (UDDI) [42] has received the most attention to date.

At the same time, recognition is growing of the need for richer semantic

specifications of Web services, so as to enable fuller, more flexible

automation of service provision and use, support the construction of more

powerful tools and methodologies, and promote the use of semantically well-

founded reasoning about services. Because a rich representation language

permits a more comprehensive specification of so many different aspects of

services, it can provide a better foundation for a broad range of activities

across the service lifecycle. For example, richer semantics can support

greater automation of service selection and invocation (thus reducing the

burden on service developers), automated translation of message content

between heterogeneous interoperating services, automated or semi-

automated approaches to service composition, and more comprehensive

approaches to service monitoring and recovery from failure. Further down

the road, richer semantics can help to provide fuller automation of such

activities as verification, simulation, configuration, supply chain

management, contracting, and negotiation of services.

To meet this need, researchers have been developing languages,

architectures and related approaches; the resulting body of work goes under

the heading of Semantic Web services (SWS) [29]. In particular, the authors

of this chapter, members of the OWL-S Coalition, are involved in the

development of the Ontology Web Language for Services (OWL-S) [34],

which seeks to provide the building blocks for encoding rich semantic

service descriptions, in a way that builds naturally upon OWL [27], the

1. OWL-S and Agent-Based Systems 3

Semantic Web [3] language undergoing standardization at the World Wide
Web Consortium (W3C).

We note that several of our references here, and in several other chapters
in this book, refer to DAML-S, (DARPA Agent Markup Language for
Services) the name by which earlier versions of OWL-S were known. As of
version 1.0 (which has been released a short while prior to this writing), the
name was changed to OWL-S, so as to reflect the change in the underlying
formalism, from DAML+OIL to OWL. (DAML+OIL — DARPA Agent

Markup Language + Ontology Inference Language — was the predecessor

of OWL.)

1.1 Relating Agents and Services

How can one begin to characterize the relationship between agents and

Web services?

The vision of ABS encompasses a broad scope of challenges and

approaches to distributed task handling by relatively autonomous

components. The approach taken by commercial Web services, in contrast,

is necessarily more incremental, as it is tied to near-term products and goals.

The ambitions of work on Semantic Web services lies somewhere in

between.

ABS technology arose largely independently of the World Wide Web.

From a historical perspective, one may view the work on Web services and

(to a greater degree) Semantic Web services as efforts to bring aspects of

agent-based approaches onto the Web (although the work has generally not

been done with this as an explicitly stated goal). Generally speaking, this

has been accomplished in relatively modest ways to date. In this chapter we

discuss some of the ways in which this has been accomplished.
From an architectural perspective, one can identify three possible views

of the relationship between agents and services:

(1) Agents use services. In this view, there is no attempt to envision Web

services as belonging to the realm of agents. Individual services can remain

relatively simple — providers of discrete capabilities accessed via fixed

message exchange patterns, exempt from exhibiting proactivity, autonomy,

or other more sophisticated attributes of agents. Indeed, in this view, some of

the hardest challenges associated with Web services, such as automated

general service composition, could ultimately be relegated to the realm of

agents, and left out of the scope of Web service standards. In general, this

view creates no requirements for service infrastructure to support services

that take on the more sophisticated attributes of agenthood.

(2) Services are agents, although currently of a limited kind. In this

view, which is the most ambitious regarding the future of Web service

4 Chapter 1

technology, individual services will ultimately be free to display the
autonomy, proactivity, persistence, etc. that define the notion of software
agenthood, and collections of services will interact with the flexible
collaboration that defines the essence of MAS. Currently, however, it may
be seen that most work on services falls short of this vision. In particular,
individual services are for the most part conceived as reactive, short-lived,
and intended to engage only two parties in a provider/requester style of use.
Although some work (both in WS and in SWS) is aiming to break out of
these limitations, it is clear that there’s a long ways to go yet.

 (3) Agents are composed of, deployed as, and dynamically extended by
services. This view, which holds that agents are built up from Web services
as building blocks [8], can be viewed as a middle ground between (1) and
(2). It allows for a notion of service that’s more limited than that of (2), but

which exists within a more extensive conceptual framework than is required

for (1). This perspective draws on work on that combines behavior-based

robotics and reactive planning (e.g., Behavior-Oriented Design [7]), and is

particularly well-suited to scenarios in which services embody devices that

may be viewed as sensors or effectors of the world.

We note that there may well be other views of the agent/service

relationship, and it isn't entirely clear which of these three has the greatest

applicability; we expect that future developments will make this clear.

In this chapter we have two primary aims: to provide an overview of

OWL-S, and to show some of its more significant connections with work on

software agents and multiagent systems. Although there is clearly no cut-

and-dried characterization of these connections, nevertheless it is useful to

trace some of the central similarities, differences, and lines of evolution. We

emphasize that this is not meant to be a comprehensive survey: ABS is an

enormous field, and we can only hope to touch on a small selection of the

relevant work. As a unifying theme, we argue that OWL-S takes some

essential, although limited, steps towards a foundation for the deployment of

agent technologies on the Web.

In the next four sections, we briefly present OWL-S, beginning with an

overview, and turning then to its profile, process, and grounding ontologies.

Following that, we discuss its relationship to work on ABS, organized under

the topics of discovery (including capabilities declarations, advertising, and

matchmaking), agent communication languages (including conversational

protocols); and service composition.

1. OWL-S and Agent-Based Systems 5

2. OVERVIEW OF OWL-S

OWL-S is an OWL ontology that may be used to specify semantically
rich characterizations of services on the Web. OWL-S is organized into four
parts. The profile describes capabilities and discriminating features of Web
services for purposes of advertising and matchmaking. The process model
provides a description of the structure of activities involved in providing the
service, from which service requesters can derive information about service
invocation and interaction patterns. The grounding is a description of how
abstract information exchanges described in the process model are mapped
onto actual concrete messages that flow between the provider and the
requester. Finally, the service itself provides a means of bundling together
instances of the top-level profile, process, and grounding classes that are
meant to be used together. (Because the service concept introduces no new
details apart from the bundling of these other elements, we do not give it a
separate section in the organization of this chapter.)

