
 Chapter 1 

OWL-S AND AGENT-BASED SYSTEMS  

David Martin, Mark Burstein, Sheila McIlraith, Massimo Paolucci, 
Katia Sycara 
Members of the OWL-S Coalition 

Abstract:  Over the last decade, research in agent-based systems (ABS) has spawned a 
multi-faceted field, addressing a broad range of challenges and generating a 
varied array of technical approaches.  Web service technologies, in contrast, 
KDYH�DULVHQ�LQ�D�PRUH�LQFUHPHQWDO�IDVKLRQ��ZLWK�PRUH�PRGHVW�DLPV� �DOWKRXJK�
the vision statements associated with Web services sometimes overlap 
significantly with those of ABS.  Work on Semantic Web services aims to 
provide richer specifications of services, so as to enable fuller, more flexible 
automation of service provision and use, support the construction of more 
powerful tools and methodologies, and promote the use of semantically well-
founded reasoning about services. This chapter provides an overview of OWL-
S, a Semantic Web services ontology, and discusses its connections with work 
on agent-based systems.  We argue that OWL-S takes some significant, 
although limited, steps towards a foundation for the deployment of agent 
technologies on the Web.   

1. INTRODUCTION 

Over the last decade, research in agent-based systems (ABS) has spawned a 
multi-faceted field, addressing a broad range of challenges and generating a 
varied array of technical approaches.  ABS research topics may be divided, 
roughly, into those having to do with individual agents, and those having to 
do with multiagent systems (MAS).  The agenda of ABS has been ambitious 
and, in many respects, visionary.  ABS researchers have sought to endow 
individual agents with characteristics such as autonomy, proactivity, and 
cooperativeness.  In the area of MAS, the focal areas have included agent 
communication languages, extended conversations between agents, shared 
knowledge, shared activities, interoperation frameworks, and various kinds 
of middle-agents.  (Excellent overviews and reference lists for ABS can be 
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found at http://agents.umbc.edu/introduction and 
http://www.aaai.org/AITopics/html/agents.html.) 

In pursuing this agenda, most ABS approaches have emphasized various 
forms of reasoning employing rich representations of knowledge — about 

agent capabilities, tasks, beliefs, commitments, communications, and so 

forth.  In this sense, ABS have always relied on “semantically rich” 

representations and techniques. 

Web service (WS) technologies, in contrast, have arisen in a more 

LQFUHPHQWDO� IDVKLRQ�� ZLWK� PRUH� PRGHVW� DLPV� � DOWKRXJK� WKH� YLVLRQ�
statements associated with Web services sometimes overlap significantly 

with those of ABS.  Web Services Description Language (WSDL) [11], in 

essence, allows for the specification of the syntax of the input and output 

messages of a basic service, as well as other details needed for the 

invocation of the service.  WSDL does not, however, support the 

specification of workflows composed of basic services.  In this area, the 

Business Process Execution Language for Web Services (BPEL4WS) [2] has 

the most prominent status. With respect to registering Web services for 

purposes of advertising and discovery, Universal Description, Discovery and 

Integration (UDDI) [42] has received the most attention to date. 

At the same time, recognition is growing of the need for richer semantic 

specifications of Web services, so as to enable fuller, more flexible 

automation of service provision and use, support the construction of more 

powerful tools and methodologies, and promote the use of semantically well-

founded reasoning about services.  Because a rich representation language 

permits a more comprehensive specification of so many different aspects of 

services, it can provide a better foundation for a broad range of activities 

across the service lifecycle.  For example, richer semantics can support 

greater automation of service selection and invocation (thus reducing the 

burden on service developers), automated translation of message content 

between heterogeneous interoperating services, automated or semi-

automated approaches to service composition, and more comprehensive 

approaches to service monitoring and recovery from failure.  Further down 

the road, richer semantics can help to provide fuller automation of such 

activities as verification, simulation, configuration, supply chain 

management, contracting, and negotiation of services.   

To meet this need, researchers have been developing languages, 

architectures and related approaches; the resulting body of work goes under 

the heading of Semantic Web services (SWS) [29].   In particular, the authors 

of this chapter, members of the OWL-S Coalition, are involved in the 

development of the Ontology Web Language for Services (OWL-S) [34], 

which seeks to provide the building blocks for encoding rich semantic 

service descriptions, in a way that builds naturally upon OWL [27], the 
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Semantic Web [3] language undergoing standardization at the World Wide 
Web Consortium (W3C). 

We note that several of our references here, and in several other chapters 
in this book, refer to DAML-S, (DARPA Agent Markup Language for 
Services) the name by which earlier versions of OWL-S were known.  As of 
version 1.0 (which has been released a short while prior to this writing), the 
name was changed to OWL-S, so as to reflect the change in the underlying 
formalism, from DAML+OIL to OWL.  (DAML+OIL — DARPA Agent 

Markup Language + Ontology Inference Language — was the predecessor 

of OWL.) 

1.1 Relating Agents and Services 

How can one begin to characterize the relationship between agents and 

Web services?   

The vision of ABS encompasses a broad scope of challenges and 

approaches to distributed task handling by relatively autonomous 

components.  The approach taken by commercial Web services, in contrast, 

is necessarily more incremental, as it is tied to near-term products and goals.  

The ambitions of work on Semantic Web services lies somewhere in 

between.   

ABS technology arose largely independently of the World Wide Web.  

From a historical perspective, one may view the work on Web services and 

(to a greater degree) Semantic Web services as efforts to bring aspects of 

agent-based approaches onto the Web (although the work has generally not 

been done with this as an explicitly stated goal).  Generally speaking, this 

has been accomplished in relatively modest ways to date.  In this chapter we 

discuss some of the ways in which this has been accomplished. 
From an architectural perspective, one can identify three possible views 

of the relationship between agents and services: 

(1) Agents use services.  In this view, there is no attempt to envision Web 

services as belonging to the realm of agents.   Individual services can remain 

relatively simple — providers of discrete capabilities accessed via fixed 

message exchange patterns, exempt from exhibiting proactivity, autonomy, 

or other more sophisticated attributes of agents. Indeed, in this view, some of 

the hardest challenges associated with Web services, such as automated 

general service composition, could ultimately be relegated to the realm of 

agents, and left out of the scope of Web service standards. In general, this 

view creates no requirements for service infrastructure to support services 

that take on the more sophisticated attributes of agenthood. 

(2) Services are agents, although currently of a limited kind.  In this 

view, which is the most ambitious regarding the future of Web service 
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technology, individual services will ultimately be free to display the 
autonomy, proactivity, persistence, etc. that define the notion of software 
agenthood, and collections of services will interact with the flexible 
collaboration that defines the essence of MAS.  Currently, however, it may 
be seen that most work on services falls short of this vision.  In particular, 
individual services are for the most part conceived as reactive, short-lived, 
and intended to engage only two parties in a provider/requester style of use.  
Although some work (both in WS and in SWS) is aiming to break out of 
these limitations, it is clear that there’s a long ways to go yet. 

 (3) Agents are composed of, deployed as, and dynamically extended by 
services.  This view, which holds that agents are built up from Web services 
as building blocks [8], can be viewed as a middle ground between (1) and 
(2). It allows for a notion of service that’s more limited than that of (2), but 

which exists within a more extensive conceptual framework than is required 

for (1).  This perspective draws on work on that combines behavior-based 

robotics and reactive planning (e.g., Behavior-Oriented Design [7]), and is 

particularly well-suited to scenarios in which services embody devices that 

may be viewed as sensors or effectors of the world. 

We note that there may well be other views of the agent/service 

relationship, and it isn't entirely clear which of these three has the greatest 

applicability; we expect that future developments will make this clear. 

In this chapter we have two primary aims: to provide an overview of 

OWL-S, and to show some of its more significant connections with work on 

software agents and multiagent systems.  Although there is clearly no cut-

and-dried characterization of these connections, nevertheless it is useful to 

trace some of the central similarities, differences, and lines of evolution.  We 

emphasize that this is not meant to be a comprehensive survey: ABS is an 

enormous field, and we can only hope to touch on a small selection of the 

relevant work.  As a unifying theme, we argue that OWL-S takes some 

essential, although limited, steps towards a foundation for the deployment of 

agent technologies on the Web.   

In the next four sections, we briefly present OWL-S, beginning with an 

overview, and turning then to its profile, process, and grounding ontologies.  

Following that, we discuss its relationship to work on ABS, organized under 

the topics of discovery (including capabilities declarations, advertising, and 

matchmaking), agent communication languages (including conversational 

protocols); and service composition. 
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2. OVERVIEW OF OWL-S 

OWL-S is an OWL ontology that may be used to specify semantically 
rich characterizations of services on the Web.  OWL-S is organized into four 
parts.  The profile describes capabilities and discriminating features of Web 
services for purposes of advertising and matchmaking. The process model 
provides a description of the structure of activities involved in providing the 
service, from which service requesters can derive information about service 
invocation and interaction patterns.  The grounding is a description of how 
abstract information exchanges described in the process model are mapped 
onto actual concrete messages that flow between the provider and the 
requester.  Finally, the service itself provides a means of bundling together 
instances of the top-level profile, process, and grounding classes that are 
meant to be used together.  (Because the service concept introduces no new 
details apart from the bundling of these other elements, we do not give it a 
separate section in the organization of this chapter.) 

OWL-S complements industry efforts such as SOAP, WSDL and 
BPEL4WS.  It builds upon these efforts by adding rich typing and class 
information that can be used to describe and constrain the range of Web 
service capabilities more effectively than can be done with XML data types.  
Further, in the process model, it captures not only the control flow and data 
flow of Web services, but also their prerequisites and side effects 
(preconditions and effects) in the world.  OWL-S’ basis in OWL enables the 

grouping of like services and like data types into taxonomic hierarchies, 

together with definitions of the relationships and constraints between classes 

and their instances.  The well-defined semantics enables formal automated 

manipulation of these structures, with known outcomes, thus providing a 

foundation for automation of a variety of Web service operations, such as 

discovery, matchmaking, interoperation, composition, enactment, 

monitoring, and recovery.  

3. DESCRIBING CAPABILITIES WITH OWL-S 

The representation of capabilities is supported by the profile module of 

OWL-S, which provides a high-level view emphasizing the functionality of 

the service; in other words, what the service does, rather than how it 

accomplishes its tasks.  (The latter information, as discussed in Section 4, is 

provided by the OWL-S process model).  Capabilities descriptions can have 

widely varying aspects.  Capabilities may be described in terms of service 

categories, such as stock brokering, or functional transformations, such as 

the transformation from a ticker symbol to the related stock quote.  
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Furthermore, a particular type of service may have many aspects.  For 
instance, two services may act as stock brokers, but the way they perform 
their task may be very different in terms of delay on the market, precision of 
the report, cost and so on.  The OWL-S profile provides a language to 
express the different aspects of service capabilities.  Specifically, OWL-S 
profiles support three kinds of descriptions of capabilities: a hierarchical 
classification, a functional description, and a set of non-functional 
parameters that can be used to specify features of the service that are not 
captured by the other two descriptions.  In the rest of this section we discuss 
these three descriptions in more detail.  