OWL-S complements industry efforts such as SOAP, WSDL and
BPEL4WS. It builds upon these efforts by adding rich typing and class
information that can be used to describe and constrain the range of Web
service capabilities more effectively than can be done with XML data types.
Further, in the process model, it captures not only the control flow and data
flow of Web services, but also their prerequisites and side effects
(preconditions and effects) in the world. OWL-S’ basis in OWL enables the

grouping of like services and like data types into taxonomic hierarchies,

together with definitions of the relationships and constraints between classes

and their instances. The well-defined semantics enables formal automated

manipulation of these structures, with known outcomes, thus providing a

foundation for automation of a variety of Web service operations, such as

discovery, matchmaking, interoperation, composition, enactment,

monitoring, and recovery.

3. DESCRIBING CAPABILITIES WITH OWL-S

The representation of capabilities is supported by the profile module of

OWL-S, which provides a high-level view emphasizing the functionality of

the service; in other words, what the service does, rather than how it

accomplishes its tasks. (The latter information, as discussed in Section 4, is

provided by the OWL-S process model). Capabilities descriptions can have

widely varying aspects. Capabilities may be described in terms of service

categories, such as stock brokering, or functional transformations, such as

the transformation from a ticker symbol to the related stock quote.

6 Chapter 1

Furthermore, a particular type of service may have many aspects. For
instance, two services may act as stock brokers, but the way they perform
their task may be very different in terms of delay on the market, precision of
the report, cost and so on. The OWL-S profile provides a language to
express the different aspects of service capabilities. Specifically, OWL-S
profiles support three kinds of descriptions of capabilities: a hierarchical
classification, a functional description, and a set of non-functional
parameters that can be used to specify features of the service that are not
captured by the other two descriptions. In the rest of this section we discuss
these three descriptions in more detail.

The hierarchical classification of a capability exploits the fact that any
service profile is a concept expressed in OWL. It is therefore possible to
construct ontologies of profiles that group together the common features of
services performing similar functions. For example, as shown in Figure 1, it
is possible to define the class FeeBasedService having properties needed to
characterize the manner in which payment is made for the service (e.g.
property paymentMethodAccepted). This class, in turn, could have
PhysicalProductRetail as one of its subclasses, with properties that are
characteristic of online retail sources, such as product and deliveryRegion.
Consistent with the semantics of OWL (and with object-oriented practice in
general), each subclass will declare properties that are appropriate to its level
of specificity in the class hierarchy. The use of hierarchies of profiles allows
service providers to specify precisely and economically what kinds of
capabilities they provide, and allows service requesters to use the same
framework to precisely specify what kinds of capabilities they seek.

The functional view of the capabilities of a service describes the
information transformation as well as state transformation performed by that
service. At the information level, the service requires a set of inputs and
produces a set of outputs; at the state description level, a service requires a
set of preconditions to be satisfied and produces a set of effects. The
functional description of the profile captures essentially the same
information about inputs, outputs, preconditions, and effects (IOPEs), or a
subset of the information, as the process model, as discussed in Section 4
below.

The last aspect of capability representations in OWL-S is provided by
non-functional properties that are used to specify additional information
about the Web service, such as security restrictions and quality of service
information. The use of non-functional properties essentially recognizes that
while two services may provide the same capability, in the sense that they
compute the same function, the way they achieve this result may be very
different and the resulting services may be qualitatively very different. For

1. OWL-S and Agent-Based Systems 7

example, two services may provide tax advice, but one may be specialized
on the US tax code, while the other may be specialized on the Italian tax
code. The two services compute the same function, namely tax advice, but
they are not the replacement of one another.

4. DESCRIBING ACTIVITIES WITH OWL-S

The OWL-S process model describes how the service works. For a one-
step (atomic) service, it gives the complete information (about inputs and
outputs) that’s needed to interact with the service. For a multi-step

(composite) service, it describes the control flow and data flow of the

program that enacts the service. The process model has been designed for

use by service requesters in connection with service selection, invocation,

interoperation, composition, and monitoring, and by service tools for service

simulation and verification. The OWL-S process model includes a number

of elements that are typical of workflow languages, combining a process

modeling language with both an AI-inspired action language and a language

<owl:Class rdf:ID="FeeBasedService">
 <rdfs:subClassOf rdf:resource="&profile;#Profile" />
</owl:Class>
<owl:ObjectProperty rdf:ID="paymentMethodAccepted">
 <rdfs:domain rdf:resource="#FeeBasedService"/>
 <rdfs:range rdf:resource="&business;#PaymentMethod"/>
</owl:ObjectProperty>

<owl:Class rdf:ID="PhysicalProductRetail">
 <rdfs:subClassOf rdf:resource="#FeeBasedService"/>
</owl:Class>

<owl:ObjectProperty rdf:ID="product">
 <rdfs:domain rdf:resource="#PhysicalProductRetail"/>
 <rdfs:range rdf:resource="&unspsc;#Product"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="deliveryRegion">
 <rdfs:domain rdf:resource="#PhysicalProductRetail"/>
 <rdfs:range rdf:resource="&geography;#Region"/>
</owl:ObjectProperty>

<PhysicalProductRetail rdf:ID="Books4Sale">
 <paymentMethodAccepted rdf:resource="&business;#Mastercard"/>
 <paymentMethodAccepted rdf:resource="&business;#Visa"/>
 <paymentMethodAccepted rdf:resource="&business;#MoneyOrder"/>
 <product rdf:resource="&unspsc;#Books"/>
 <deliveryRegion rdf:resource="&geography;#NorthAmerica"/>
</PhysicalProductRetail>

Figure 1: Simple profile hierarchy and instance representing an online bookseller.

8 Chapter 1

for describing classes and their inter-relationships. Further, the process
model has a well-defined semantics.

Central to an OWL-S process model, as with the profile, is the
specification of a service’s inputs, outputs, preconditions, and effects
(IOPEs). Process inputs and outputs are named and typed using either
OWL classes or data types provided by XML Schema. Preconditions, of
which there may be any number, must all hold in order for the process to be
invoked, and effects indicate what is accomplished by the service, or more
generally, changes in the world brought about by the service. Conditions
can be associated with outputs and effects, since the outputs and effects of a
service are often predicated on some internal state of the system.

Inputs, outputs, preconditions, and effects specified in a process model
are complete, whereas in a profile they may be partial (that is, a selected
subset that is most useful for purposes of advertising and discovery).