The hierarchical classification of a capability exploits the fact that any 
service profile is a concept expressed in OWL.  It is therefore possible to 
construct ontologies of profiles that group together the common features of 
services performing similar functions.   For example, as shown in Figure 1, it 
is possible to define the class FeeBasedService having properties needed to 
characterize the manner in which payment is made for the service (e.g. 
property paymentMethodAccepted). This class, in turn, could have 
PhysicalProductRetail as one of its subclasses, with properties that are 
characteristic of online retail sources, such as product and deliveryRegion.  
Consistent with the semantics of OWL (and with object-oriented practice in 
general), each subclass will declare properties that are appropriate to its level 
of specificity in the class hierarchy.  The use of hierarchies of profiles allows 
service providers to specify precisely and economically what kinds of 
capabilities they provide, and allows service requesters to use the same 
framework to precisely specify what kinds of capabilities they seek. 

The functional view of the capabilities of a service describes the 
information transformation as well as state transformation performed by that 
service.  At the information level, the service requires a set of inputs and 
produces a set of outputs; at the state description level, a service requires a 
set of preconditions to be satisfied and produces a set of effects.  The 
functional description of the profile captures essentially the same 
information about inputs, outputs, preconditions, and effects (IOPEs), or a 
subset of the information, as the process model, as discussed in Section 4 
below.  

The last aspect of capability representations in OWL-S is provided by 
non-functional properties that are used to specify additional information 
about the Web service, such as security restrictions and quality of service 
information.  The use of non-functional properties essentially recognizes that 
while two services may provide the same capability, in the sense that they 
compute the same function, the way they achieve this result may be very 
different and the resulting services may be qualitatively very different.   For 
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example, two services may provide tax advice, but one may be specialized 
on the US tax code, while the other may be specialized on the Italian tax  
code.  The two services compute the same function, namely tax advice, but 
they are not the replacement of one another. 

4. DESCRIBING ACTIVITIES WITH OWL-S 

The OWL-S process model describes how the service works.  For a one-
step (atomic) service, it gives the complete information (about inputs and 
outputs) that’s needed to interact with the service. For a multi-step 

(composite) service, it describes the control flow and data flow of the 

program that enacts the service.  The process model has been designed for 

use by service requesters in connection with service selection, invocation, 

interoperation, composition, and monitoring, and by service tools for service 

simulation and verification.  The OWL-S process model includes a number 

of elements that are typical of workflow languages, combining a process 

modeling language with both an AI-inspired action language and a language 

<owl:Class rdf:ID="FeeBasedService"> 
  <rdfs:subClassOf rdf:resource="&profile;#Profile" />  
</owl:Class> 
<owl:ObjectProperty rdf:ID="paymentMethodAccepted"> 
  <rdfs:domain rdf:resource="#FeeBasedService"/> 
  <rdfs:range rdf:resource="&business;#PaymentMethod"/> 
</owl:ObjectProperty> 
 
<owl:Class rdf:ID="PhysicalProductRetail"> 
  <rdfs:subClassOf rdf:resource="#FeeBasedService"/>  
</owl:Class> 
 
<owl:ObjectProperty rdf:ID="product"> 
  <rdfs:domain rdf:resource="#PhysicalProductRetail"/> 
  <rdfs:range rdf:resource="&unspsc;#Product"/> 
</owl:ObjectProperty> 
 
<owl:ObjectProperty rdf:ID="deliveryRegion"> 
  <rdfs:domain rdf:resource="#PhysicalProductRetail"/> 
  <rdfs:range rdf:resource="&geography;#Region"/> 
</owl:ObjectProperty> 
 
<PhysicalProductRetail rdf:ID="Books4Sale"> 
  <paymentMethodAccepted rdf:resource="&business;#Mastercard"/> 
  <paymentMethodAccepted rdf:resource="&business;#Visa"/> 
  <paymentMethodAccepted rdf:resource="&business;#MoneyOrder"/> 
  <product rdf:resource="&unspsc;#Books"/> 
  <deliveryRegion rdf:resource="&geography;#NorthAmerica"/> 
</PhysicalProductRetail> 

 
Figure 1: Simple profile hierarchy and instance representing an online bookseller.    
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for describing classes and their inter-relationships.  Further, the process 
model has a well-defined semantics. 

Central to an OWL-S process model, as with the profile, is the 
specification of a service’s inputs, outputs, preconditions, and effects 
(IOPEs).   Process inputs and outputs are named and typed using either 
OWL classes or data types provided by XML Schema. Preconditions, of 
which there may be any number, must all hold in order for the process to be 
invoked, and effects indicate what is accomplished by the service, or more 
generally, changes in the world brought about by the service.  Conditions 
can be associated with outputs and effects, since the outputs and effects of a 
service are often predicated on some internal state of the system.  

Inputs, outputs, preconditions, and effects specified in a process model 
are complete, whereas in a profile they may be partial (that is, a selected 
subset that is most useful for purposes of advertising and discovery). 

OWL-S’ process ontology is subdivided into three process types: atomic, 
simple, and composite processes. 