OWL-S’ process ontology is subdivided into three process types: atomic,
simple, and composite processes.

Atomic processes are the units of invocation; that is, an atomic process,
somewhat similarly to a programming language procedure, can be called by
transmitting an invocation message (which carries its inputs) to the process,
and its results returned in a response message. Thus, an atomic process
executes in a single, non-interruptible step. The essence of an atomic process

<process:AtomicProcess rdf:ID="LookupBook">
 <process:hasInput>
 <process:Input rdf:ID="InTitle">
 <process:parameterType rdf:resource="dc:Title"/>

 </process:Input>
 </process:hasInput>
 <process:hasOutput>
 <process:UnconditionalOutput
 rdf:ID="OutISBN">
 <process:parameterType rdf:resource="dc:Identifier"/>

 </process:UnconditionalOutput >
 <process:hasOutput>
</process:AtomicProcess>

<process:AtomicProcess rdf:ID="BuyBook">
 <process:hasInput>
 <process:Input rdf:ID="InISBN">
 <process:parameterType rdf:resource="dc:Identifier"/>

 </process:Input>
 </process:hasInput>
 <process:hasOutput>
 <process:UnconditionalOutput
 rdf:ID="OutReceipt">
 <process:parameterType rdf:resource="business:E-receipt"/>

 </process:UnconditionalOutput>
 <process:hasOutput>
</process:AtomicProcess>

Figure 2: Partial functional description of two (simplified) atomic processes

1. OWL-S and Agent-Based Systems 9

is in its IOPEs; thus, it provides the same kind of functional description as
the service’s profile.

Figure 2 shows two simple partial examples of atomic processes, each

with a single input and a single output. LookupBook takes a book title as

input. The type of the input named InTitle is dc:Title, and the type of

the output named OutISBN is dc:Identifier, both types from the

Dublin Core ontology [17]. The returned value is an encoding of the

International Standard Book Number (ISBN) for the book with the given

title. Similarly, BuyBook takes an input of type dc:Identifier, and

returns an output named OutReceipt, representing the purchase of the

book.

In these examples, for lack of space, we omit a number of details, such as

the payment and shipping information that would be needed to complete

such a transaction, handling of unsuccessful outcomes (e.g., title unknown or

out-of-stock), and preconditions and effects. A typical precondition for such

a service might say, “The buyer must have a current account”, and a typical

<process: CompositeProcess rdf:ID="FindAndBuyBook">
...

 <process:Sequence>
 <process:components rdf:parseType="Collection">
 <process:Perform rdf:ID="FindBook1”>
 <process:process rdf:resource=”#LookupBook”>
 <process:hasBinding>

 <process:theParam rdf:resource=”#InTitle”>
 <process:valueForm rdf:parsetype=”Literal”>

 <valueOf>

 <theVar rdf:resource=”#InTitle”>
 <fromProcess rdf:resource=”#FindAndBuyBook”>
 </valueOf>

 </process:valueForm>

 </process:hasBinding>

 </process:Perform>

 <process:Perform rdf:ID="BuyBook1"/>
 <process:hasBinding>

 <process:Binding>

 <process:theParam rdf:resource=”#InISBN”>
 <process:valueForm rdf:parsetype=”#Literal”>

 <valueOf>

 <theVar rdf:resource=”#OutISBN”>
 <fromProcess rdf:resource=”#LookupBook”>
 </valueOf>

 </process:valueForm>

 </process:Binding>

 </process:hasBinding>

 </process:Perform>

 </process:components>

 </process:Sequence>

 ...

</process:CompositeProcess>

Figure 3: Elements of a composite process.

10 Chapter 1

effect might say, “The buyer’s credit card is charged for the price of the

book”. Outputs and effects may have conditions associated with them. For

example, the output(s) and effect(s) for the condition “book-in-stock” could

be described distinctly from those for the condition “book-out-of-stock”.

Simple processes are like atomic processes in that they are conceived of

as having single-step executions. Unlike atomic processes, however, they

are not directly invocable and are not associated with a grounding. Simple

processes provide a means of abstraction; that is, they can provide abstract

views of atomic or composite processes.

Composite processes are constructed from subprocesses, which in turn

can be either atomic, simple, or composite. Control constructs such as

Sequence and If-Then-Else are used to specify the structure of a composite

process. In addition to describing control flow, this structural specification

also includes argument binding constructs for indicating the data flow.

Figure 3 shows a fragment of a composite process, which expresses that

the composite consists of sequentially invoking (“performing”) the atomic

process LookupBook, and then invoking the atomic process BuyBook. The

binding within the second Perform construct indicates that the output from

LookupBook flows into the input of BuyBook. A composite process like

this is enacted by the service client, with the execution of LookupBook and

BuyBook handled by the service provider.

5. DECLARING INVOCATION DETAILS
WITH OWL-S

The OWL-S grounding tells how the service is used; that is, it specifies

the details of how a computer program or agent can access a service.

Typically, a grounding will specify some well known communications

protocol, service-specific details such as port numbers used in contacting the

service, and an unambiguous means of exchanging data elements of the

types required and produced by the service [22].

The default grounding approach provided by OWL-S relies on

specification mechanisms already provided by WSDL, while at the same

time exploiting the richer descriptions available through the use of the OWL

language [10]. In essence, it establishes a correspondence between each

atomic process and a WSDL operation, and between each atomic process

parameter and a WSDL message part.

In summary, an OWL-S service is described by the three types of

information presented above: one or more profiles tell what the service does

(in support of advertising, discovery, matchmaking, and so forth), a single

process model tells how the service works (in support of service invocation,

1. OWL-S and Agent-Based Systems 11

interoperation, composition, and related activities), and one or more
groundings tell how to access the service (in terms of message formats and
other communications details). Whereas the grounding is concerned with
the concrete details of message syntax and transport, the profiles and process
model are more abstract specifications that can be used to support
classification, planning, and other forms of reasoning about services, thus
enabling fuller automation of service-related activities.

6. OWL-S AND DISCOVERY

Autonomous agents and Semantic Web services can be used to realize a
distributed computation scheme in which problems are solved through
interaction with other agents or Web services. Such a distributed scheme
requires agents and Web services to discover partners that can contribute to
the collaborative effort. The problem of discovering partners is essentially
equivalent for agents and Semantic Web services1: given a goal, the
discovery process should automatically locate those agents2 that can achieve
that goal.