Atomic processes are the units of invocation; that is, an atomic process, 
somewhat similarly to a programming language procedure, can be called by 
transmitting an invocation message (which carries its inputs) to the process, 
and its results returned in a response message.  Thus, an atomic process 
executes in a single, non-interruptible step. The essence of an atomic process 

<process:AtomicProcess rdf:ID="LookupBook"> 
  <process:hasInput> 
    <process:Input rdf:ID="InTitle"> 
      <process:parameterType rdf:resource="dc:Title"/> 

 </process:Input> 
  </process:hasInput> 
  <process:hasOutput> 
    <process:UnconditionalOutput 
      rdf:ID="OutISBN"> 
      <process:parameterType rdf:resource="dc:Identifier"/> 

 </process:UnconditionalOutput > 
  <process:hasOutput> 
</process:AtomicProcess> 
    
<process:AtomicProcess rdf:ID="BuyBook"> 
  <process:hasInput> 
    <process:Input rdf:ID="InISBN"> 
      <process:parameterType rdf:resource="dc:Identifier"/> 

 </process:Input> 
  </process:hasInput> 
  <process:hasOutput> 
    <process:UnconditionalOutput 
      rdf:ID="OutReceipt"> 
      <process:parameterType rdf:resource="business:E-receipt"/> 

 </process:UnconditionalOutput> 
  <process:hasOutput> 
</process:AtomicProcess> 

 

Figure 2: Partial functional description of two (simplified) atomic processes 
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is in its IOPEs; thus, it provides the same kind of functional description as 
the service’s profile. 

Figure 2 shows two simple partial examples of atomic processes, each 

with a single input and a single output.  LookupBook takes a book title as 

input.  The type of the input named InTitle is dc:Title, and the type of 

the output named OutISBN is dc:Identifier, both types from the 

Dublin Core ontology [17].  The returned value is an encoding of the 

International Standard Book Number (ISBN) for the book with the given 

title. Similarly, BuyBook takes an input of type dc:Identifier, and 

returns an output named OutReceipt, representing the purchase of the 

book. 

In these examples, for lack of space, we omit a number of details, such as 

the payment and shipping information that would be needed to complete 

such a transaction, handling of unsuccessful outcomes (e.g., title unknown or  

out-of-stock), and preconditions and effects.  A typical precondition for such 

a service might say, “The buyer must have a current account”, and a typical 

<process: CompositeProcess rdf:ID="FindAndBuyBook"> 
... 

    <process:Sequence> 
      <process:components rdf:parseType="Collection"> 
        <process:Perform rdf:ID="FindBook1”> 
          <process:process rdf:resource=”#LookupBook”> 
          <process:hasBinding> 

            <process:theParam rdf:resource=”#InTitle”> 
            <process:valueForm rdf:parsetype=”Literal”> 

              <valueOf> 

                <theVar rdf:resource=”#InTitle”> 
                <fromProcess rdf:resource=”#FindAndBuyBook”> 
              </valueOf> 

            </process:valueForm> 

          </process:hasBinding> 

        </process:Perform> 

        <process:Perform rdf:ID="BuyBook1"/> 
          <process:hasBinding> 

            <process:Binding> 

              <process:theParam rdf:resource=”#InISBN”> 
              <process:valueForm rdf:parsetype=”#Literal”> 

                <valueOf> 

                  <theVar rdf:resource=”#OutISBN”> 
                  <fromProcess rdf:resource=”#LookupBook”> 
                </valueOf> 

              </process:valueForm> 

            </process:Binding> 

          </process:hasBinding> 

        </process:Perform> 

      </process:components> 

    </process:Sequence> 

  ... 

</process:CompositeProcess> 

 

Figure 3: Elements of a composite process. 
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effect might say, “The buyer’s credit card is charged for the price of the 

book”.  Outputs and effects may have conditions associated with them.  For 

example, the output(s) and effect(s) for the condition “book-in-stock” could 

be described distinctly from those for the condition “book-out-of-stock”. 

Simple processes are like atomic processes in that they are conceived of 

as having single-step executions.  Unlike atomic processes, however, they 

are not directly invocable and are not associated with a grounding.  Simple 

processes provide a means of abstraction; that is, they can provide abstract 

views of atomic or composite processes.  

Composite processes are constructed from subprocesses, which in turn 

can be either atomic, simple, or composite.  Control constructs such as 

Sequence and If-Then-Else are used to specify the structure of a composite 

process.  In addition to describing control flow, this structural specification 

also includes argument binding constructs for indicating the data flow. 

Figure 3 shows a fragment of a composite process, which expresses that 

the composite consists of sequentially invoking (“performing”) the atomic 

process LookupBook, and then invoking the atomic process BuyBook.  The 

binding within the second Perform construct indicates that the output from 

LookupBook flows into the input of BuyBook.  A composite process like 

this is enacted by the service client, with the execution of LookupBook and 

BuyBook handled by the service provider. 

5. DECLARING INVOCATION DETAILS 
WITH OWL-S 

The OWL-S grounding tells how the service is used; that is, it specifies 

the details of how a computer program or agent can access a service.  

Typically, a grounding will specify some well known communications 

protocol, service-specific details such as port numbers used in contacting the 

service, and an unambiguous means of exchanging data elements of the 

types required and produced by the service [22]. 

The default grounding approach provided by OWL-S relies on 

specification mechanisms already provided by WSDL, while at the same 

time exploiting the richer descriptions available through the use of the OWL 

language [10].  In essence, it establishes a correspondence between each 

atomic process and a WSDL operation, and between each atomic process 

parameter and a WSDL message part. 

In summary, an OWL-S service is described by the three types of 

information presented above: one or more profiles tell what the service does 

(in support of advertising, discovery, matchmaking, and so forth), a single 

process model tells how the service works (in support of service invocation, 



1. OWL-S and Agent-Based Systems 11
 

 

interoperation, composition, and related activities), and one or more 
groundings tell how to access the service (in terms of message formats and 
other communications details).  Whereas the grounding is concerned with 
the concrete details of message syntax and transport, the profiles and process 
model are more abstract specifications that can be used to support 
classification, planning, and other forms of reasoning about services, thus 
enabling fuller automation of service-related activities. 