The process of discovery can be roughly divided into three stages: first,
agents advertise their capabilities with a registry3 such as UDDI. Second, an
agent in need of a service requests, from the registry, references to providers
of the capabilities needed by the agent. Third, the registry reports back to
the requester one or more references to providers whose advertisements
match the request.

The success of the discovery process hinges on two requirements. First,
a language is needed that allows service-providing agents to effectively
describe their capabilities for purposes of advertising them to the broader
community. This same language should also allow service-seeking agents to
formulate requests for the capabilities they need from service-providers.
Second, an advertisement/request matching technology is needed that detects
when the requested service is equivalent to the advertised service, even if the
two descriptions are superficially very different.

As described in Section 3 above, OWL-S directly addresses the first
requirement of discovery by providing OWL concepts for the description of

1 The stress on Semantic Web services here is justified by the fact that, in the most

conservative view, commercial Web services standards are meant to help programmers,
rather than programs, to discover and “glue” multiple agents together.

2 Since discovery and its requirements are equivalent for Web services and agents, in this

section we do not make any distinction between agents and Web services, and we refer to

both as agents.
3 In our discussion we describe the most common discovery mechanism used by Web

services. Depending on the overall system architecture other discovery mechanisms are

possible.

12 Chapter 1

what agents do and the tasks that they accomplish. In the following section
we show how OWL-S can be used to address the second requirement by
defining algorithms that exploit the logical relations between the
advertisements and the requests, abstracting away from superficial syntactic
differences. We will then explore the relation between the view of discovery
proposed by OWL-S and the views that have arisen from the fields of agent-
based systems and Web services.

6.1 Matching Capabilities

The discovery process performs the matching of requests and
advertisements to identify the agents that can perform a desired task. The
problem of capability matching is that it is unrealistic to expect that the
advertisement and the request describe exactly the same capability. Rather,
the challenge of the matching process is to abstract away from the syntactic
differences between the advertisements so as to extract the semantic
similarities between the advertisement and the request, and verify whether
the advertised capability is close enough to the capability requested.

To address this challenge, OWL-S based matching algorithms exploit the
semantics of the representation of the advertisements and requests;
furthermore, they provide a flexible matching mechanism that recognizes the
degree of matching between the advertisement and the request. Exploiting
the semantics of descriptions and defining a flexible matching are closely
related issues. Indeed by analyzing the semantic relation between the
advertisement and the request it is possible to derive a scoring function
between the two concepts.

A number of capability matching algorithms have been proposed for
OWL-S, which use different types of information provided by the service
profile and the available ontologies to match between service requests and
advertisements. Some matching algorithms, such as [9] and [18] rely on the
subsumption computation provided by OWL inference engines to infer the
relation between the advertisement and the request. These matching
algorithms rely on the ability to construct taxonomies of service profiles that
correspond to the different types of services that are present. Other matching
algorithms, such as in [5], [14], and [37], assume that matches are
determined exclusively by the relations between inputs and outputs in the
advertisement and in the request. Essentially, these matching algorithms
perform two matches, one comparing outputs and one comparing inputs. If
the output required by the requester is of a kind covered (subsumed) by the
advertisement, then the inputs are checked. If the inputs specified in the
request are then subsumed by the input types acceptable to the service, then
the service is a candidate to accomplish the requester’s requirement.

1. OWL-S and Agent-Based Systems 13

Despite the different attempts to provide a matching algorithm for agent
capabilities, many challenges are still open. First, the two methods of
matching capabilities are not guaranteed to converge to the same set of
agents. This is partly because the functional and taxonomical
representations convey capability information in very different ways that
may not lead to compatible representations for the same capability. The
second problem is that no matching has been proposed that extends to
preconditions and effects. Finally, there is no predefined set of non-
functional parameters and by and large each type of parameter may require a
specialized matching process as shown by attempts to match on security
requirements [13].

6.2 Relation with Agent technology

The OWL-S service profile is grounded in the research on agent
discovery in open multiagent systems, and has been influenced by systems
such as LARKS [40], OAA [21] and InfoSleuth [33].

In this areas, a primary contribution of the multiagent literature has been
defining the goal of discovery in multiagent systems as the problem of
finding the agent(s) that can perform a given task. Ultimately, this problem
requires a goal directed search where the agent is located on the bases of the
tasks that it performs, or in other words its capabilities, rather than on the
bases of incidental properties such as name, port type or keywords attached
to the agent. As a consequence, research in multiagent systems provided
schemas for representation of capabilities that are reflected in OWL-S.
Specifically, LARKS and OAA provided different perspectives on the goal
directed view of the capabilities of agents, while InfoSleuth provided a way
to represent classifications of agent functionalities.

The second contribution of research in multiagent systems has been to
reveal the importance of the semantic matching of capabilities. Essentially,
they realized that capability descriptions and capability requests are
syntactically going to be very different. Therefore, any attempt to match that
does not include an abstraction to semantics is bound to fail. The key insight
provided by the multiagent community has been to claim the need for
ontologies during the matching process that would support a flexible
matching between request and advertisement with a measure of the degree of
match.

14 Chapter 1

6.3 Relation with UDDI and WS technology

UDDI is a World Wide initiative, lead by the OASIS Consortium4, to
develop a standard specification for industrial strength of registries of Web
services. UDDI allows businesses to register their presence on the Web by
specifying their points of contact both in terms of the ports used by the
service to process requests and in terms of the physical contacts with people
who can answer questions about the service. In addition, UDDI provides a
language to specify an unbounded set of features of services that can help the
process of service location and selection as well as service invocation. UDDI
enjoys the wide support of many prominent software and hardware
companies that have invested heavily in Web services. Because of this
support, UDDI is becoming the de facto standard repository of Web services.

The main limitation of UDDI is that it does not provide a capability
representation language such as the OWL-S service profile. As a
consequence, UDDI does not provide capability based search. The result is
that UDDI supports the location of information about the Web service, once
it is known which Web service to use, but it is impossible to locate a Web
service only on the basis of what problems it solves.