6. OWL-S AND DISCOVERY  

Autonomous agents and Semantic Web services can be used to realize a 
distributed computation scheme in which problems are solved through 
interaction with other agents or Web services.  Such a distributed scheme 
requires agents and Web services to discover partners that can contribute to 
the collaborative effort. The problem of discovering partners is essentially 
equivalent for agents and Semantic Web services1:  given a goal, the 
discovery process should automatically locate those agents2 that can achieve 
that goal.   

The process of discovery can be roughly divided into three stages:  first, 
agents advertise their capabilities with a registry3 such as UDDI.  Second, an 
agent in need of a service requests, from the registry, references to providers 
of the capabilities needed by the agent.  Third, the registry reports back to 
the requester one or more references to providers whose advertisements 
match the request.   

The success of the discovery process hinges on two requirements.  First, 
a language is needed that allows service-providing agents to effectively 
describe their capabilities for purposes of advertising them to the broader 
community.  This same language should also allow service-seeking agents to 
formulate requests for the capabilities they need from service-providers.   
Second, an advertisement/request matching technology is needed that detects 
when the requested service is equivalent to the advertised service, even if the 
two descriptions are superficially very different.      

As described in Section 3 above, OWL-S directly addresses the first 
requirement of discovery by providing OWL concepts for the description of 

 
1 The stress on Semantic Web services here is justified by the fact that, in the most 

conservative view, commercial Web services standards are meant to help programmers, 
rather than programs, to discover and “glue” multiple agents together. 

2 Since discovery and its requirements are equivalent for Web services and agents, in this 

section we do not make any distinction between agents and Web services, and we refer to 

both as agents.   
3 In our discussion we describe the most common discovery mechanism used by Web 

services.  Depending on the overall system architecture other discovery mechanisms are 

possible. 
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what agents do and the tasks that they accomplish.  In the following section 
we show how OWL-S can be used to address the second requirement by 
defining algorithms that exploit the logical relations between the 
advertisements and the requests, abstracting away from superficial syntactic 
differences. We will then explore the relation between the view of discovery 
proposed by OWL-S and the views that have arisen from the fields of agent-
based systems and Web services. 

6.1 Matching Capabilities 

The discovery process performs the matching of requests and 
advertisements to identify the agents that can perform a desired task.  The 
problem of capability matching is that it is unrealistic to expect that the 
advertisement and the request describe exactly the same capability.  Rather,  
the challenge of the matching process is to abstract away from the syntactic 
differences between the advertisements so as to extract the semantic 
similarities between the advertisement and the request, and verify whether 
the advertised capability is close enough to the capability requested.  

To address this challenge, OWL-S based matching algorithms exploit the 
semantics of the representation of the advertisements and requests; 
furthermore, they provide a flexible matching mechanism that recognizes the 
degree of matching between the advertisement and the request. Exploiting 
the semantics of descriptions and defining a flexible matching are closely 
related issues. Indeed by analyzing the semantic relation between the 
advertisement and the request it is possible to derive a scoring function 
between the two concepts.   

A number of capability matching algorithms have been proposed for 
OWL-S, which use different types of information provided by the service 
profile and the available ontologies to match between service requests and 
advertisements. Some matching algorithms, such as [9] and [18] rely on the 
subsumption computation provided by OWL inference engines to infer the 
relation between the advertisement and the request.  These matching 
algorithms rely on the ability to construct taxonomies of service profiles that 
correspond to the different types of services that are present.  Other matching 
algorithms, such as in [5], [14], and [37], assume that matches are 
determined exclusively by the relations between inputs and outputs in the 
advertisement and in the request.  Essentially, these matching algorithms 
perform two matches, one comparing outputs and one comparing inputs.  If 
the output required by the requester is of a kind covered (subsumed) by the 
advertisement, then the inputs are checked. If the inputs specified in the 
request are then subsumed by the input types acceptable to the service, then 
the service is a candidate to accomplish the requester’s requirement.   
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Despite the different attempts to provide a matching algorithm for agent 
capabilities, many challenges are still open.  First, the two methods of 
matching capabilities are not guaranteed to converge to the same set of 
agents.  This is partly because the functional and taxonomical 
representations convey capability information in very different ways that 
may not lead to compatible representations for the same capability.  The 
second problem is that no matching has been proposed that extends to 
preconditions and effects.  Finally, there is no predefined set of non-
functional parameters and by and large each type of parameter may require a 
specialized matching process as shown by attempts to match on security 
requirements [13]. 

6.2  Relation with Agent technology 

The OWL-S service profile is grounded in the research on agent 
discovery in open multiagent systems, and has been influenced by systems 
such as LARKS [40], OAA [21] and InfoSleuth [33].   

In this areas, a primary contribution of the multiagent literature has been 
defining the goal of discovery in multiagent systems as the problem of 
finding the agent(s) that can perform a given task.  Ultimately, this problem 
requires a goal directed search where the agent is located on the bases of the 
tasks that it performs, or in other words its capabilities, rather than on the 
bases of incidental properties such as name, port type or keywords attached 
to the agent.  As a consequence, research in multiagent systems provided 
schemas for representation of capabilities that are reflected in OWL-S.  
Specifically, LARKS and OAA provided different perspectives on the goal 
directed view of the capabilities of agents, while InfoSleuth provided a way 
to represent classifications of agent functionalities. 

The second contribution of research in multiagent systems has been to 
reveal the importance of the semantic matching of capabilities.  Essentially, 
they realized that capability descriptions and capability requests are 
syntactically going to be very different.  Therefore, any attempt to match that 
does not include an abstraction to semantics is bound to fail.  The key insight 
provided by the multiagent community has been to claim the need for 
ontologies during the matching process that would support a flexible 
matching between request and advertisement with a measure of the degree of 
match.   
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6.3 Relation with UDDI and WS technology 

UDDI is a World Wide initiative, lead by the OASIS Consortium4, to 
develop a standard specification for industrial strength of registries of Web 
services.  UDDI allows businesses to register their presence on the Web by 
specifying their points of contact both in terms of the ports used by the 
service to process requests and in terms of the physical contacts with people 
who can answer questions about the service.  In addition, UDDI provides a 
language to specify an unbounded set of features of services that can help the 
process of service location and selection as well as service invocation. UDDI 
enjoys the wide support of many prominent software and hardware 
companies that have invested heavily in Web services.  Because of this 
support, UDDI is becoming the de facto standard repository of Web services.  

The main limitation of UDDI is that it does not provide a capability 
representation language such as the OWL-S service profile.  As a 
consequence, UDDI does not provide capability based search. The result is 
that UDDI supports the location of information about the Web service, once 
it is known which Web service to use, but it is impossible to locate a Web 
service only on the basis of what problems it solves.  

 
Figure 4.  The OWL-S to UDDI mapping 

 

 
4 See http://www.oasis-open.org 
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OWL-S and UDDI complement each other.  UDDI provides an Internet-
wide distributed registry that is virtually an industry standard.  On the other 
side, OWL-S provides the information required for capability matching.  The 
OWL-S/UDDI matchmaker [38] integrates OWL-S capability matching into 
the UDDI registry.  This integration is based on the mapping of OWL-S 
service profiles to UDDI representations shown in Figure 4. 

The integrated OWL-S/UDDI registry provides all the functionalities 
provided by UDDI using exactly the same API, so that any UDDI can 
interact with it to retrieve information about available Web services.  In 
addition, OWL-S/UDDI supports capability matching by taking advantage of 
OWL-S capability representation and the matching process proposed in [36].  
The result is a UDDI in which it is possible to search for, and find, Web 
services by their capabilities.  

7. OWL-S AND AGENT COMMUNICATION 
LANGUAGES 

OWL-S explicitly supports the description of services as classes of 
activities, so that agents can reason about the possible benefit of using them, 
determine the content of the messages necessary to invoke them, and 
interpret responses from them. This is substantially different than the 
rationale behind agent communication languages (ACLs), such as the 
Knowledge Query and Manipulation Language (KQML) or the Foundation 
for Intelligent Physcal Agents (FIPA) ACL, developed during the 1990’s.  

ACLs like KQML and FIPA were designed primarily to provide a 

uniform syntax and semantics for messages with arbitrary content, passed 

between software agent peers. They divided messages into several layers, 

and provided a specific syntax and semantics only for the outer layer, which 

supplied information about the message, its handlers (sender and recipient), 

its context (as it might relate to a prior message or sequence) and the 

language and ontologies used for the inner content layer which could be in 

any format or language. The semantic content that was standardized in these 

languages consisted of a set of performative types, or message types, 

representing the conversational attitude of the sender toward the content. The 

term performative comes from Speech Act theory.  ACL performatives 

include ‘request’, ‘tell’, ‘ask’, ‘accept’, ‘reject’, ‘deny’, etc.   

Just as ACLs were explicitly a model for messages, providing a standard 

meta- model so that they could be arranged in conversations, WSDL is a 

way of representing messages in the Web services world. WSDL models 

services as bundles of message patterns, grouped into simple sequence 

arrangements, such as input-output pairs. In contrast, the OWL-S process 
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ontology is a framework for describing more abstractly the service activities 
themselves, and likely sequences of such activities. OWL-S descriptions of 
the inputs and outputs of individual atomic activities characterize the 
information conveyed in the underlying WSDL input and output messages.  
The OWL-S grounding model translates the inputs and outputs of OWL-S 
service descriptions from OWL into the XML elements of corresponding 
WSDL messages. But it can just as properly be used to translate that 
information into a KQML or FIPA message format for communications with 
agents that provided services using an ACL message transport mechanism. 
UMBC’s implementation of the Trading Agent Game [46] provides an 

example of this way of using OWL-S.  

OWL-S groundings used with KQML or FIPA must relate atomic 

processes to ACL message patterns with specific performatives and perhaps 

even specific content forms.  The performatives referenced in these 

messages patterns depend on the type of service provided, and the kind of 

action triggered by the message. For example, an informational service 

would have its inputs grounded into an ASK message, while its outputs (the 

reply) could be an INFORM or TELL (depending on the ACL dialect). A 

service that resulted in a purchase would have inputs grounded in a 

REQUEST message pattern, while its outputs might be (conditionally) an 

ACCEPT or REJECT message pattern. The content pattern of the message 

would in each case have to contain information about the specific service 

(such as its type), and serialized descriptions of the input or output 

parameters of the service. Each reply would also be accompanied by an IN-

REPLY-TO property referencing the corresponding input message 

requesting the service action.  

Just as performatives are implicit in the activity model of OWL-S 

processes, the information about message sequencing that is present in ACLs 

is represented in OWL-S by inputs and outputs of processes, and activity 

sequences, the latter modeled using the control constructs for forming OWL-

S composite processes. ACLs use the message field IN-REPLY-TO to 

specify a conversational token that can be used to mark messages as 

responses to specific other messages, since messages can arrive 

asynchronously. OWL-S simply describes the semantics of sets of inputs and 

outputs of a process, which must be translated into messages.  

In summary, OWL-S abstracts away the details of the message-level 

interactions of both ACLs and web service message languages like WSDL. 