Figure 4. The OWL-S to UDDI mapping

4 See http://www.oasis-open.org

1. OWL-S and Agent-Based Systems 15

OWL-S and UDDI complement each other. UDDI provides an Internet-
wide distributed registry that is virtually an industry standard. On the other
side, OWL-S provides the information required for capability matching. The
OWL-S/UDDI matchmaker [38] integrates OWL-S capability matching into
the UDDI registry. This integration is based on the mapping of OWL-S
service profiles to UDDI representations shown in Figure 4.

The integrated OWL-S/UDDI registry provides all the functionalities
provided by UDDI using exactly the same API, so that any UDDI can
interact with it to retrieve information about available Web services. In
addition, OWL-S/UDDI supports capability matching by taking advantage of
OWL-S capability representation and the matching process proposed in [36].
The result is a UDDI in which it is possible to search for, and find, Web
services by their capabilities.

7. OWL-S AND AGENT COMMUNICATION
LANGUAGES

OWL-S explicitly supports the description of services as classes of
activities, so that agents can reason about the possible benefit of using them,
determine the content of the messages necessary to invoke them, and
interpret responses from them. This is substantially different than the
rationale behind agent communication languages (ACLs), such as the
Knowledge Query and Manipulation Language (KQML) or the Foundation
for Intelligent Physcal Agents (FIPA) ACL, developed during the 1990’s.

ACLs like KQML and FIPA were designed primarily to provide a

uniform syntax and semantics for messages with arbitrary content, passed

between software agent peers. They divided messages into several layers,

and provided a specific syntax and semantics only for the outer layer, which

supplied information about the message, its handlers (sender and recipient),

its context (as it might relate to a prior message or sequence) and the

language and ontologies used for the inner content layer which could be in

any format or language. The semantic content that was standardized in these

languages consisted of a set of performative types, or message types,

representing the conversational attitude of the sender toward the content. The

term performative comes from Speech Act theory. ACL performatives

include ‘request’, ‘tell’, ‘ask’, ‘accept’, ‘reject’, ‘deny’, etc.

Just as ACLs were explicitly a model for messages, providing a standard

meta- model so that they could be arranged in conversations, WSDL is a

way of representing messages in the Web services world. WSDL models

services as bundles of message patterns, grouped into simple sequence

arrangements, such as input-output pairs. In contrast, the OWL-S process

16 Chapter 1

ontology is a framework for describing more abstractly the service activities
themselves, and likely sequences of such activities. OWL-S descriptions of
the inputs and outputs of individual atomic activities characterize the
information conveyed in the underlying WSDL input and output messages.
The OWL-S grounding model translates the inputs and outputs of OWL-S
service descriptions from OWL into the XML elements of corresponding
WSDL messages. But it can just as properly be used to translate that
information into a KQML or FIPA message format for communications with
agents that provided services using an ACL message transport mechanism.
UMBC’s implementation of the Trading Agent Game [46] provides an

example of this way of using OWL-S.

OWL-S groundings used with KQML or FIPA must relate atomic

processes to ACL message patterns with specific performatives and perhaps

even specific content forms. The performatives referenced in these

messages patterns depend on the type of service provided, and the kind of

action triggered by the message. For example, an informational service

would have its inputs grounded into an ASK message, while its outputs (the

reply) could be an INFORM or TELL (depending on the ACL dialect). A

service that resulted in a purchase would have inputs grounded in a

REQUEST message pattern, while its outputs might be (conditionally) an

ACCEPT or REJECT message pattern. The content pattern of the message

would in each case have to contain information about the specific service

(such as its type), and serialized descriptions of the input or output

parameters of the service. Each reply would also be accompanied by an IN-

REPLY-TO property referencing the corresponding input message

requesting the service action.

Just as performatives are implicit in the activity model of OWL-S

processes, the information about message sequencing that is present in ACLs

is represented in OWL-S by inputs and outputs of processes, and activity

sequences, the latter modeled using the control constructs for forming OWL-

S composite processes. ACLs use the message field IN-REPLY-TO to

specify a conversational token that can be used to mark messages as

responses to specific other messages, since messages can arrive

asynchronously. OWL-S simply describes the semantics of sets of inputs and

outputs of a process, which must be translated into messages.

In summary, OWL-S abstracts away the details of the message-level

interactions of both ACLs and web service message languages like WSDL.

Instead, it focuses on characterizing the content and workflow of interactions

with services so that client systems can perform the reasoning necessary to

interoperate with them automatically.

1. OWL-S and Agent-Based Systems 17

8. OWL-S AND TASK COMPOSITION

Web service composition (WSC) is the process of selecting, combining
and executing Web services to achieve a user’s objective. “Make the travel

arrangements for my WWW2004 conference trip” or “Buy me an Apple

iPod at the best available price” are examples of user objectives that might

be addressed by such composition. Human beings perform manual WSC by

exploiting their cultural knowledge of what a Web service does (e.g., that

www.apple.com will debit your credit card and send you an iPod), as well as

information provided on the service’s Web pages, in order to execute a

collection of services to achieve some objective. To automate WSC, all this

information must be encoded explicitly in an unambiguous computer

interpretable form. None of the existing industrial standards for WS

description encode this level of detail. Further, the descriptions they provide

are not unambiguously computer interpretable and as a consequence not

reliably manipulated by an automated reasoning system; hence the need for

OWL-S.

8.1 The Need for OWL-S

Automated WSC is akin to both an AI planning problem and a software

synthesis problem, and draws heavily on both of these areas of research [28].

In order to perform automated WSC, a reasoning system must order,

combine and execute Web services that collectively achieve the user’s

objective. This involves resolving constraints between Web service inputs,

outputs, preconditions and effects (IOPEs) and (typically) the outputs and

effects (OEs) the user desires. For example, if one starts with an agent’s goal

(some desired outputs and effects), and matches it to the outputs and effects

of a Web service (modeled as a process), the result is an instantiation of the

process, plus descriptions of new goals to be satisfied based on the inputs

and preconditions of that process. The new goals (inputs and preconditions)

then naturally match other processes (outputs and effects), so that

composition arises naturally. The constraints between these inputs, outputs,

preconditions and effects dictate the composition of Web services. Two

types of composition problems can be distinguished: i) those that involve

only information-providing services, and ii) those that involve both

information-providing and world-altering services. The former requires a

rich semantic representation of inputs and outputs (IO). The latter requires a

like representation of IOPEs. Recall that the effects (E) are the side effects

of the program (e.g., that www.apple.com will debit your credit card and

send you an iPod). Web service preconditions and (conditional) effects are

not encoded in any existing industrial standard. They are encoded, in

18 Chapter 1

unambiguous computer-interpretable form in OWL-S, as described in
Section 4. Since they supplement the information contained in WSDL,
there is no grounding for these features at the WSDL level.

In addition to matching IOPEs, the automated WSC problem also can
involve selecting from among alternative Web services that match the IOPE
constraints of the composition problem. For example, there are many Web
services from which a user can buy an iPod. In order to select from among
alternative services, a composition engine also requires some form of service
selection. This is akin to the discovery problem described in Section 6, and
as argued there, requires the OWL-S representation of the properties,
capabilities and functioning of a Web service as described in Section 3.

8.2 ABS and Service Composition

ABS technology and research on reasoning about action and change have
had a significant influence on the evolution of techniques for WSC. The
views of the relationship between agents and services posited in Section 1.1
yield two different characterizations of the WSC task in the context of ABS.

If we view services as agents, then the composition problem can be
conceived as a restricted form of a MAS task composition problem or
planning problem (e.g., [6]). Each individual service is conceived as an
agent with a set of capabilities, and the composition problem requires these
services to coordinate to achieve some objective. Unfortunately, current
Web services are not capable of the level of coordination required for true
MAS task composition or planning. Most Web services are passive and
taskable, demonstrating little proactivity. Their capabilities are brittle,
limited to execution of a fixed, preconceived workflow, generally with only
two-party interaction. As such, realization of WSC by appealing to the view
of services as agents generally requires creation of a single agent to
coordinate the execution of other Web service agents, which does not exploit
the power of MAS planning or task composition. While viewing WSC as
MAS planning or task composition provides an ambitious vision for the
evolution of empowered next-generation Web services and the role they
might play in task composition, the research in MAS can only be exploited
in a limited fashion with today’s Web services.

The alternative view of agents composed of, deployed as, or dynamically

extended by services, yields a much more compelling and fruitful

characterization of the composition problem. In such a view, we conceive

Web services as rich sensors and end effectors to an agent. Information-

gathering Web services provide sensory capabilities to an agent, collecting

information about the world for the agent. World-altering Web services act

as end effectors, realizing changes in the world on behalf of the agent. In

1. OWL-S and Agent-Based Systems 19

such a view of the world, the composition task is conceived as an agent-
based planning problem. In what follows, we describe how techniques from
agent-based planning and reasoning about action and change have been
exploited to date for WSC, and the role that OWL-S plays in providing
descriptions of Web services that enable realization of this vision.

8.3 Realizing Service Composition

There are several different approaches to WSC. All characterize OWL-S
processes as actions with inputs, outputs, preconditions and effects, and use
planning technology to achieve WSC. For example, the work of [24] models
processes in the same format as a STRIPS operator [15] and plans from a
sequence of Web services to achieve the user’s goal. In principle the system

can string together a series of actions to arrive at a novel plan for dealing

with a Web service. However, the system as described is at a very early

stage of development, and fails to address such basic problems as how to

deal with unpredictable results of actions. [30] also investigates the use of

plan synthesis for WSC, though their focus is on the specific problem of

planning with existing composite Web services and the work reported is

preliminary.

In contrast to this approach to WS Composition, several other researchers

have taken the approach of using some sort of plan script or task model that

describes approximately how to achieve some objective. This high-level

plan is expanded and refined using automated reasoning machinery. The

first such system to be built was the Golog system (e.g., [28], [29]). It

models both world-altering and information-providing services as actions

with IOPEs, uses Golog procedures (modeled as OWL-S composite

processes) to represent generic procedures of approximately how-to perform

tasks, and uses interleaving online deductive synthesis and execution to

generate a sequence of Web services customized to user’s preferences and

constraints. Information gathering actions are executed as necessary, while

world-altering actions are projected or simulated in order to enable the

system to deliberate before committing to the execution of world-altering

services.

In a similar spirit, several other researchers (e.g., [39], [45]) have used

the paradigm of Hierarchical Task Network (HTN) planning (e.g., [31]) to

perform automated WS composition. In this paradigm, a planner is supplied

with a library of standard plans, each characterized by what it is supposed to

accomplish (that is, effects given preconditions). [45] uses the SHOP2

system (e.g., [31], [32]), which is a state-of-the-art HTN planner. To solve a

composition problem, SHOP2 must be given a top-level sketch of the

composed plan (encoded in OWL-S as a CompositeProcess). However,

20 Chapter 1

many of the steps in the plan are described in a high-level vocabulary
(analogous to the OWL-S control constructs) that allows multiple alternative
subplans to carry out those steps. The system searches through ways of
combining those subplans in order to arrive at an overall plan. Central to the
SHOP2 approach to planning with Web services is the exploitation of the
sharp distinction between information-providing and world-altering services
in the planning process, given that the information provided by services is
often critical to finding a plan. When mapping from a set of OWL-S service
descriptions to a SHOP2 domain, information-gathering services are
detected and encoded so as to be executed at planning time, rather than at
run time (as so-called “book-keeping” operators, or, in current work, as

SHOP2 evaluated preconditions). [28],[29],[39] also execute information-

gathering services at plan time to reduce the search space for plans and to

reduce non-determinism.

HTN planning has also been used in [39] to compose Web services in the

travel domain and in the organization of a B2B supply chain. The basic idea

explored in this work is that Web services expand their own capabilities

through collaboration. Consistently with the work presented above,

especially [24] and [45], during the planning process, outputs and

preconditions are satisfied either directly using an action that the Web

service can perform or by asking other Web services to do something that

satisfies that output or precondition. The location of the most appropriate

Web service makes an essential use of the OWL-S/UDDI Matchmaker

[37],[38] that performs a semantic capability match between a capability

description and the service profiles of the available Web services.

There are many systems that deal with the restricted problem of

composing services without consideration of preconditions and effects (PEs).