Instead, it focuses on characterizing the content and workflow of interactions 

with services so that client systems can perform the reasoning necessary to 

interoperate with them automatically.   
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8. OWL-S AND TASK COMPOSITION 

Web service composition (WSC) is the process of selecting, combining 
and executing Web services to achieve a user’s objective. “Make the travel 

arrangements for my WWW2004 conference trip” or “Buy me an Apple 

iPod at the best available price” are examples of user objectives that might 

be addressed by such composition.  Human beings perform manual WSC by 

exploiting their cultural knowledge of what a Web service does (e.g., that 

www.apple.com will debit your credit card and send you an iPod), as well as 

information provided on the service’s Web pages, in order to execute a 

collection of services to achieve some objective.  To automate WSC, all this 

information must be encoded explicitly in an unambiguous computer 

interpretable form.  None of the existing industrial standards for WS 

description encode this level of detail.  Further, the descriptions they provide 

are not unambiguously computer interpretable and as a consequence not 

reliably manipulated by an automated reasoning system; hence the need for 

OWL-S.  

8.1 The Need for OWL-S 

Automated WSC is akin to both an AI planning problem and a software 

synthesis problem, and draws heavily on both of these areas of research [28].  

In order to perform automated WSC, a reasoning system must order, 

combine and execute Web services that collectively achieve the user’s 

objective.  This involves resolving constraints between Web service inputs, 

outputs, preconditions and effects (IOPEs) and (typically) the outputs and 

effects (OEs) the user desires. For example, if one starts with an agent’s goal 

(some desired outputs and effects), and matches it to the outputs and effects 

of a Web service (modeled as a process), the result is an instantiation of the 

process, plus descriptions of new goals to be satisfied based on the inputs 

and preconditions of that process.  The new goals (inputs and preconditions) 

then naturally match other processes (outputs and effects), so that 

composition arises naturally.  The constraints between these inputs, outputs, 

preconditions and effects dictate the composition of Web services. Two 

types of composition problems can be distinguished: i) those that involve 

only information-providing services, and ii) those that involve both 

information-providing and world-altering services.  The former requires a 

rich semantic representation of inputs and outputs (IO).  The latter requires a 

like representation of IOPEs.  Recall that the effects (E) are the side effects 

of the program (e.g., that www.apple.com will debit your credit card and 

send you an iPod).  Web service preconditions and (conditional) effects are 

not encoded in any existing industrial standard.  They are encoded, in 
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unambiguous computer-interpretable form in OWL-S, as described in 
Section 4.   Since they supplement the information contained in WSDL, 
there is no grounding for these features at the WSDL level.  

In addition to matching IOPEs, the automated WSC problem also can 
involve selecting from among alternative Web services that match the IOPE 
constraints of the composition problem.  For example, there are many Web 
services from which a user can buy an iPod.  In order to select from among 
alternative services, a composition engine also requires some form of service 
selection.  This is akin to the discovery problem described in Section 6, and 
as argued there, requires the OWL-S representation of the properties, 
capabilities and functioning of a Web service as described in Section 3. 

8.2 ABS and Service Composition 

ABS technology and research on reasoning about action and change have 
had a significant influence on the evolution of techniques for WSC. The 
views of the relationship between agents and services posited in Section 1.1 
yield two different characterizations of the WSC task in the context of ABS.   

If we view services as agents, then the composition problem can be 
conceived as a restricted form of a MAS task composition problem or 
planning problem (e.g., [6]).  Each individual service is conceived as an 
agent with a set of capabilities, and the composition problem requires these 
services to coordinate to achieve some objective.  Unfortunately, current 
Web services are not capable of the level of coordination required for true 
MAS task composition or planning.  Most Web services are passive and 
taskable, demonstrating little proactivity.  Their capabilities are brittle, 
limited to execution of a fixed, preconceived workflow, generally with only 
two-party interaction. As such, realization of WSC by appealing to the view 
of services as agents generally requires creation of a single agent to 
coordinate the execution of other Web service agents, which does not exploit 
the power of MAS planning or task composition.  While viewing WSC as 
MAS planning or task composition provides an ambitious vision for the 
evolution of empowered next-generation Web services and the role they 
might play in task composition, the research in MAS can only be exploited 
in a limited fashion with today’s Web services. 

The alternative view of agents composed of, deployed as, or dynamically 

extended by services, yields a much more compelling and fruitful 

characterization of the composition problem.  In such a view, we conceive 

Web services as rich sensors and end effectors to an agent.  Information-

gathering Web services provide sensory capabilities to an agent, collecting 

information about the world for the agent.  World-altering Web services act 

as end effectors, realizing changes in the world on behalf of the agent.  In 



1. OWL-S and Agent-Based Systems 19
 

 

such a view of the world, the composition task is conceived as an agent-
based planning problem.  In what follows, we describe how techniques from 
agent-based planning and reasoning about action and change have been 
exploited to date for WSC, and the role that OWL-S plays in providing 
descriptions of Web services that enable realization of this vision.  

8.3 Realizing Service Composition 

There are several different approaches to WSC.  All characterize OWL-S 
processes as actions with inputs, outputs, preconditions and effects, and use 
planning technology to achieve WSC.  For example, the work of [24] models 
processes in the same format as a STRIPS operator [15] and plans from a 
sequence of Web services to achieve the user’s goal.  In principle the system 

can string together a series of actions to arrive at a novel plan for dealing 

with a Web service.  However, the system as described is at a very early 

stage of development, and fails to address such basic problems as how to 

deal with unpredictable results of actions. [30] also investigates the use of 

plan synthesis for WSC, though their focus is on the specific problem of 

planning with existing composite Web services and the work reported is 

preliminary. 