Included in these is the work of [20] that augments BPEL4WS, a popular

business-process language [2], with a composition module. When the

BPEL4WS process requires a certain input, described as an XML data type,

their system searches for a WS that can translate from available formats to

the desired format. For example, if the process declares a need for a

complex type containing a date in US format, and a known service supplies a

data type identical except that the date is in UK format, the system searches

for a translation service that can perform the desired data transformation. If

necessary, it breaks the transformation process into substeps and recursively

searches for methods to accomplish the substeps. A similar approach is

integrated with an end-user interactive composition system, STEER,

described in [23]. These approaches represent prototype solutions to an

important subtask of service composition, namely, data-transfer
interoperation. For it to work, it is necessary for process descriptions to

1. OWL-S and Agent-Based Systems 21

include rich, computer-interpretable descriptions of the inputs and outputs of
a process — the IO half of IOPEs.

8.4 The Road Ahead

While this early work is promising, we are still some distance from the

goal of automated WSC. We have argued that we need rich, representations

of Web services in a language with a well-defined semantics, to enable

automated WSC. Specifically, we require rich, declarative descriptions of

Web service IOPEs to determine a composition, and we require rich

representations of the properties, capabilities and functioning of services to

enable WS selection during the composition process. We have achieved

both these requirements in great measure with OWL-S. In contrast, current

industrial standards for WS description only describe WS inputs and outputs

and they do so in a language that is not richly expressive and is without a

well-defined semantics.

We also require rich declarative representations of composite processes

(existing compositions of Web services, such as Amazon’s workflow) so that

we can exploit them in our WS composition tasks. (Many of the existing

WS composition technologies only compose atomic processes.) We have

addressed the problem of describing composite processes in OWL-S, but we

believe the solution can be improved upon by appealing to a language that is

more expressive than OWL, leveraging emerging industrial process

modeling standards. To realize the goal of automated WS composition, we

also require further advances in automated reasoning/planning technology

for WS. A final barrier to the goal of automated WS composition is the need

for wide-spread adoption of OWL-S WS descriptions.

Despite the need for further work, the accomplishments of OWL-S and

associated composition technologies provide immediate value-added. With

existing technology we can perform automated composition of information-

gathering services. It has also been demonstrated [20] that we can augment

existing industrial WS choreography and orchestration tools with

composition technology for data-transfer interoperation and for run-time

binding of Web services. These systems enable manual composition of

WSs. We can augment this with some semantic integration of the data

sources. Finally, as demonstrated, we can currently perform automated WS

composition of both information-gathering and atomic world-altering

services under controlled conditions. Automated WSC is at the heart of

seamless interoperation among Web services. With adoption of approaches

to WS description such as OWL-S and advances in agent-based planning-

related technologies, we believe that broad-scale automated WSC is well

within reach.

22 Chapter 1

REFERENCES

[1] J. L. Ambite (ed.), Proceedings of the ICAPS2003 Workshop on Planning for Web
Services, 2003.

[2] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein,
Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte (Editor), Ivana
Trickovic, and Sanjiva Weerawarana, “Business Process Execution Language for Web

Services”, Version 1.1, 2003. At

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/.

[3] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web”. Scientific American,

284(5):34--43, 2001.

[4] A. Bernstein and M. Klein, “High Precision Service Retrieval”. In Proceedings of the
First International Semantic Web Conference (ISWC 2002), Sardegna, 2002.

[5] Boualem Benatallah, Mohand-Said Hacid, Christophe Rey and Farouk Toumani,

“Request Rewriting-Based Web Service Discovery”. In Proceedings of the Second
International Semantic Web Conference (ISWC 2003), pp 335-350, October 2003.

[6] Frances M. T. Brazier, Barbara Dunin-Keplicz, Jan Treur, and Rineke Verbrugge,

“Modelling Internal Dynamic Behaviour of BDI Agents”. In Proceedings of the
ModelAge Workshop, 1997, pp. 36-56.

[7] J.J. Bryson and L. A. Stein, “Modularity and Design in Reactive Intelligence”. In

Proceedings of the 17th Int’l. Joint Conference on Artificial Intelligence, pp. 1115-1120.
Morgan Kaufmann, San Francisco, 2001.

[8] Joanna J. Bryson, David L. Martin, Sheila A. McIlraith, and Lynn Andrea Stein,
“Toward Behavioral Intelligence in the Semantic Web”. In IEEE Computer, pp. 48-54,

November 2002.

[9] Ion Constantinescu and Boy Faltings, “Efficient Matchmaking and Discovery Services”.

In Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI03).
Halifax, Canada. 2003

[10] DAML Services Coalition (alphabetically A. Ankolekar, M. Burstein, J. Hobbs, O.

Lassila, D. Martin, D. McDermott, S. McIlraith, S. Narayanan, M. Paolucci, T. Payne, K.

Sycara), “DAML-S: Web Service Description for the Semantic Web”. In Proceedings
of the International Semantic Web Conference (ISWC), pages 348–363, June 2002.

[11] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana, “Web

Services Description Language (WSDL) 1.1”, 2001. At

http://www.w3.org/TR/2001/NOTE-wsdl-20010315

[12] M. Dean, D. Connolly, F. van Harmelen, J. Hendler, I. Horrocks, D. McGuinness, P.F.

Patel-Schneider, L. A. Stein, “Web Ontology Language (OWL) W3C Reference version

1.0”, 18 August 2003. At http://www.w3.org/TR/2002/WD-owl-ref-20021112.

[13] Grit Denker, Lalana Kagal, Tim Finin, Massimo Paolucci, Naveen Srinivasan and Katia

Sycara, “Security For DAML Web Services: Annotation and Matchmaking”. In

Proceedings of the Second International Semantic Web Conference (ISWC 2003), pp.

335-350, October 2003.

[14] Tommaso Di Noia, Eugenio Di Sciacio, Francesco M. Donini and Marina Mongiello,

“Semantic Matchmaking in a P-2-P Electronic Marketplace”. SAC 2003, pp. 582-586,

2003.

[15] R. Fikes and N. J. Nilsson, “STRIPS: A New Approach to the Application of Theorem

Proving to Problem Solving”. Artificial Intelligence 2, pp. 189-208, 1971.

1. OWL-S and Agent-Based Systems 23

[16] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, and Said Tabet, “OWL Rules

Language, Draft version”. Technical report, 29 October 2003

[17] Stefan Kokkelink and Roland Schwänzl, “Expressing Qualified Dublin Core in RDF /

XML”. At http://dublincore.org/documents/dcq-rdf-xml/index.shtml.

[18] Lei Li and Ian Horrocks, “A Software Framework for Matchmaking Based on Semantic

Web Technology”. In Proc. of the Twelfth International World Wide Web Conference
(WWW 2003), pages 331-339, ACM, 2003.

[19] T. W. Malone, K. Crowston, B. P. Jintae Lee, C. Dellarocas, G. Wyner, J. Quimby, C. S.

Osborn, A. Bernstein, G. Herman, M. Klein, and E. O'Donnell, “Tools for Inventing

Organizations: Toward a Handbook of Organizational Processes”. Management Science,

45(3):425--443, March, 1997.

[20] Daniel J. Mandell and Sheila A. McIlraith, “Adapting BPEL4WS for the Semantic Web:

The Bottom-Up Approach to Web Service Interoperation”. In Proceedings of the Second
International Semantic Web Conference (ISWC2003), pp. 227--241, 2003

[21] David Martin, Adam Cheyer and Douglas Moran, “The Open Agent Architecture: A

Framework for Building Distributed Software Systems”. In Applied Artificial
Intelligence, 13(1-2), 1999, pp 92-128.

[22] David Martin, Mark Burstein, Ora Lassila, Massimo Paolucci, Terry Payne, Sheila

McIlraith, “Describing Web Services using OWL-S and WSDL”. May 2004. At

http://www.daml.org/services/owl-s/1.1/owl-s-wsdl.html

[23] Ryusuke Masuoka, Yannis Labrou, Bijan Parsia, and Evren Sirin, “Ontology-Enabled

Pervasive Computing Applications”. In IEEE Intelligent Systems, 18(10):68-72, 2003.

[24] D. McDermott, “Estimated-Regression Planning for Interaction with Web Services”. In

Proceedings of the Sixth International Conference on AI Planning and Scheduling, pp.

204—211, 2002.

[25] D McDermott, “The Planning Domain Definition Language Manual”. Yale Computer
Science Report 1165 (CVC Report 980003), 1998.

[26] D. McDermott and D. Dou, “Representing Disjunction and Quantifiers in RDF”. In

Proceedings of the First International Semantic Web Conference (ISWC2002), 2002.

[27] Deborah L. McGuinness and Frank van Harmelen, “OWL Web Ontology Language

Overview”. World Wide Web Consortium (W3C) Candidate Recommendation. August

18, 2003. At http://www.w3.org/TR/owl-features/ .

[28] S. McIlraith and T. Son, “Adapting Golog for Composition of Semantic Web Services”.

In Proceedings of the Eighth International Conference on Knowledge Representation
and Reasoning (KR2002), pp. 482-493, 2002.

[29] S. McIlraith, T.C. Son and H. Zeng, “Semantic Web Services”. In IEEE Intelligent
Systems, Special Issue on the Semantic Web, 16(2):46--53, March/April, 2001.

[30] S. McIlraith and R. Fadel, “Planning with Complex Actions”. In Proceedings of the
Ninth International Workshop on Non-Monotonic Reasoning (NMR2002), pages 356-

364, April, 2002.

[31] D. S. Nau, Y. Cao, A. Lotem, and H. Muñoz-Avila, “SHOP: Simple Hierarchical

Ordered Planner”. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI-99), pp.968—973, 1999.

[32] D. Nau, T.-C. Au, O. Ilghami, U. Kuter, W. Murdock, D. Wu, and F. Yaman, “SHOP2:

An HTN Planning System”. To appear, Journal Artificial Intelligence Research, 2003.

24 Chapter 1

[33] Marian H. Nodine, Anne H. H. Ngu, Anthony R. Cassandra, and William Bohrer,
“Scalable Semantic Brokering over Dynamic Heterogeneous Data Sources in

InfoSleuthTM”. In IEEE Transactions on Knowledge and Data Engineering, 15(5), 2003,
pp1082-1098.

[34] OWL-S Coalition, “OWL-S 1.1 Release”. At http://www.daml.org/services/owl-s/1.1/.

[35] M. Paolucci, A. Ankolekar, N. Srinivasan, and K. Sycara, “The DAML-S Virtual

Machine”. In Proceedings of the Second International Semantic Web Conference (ISWC

2003), pp 335-350, October 2003.

[36] M. Paolucci, N. Srinivasan, K. Sycara, and T. Nishimura, “Toward a Semantic

Choreography of Web services: from WSDL to DAML-S”. In Proceedings of ICWS03,

2003.

[37] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara, “Semantic Matching of Web

Services Capabilities”. In Proceedings of the First International Semantic Web
Conference (ISWC2002), 2002.

[38] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara, “Importing the Semantic Web in

UDDI”. In Proceedings of E-Services and the Semantic Web (ESSW02), 2002.

[39] Massimo Paolucci, Katia Sycara, and Takahiro Kawamura, “Delivering Semantic Web

Services”. In Proceedings of the Twelfth World Wide Web Conference (WWW2003),
Budapest, Hungary, May 2003, pp 111- 118.

[40] Katia Sycara, Mattheus Klusch, Seth Widoff and Janguo Lu, “Dynamic Service

Matchmaking Among Agents in Open Information Environments”. In ACM SIGMOD
Record (Special Issue on Semantic Interoperability in Global Information Systems),
28(1), 1999, pp 47-53.

[41] The Rule Markup Initiative. At http://www.dfki.uni-kl.de/ruleml/.

[42] The Universal Description, Discovery and Integration (UDDI) protocol. Version 3, 2003.

At http://www.uddi.org/

[43] Web Services Choreography Working Group. At http://www.w3.org/2002/ws/chor/

[44] Web Services Description Working Group. At http://www.w3.org/2002/ws/desc/

[45] D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau, “Automating DAML-S Web Services

Composition Using SHOP2”. In Proceedings of the Second International Semantic Web
Conference (ISWC2003), 2003.

[46] Y. Zou, T. Finin, L. Ding, H. Chen, R. Pan, “Using Semantic Web technology in Multi-

Agent Systems: a case study in the TAGA trading agent environment”, In Proceedings of
the 5th International Conference on Electronic Commerce, pp 95-101, 2003.