In contrast to this approach to WS Composition, several other researchers 

have taken the approach of using some sort of plan script or task model that 

describes approximately how to achieve some objective.  This high-level 

plan is expanded and refined using automated reasoning machinery.  The 

first such system to be built was the Golog system (e.g., [28], [29]).  It 

models both world-altering and information-providing services as actions 

with IOPEs, uses Golog procedures (modeled as OWL-S composite 

processes) to represent generic procedures of approximately how-to perform 

tasks, and uses interleaving online deductive synthesis and execution to 

generate a sequence of Web services customized to user’s preferences and 

constraints.  Information gathering actions are executed as necessary, while 

world-altering actions are projected or simulated in order to enable the 

system to deliberate before committing to the execution of world-altering 

services. 

In a similar spirit, several other researchers (e.g., [39], [45]) have used 

the paradigm of  Hierarchical Task Network (HTN) planning (e.g., [31]) to 

perform automated WS composition.  In this paradigm, a planner is supplied 

with a library of standard plans, each characterized by what it is supposed to 

accomplish (that is, effects given preconditions).  [45] uses the SHOP2 

system (e.g., [31], [32]), which is a state-of-the-art HTN planner.  To solve a 

composition problem, SHOP2 must be given a top-level sketch of the 

composed plan (encoded in OWL-S as a CompositeProcess).  However, 
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many of the steps in the plan are described in a high-level vocabulary 
(analogous to the OWL-S control constructs) that allows multiple alternative 
subplans to carry out those steps.  The system searches through ways of 
combining those subplans in order to arrive at an overall plan.  Central to the 
SHOP2 approach to planning with Web services is the exploitation of the 
sharp distinction between information-providing and world-altering services 
in the planning process, given that the information provided by services is 
often critical to finding a plan. When mapping from a set of OWL-S service 
descriptions to a SHOP2 domain, information-gathering services are 
detected and encoded so as to be executed at planning time, rather than at 
run time (as so-called “book-keeping” operators, or, in current work, as 

SHOP2 evaluated preconditions).  [28],[29],[39] also execute information-

gathering services at plan time to reduce the search space for plans and to 

reduce non-determinism. 

HTN planning has also been used in [39] to compose Web services in the 

travel domain and in the organization of a B2B supply chain.  The basic idea 

explored in this work is that Web services expand their own capabilities 

through collaboration.  Consistently with the work presented above, 

especially [24] and [45], during the planning process, outputs and 

preconditions are satisfied either directly using an action that the Web 

service can perform or by asking other Web services to do something that 

satisfies that output or precondition.  The location of the most appropriate 

Web service makes an essential use of the OWL-S/UDDI Matchmaker 

[37],[38] that performs a semantic capability match between a capability 

description and  the service profiles of the available Web services.   

There are many systems that deal with the restricted problem of 

composing services without consideration of preconditions and effects (PEs).  

Included in these is the work of [20] that augments BPEL4WS, a popular 

business-process language [2], with a composition module.  When the 

BPEL4WS process requires a certain input, described as an XML data type, 

their system searches for a WS that can translate from available formats to 

the desired format.  For example, if the process declares a need for a 

complex type containing a date in US format, and a known service supplies a 

data type identical except that the date is in UK format, the system searches 

for a translation service that can perform the desired data transformation.  If 

necessary, it breaks the transformation process into substeps and recursively 

searches for methods to accomplish the substeps. A similar approach is 

integrated with an end-user interactive composition system, STEER, 

described in [23].  These approaches represent prototype solutions to an 

important subtask of service composition, namely, data-transfer 
interoperation.  For it to work, it is necessary for process descriptions to 
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include rich, computer-interpretable descriptions of the inputs and outputs of 
a process — the IO half of IOPEs.   

8.4 The Road Ahead 

While this early work is promising, we are still some distance from the 

goal of automated WSC.  We have argued that we need rich, representations 

of Web services in a language with a well-defined semantics, to enable 

automated WSC.  Specifically, we require rich, declarative descriptions of 

Web service IOPEs to determine a composition, and we require rich 

representations of the properties, capabilities and functioning of services to 

enable WS selection during the composition process.  We have achieved 

both these requirements in great measure with OWL-S. In contrast, current 

industrial standards for WS description only describe WS inputs and outputs 

and they do so in a language that is not richly expressive and is without a 

well-defined semantics.  

We also require rich declarative representations of composite processes 

(existing compositions of Web services, such as Amazon’s workflow) so that 

we can exploit them in our WS composition tasks.  (Many of the existing 

WS composition technologies only compose atomic processes.)  We have 

addressed the problem of describing composite processes in OWL-S, but we 

believe the solution can be improved upon by appealing to a language that is 

more expressive than OWL, leveraging emerging industrial process 

modeling standards.  To realize the goal of automated WS composition, we 

also require further advances in automated reasoning/planning technology 

for WS.  A final barrier to the goal of automated WS composition is the need 

for wide-spread adoption of OWL-S WS descriptions. 

Despite the need for further work, the accomplishments of OWL-S and 

associated composition technologies provide immediate value-added.  With 

existing technology we can perform automated composition of information-

gathering services.  It has also been demonstrated [20] that we can augment 

existing industrial WS choreography and orchestration tools with 

composition technology for data-transfer interoperation and for run-time 

binding of Web services.  These systems enable manual composition of 

WSs. We can augment this with some semantic integration of the data 

sources.  Finally, as demonstrated, we can currently perform automated WS 

composition of both information-gathering and atomic world-altering 

services under controlled conditions.  Automated WSC is at the heart of 

seamless interoperation among Web services.  With adoption of approaches 

to WS description such as OWL-S and advances in agent-based planning-

related technologies, we believe that broad-scale automated WSC is well 

within reach. 
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