
Three Patterns
that help explain the development of

Software Engineering

Mary Shaw
Computer Science Department

Carnegie Mellon University
Pittsburgh PA 15213 USA

March 1997

The term "software engineering" came to prominence when it was used as the name of a
NATO workshop in 1968 [NaRan69]. It was used then to draw attention to software
development problems. It was then, as to a large extent it remains now, a phrase of
aspiration, not of description.

In the intervening years, the focus of the academic community (though not so much the
industrial software development community) has shifted from simply writing
programs to analyzing and reasoning about large distributed systems of software and
data the come from diverse sources. Figure 1 lays out the highlights of these shifts.

Figure 1: Highlights of academic attention in software engineering

Simple input-
output
specifications

Emphasis on
algorithms

Data structures
and types

Programs
execute once and
terminate

Systems with
complex
specifications

Emphasis on
system structure,
management

Long-lived
databases

Program systems
execute continually

1960 + 5
Programming-
any-which-way

1970 + 5
Programming-
in-the-small

1980 + 5
Programming-
in-the-large

Mnemonics,
precise use of
prose

Emphasis on
small programs

Representing
structure, sym-
bolic information

Elementary
understanding of
control flow

1990 + 5
Programming-
in-the-world

Distributed systems
with open-ended,
evolving specs

Emphasis on
subsystem
interactions

Data & computation
independently
created, come and go

Suites of
independent
processes cooperate

Specifi-
cations

Design
Empha-
sis

Data

Control

I see three simple patterns that have guided this development. Each of these provides
partial explanations, but none is either comprehensive enough or rich enough to be in
and of itself a full model.

Position paper for Dagstuhl Workshop on Software Architecture, August 1996, unpaginated.

(1) Evolution of engineering disciplines.
Technologies evolve from craft through commercial practice before they integrate
scientific knowledge and become true engineering disciplines. Figure 2 illustrates this
pattern. Software engineering has been following this pattern; it helps to explain the
role of software process improvement. [Shaw90]

Exploitation of a technology begins with craftsmanship: practical problems are solved
by talented amateurs and virtuosos, but no distinct professional group is dedicated to
problems of this kind. Intuition and brute force are the primary problem-solving
strategies. Progress is haphazard, and the transmission of knowledge is casual.
Extravagant use of materials may be tolerated, and manufacture is often for personal or
local use.

At some point, the products of the technology gain commercial significance, and
economies of manufacture become an issue. At this point, the resources required for
systematic commercial manufacture are defines, and the expertise to organize
exploitation of the technology is introduced. Capital is needed to acquire raw materials
or invest in manufacture long before sale, so financial skills become important. Scale
increases over time, and skilled practitioners are needed for continuity and consistency.
Pragmatically-derived procedures are replicated carefully without necessarily having
knowledge of why they work. Management and economic strategies may assume as
large a role as the development of the technology. Nevertheless, problems with the
technology often stimulate the development of an associated science.

When the associated science is mature enough to yield operational results --that is,
results that are cast in the form of solutions to practical problems, not as abstract
theories -- an engineering discipline can emerge. This allows technological
development to pass limits previously imposed by relying on intuition; progress
frequently becomes dependent on science as a forcing function.

Software engineering is in the process of moving from the craft to the commercial stage.
It has only achieved the stature of a mature engineering discipline in isolated cases.

Figure 2: Evolution of engineering disciplines (after [Finch51])

Science

Commercial

Professional
EngineeringProduction

Craft

(2) Abstraction and its coupling to specifications

The granularity of our abstractions -- the intellectual size of a chunk we treat as atomic -
- increases over time. Abstractions are supported by formal specifications, but formal
specifications will be used in practice only to the extent that they provide clear payoff in
the near term. [Shaw80]

This pattern can be seen in the development of data types and type theory. In the early
1960’s, type declarations were added to programming languages. Initially they were
little more than comments to remind the programmer of the underlying machine
representation. As compilers became able to perform syntactic validity checks the type
declarations became more meaningful, but “specification” meant little more than
“procedure header” until late in the decade. The early 1970s brought early work on
abstract data types and the associated observation that their checkable redundancy
provided a methodological advantage because they gave early warning of problems. At
this time the purpose of types in programming languages was to enable a compile-time
check that ensured that the actual parameters presented to a procedure at runtime
would be acceptable. Through the 1980s type systems became richer, stimulated by the
introduction of inheritance mechanisms. At the same time, theoretical computer
scientists began developing rich theories to fully explain types. Now we see partial
fusion of types-in-languages and types-as-theory in functional languages with type
inference. We see in this history that theoretical elaboration relied on extensive
experience with the phenomena, while at the same time practicing programmers are
willing to write down specifications only to the extent that they are rewarded with
analysis than simplifies their overall task.

Figure 3: Language constructs and phases of software engineering development

2000

1980

1950

1970

1990

1960

Programming-
any-which-way

Programming
-in-the-small

Programming-
in-the-large

Programming-
in-the-world

packages

structured programming

generic definitions

architectural chunks

inheritance
abstract data types objects

procedures

algorithms, data structures
extensible languages

mnemonics, macros

higher-level languages

Figure 4: Coupled development of abstraction and specification

2000

1980

1950

1970

1990

1960

packages

structured programming

generic definitions

architectural chunks

inheritance
abstract data types objects

procedures

algorithms, data structures
extensible languages

mnemonics, macros

higher-level languages

prose

formal specificationsconcrete complexity
formal syntax

signatures

formal semantics

strong types
“software engineering”

algebraic and model specs for ADTs

(3) Progressive codification
Specification techniques evolve in parallel with our understanding of the phenomena
they specify. [ShGar95] We begin by solving problems any way we can manage. After
some time we discover in the ad hoc solutions some things that usually work well.
Those enter our folklore; as they become more systematic we codify them as heuristics
and rules of procedure. Eventually the codification becomes crisp enough to support
models and theories. These help to improve practice; they also allow us to address new
problems that were previously unthinkable.

Figure 5: Cycle of progressive codification

Ad hoc solutions

Folklore

Codification

Models & theories

Improved practice

New problems

Thus, as some aspect of software development comes to be better understood, more
powerful specification mechanisms become available, and they yield better rewards for
the specification effort invested. We can characterize some of the levels of specification
power:

> Ad hoc: implement any way you can
> Capture: simply retain and explain a definition
> Construction: explain how to build an instance from parts
> Composition: explain how to compose parts and their specifications
> Selection: guide designer’s choices for design or implementation
> Verification: determine whether an implementation matches specification
> Analysis: determine the implications of the specification
> Automation: construct an instance from an external specification

When describing, selecting, or designing a specification mechanism, either formal or
informal, it is useful to be explicit about which level it supports. Failure to do so leads
to mismatches between user expectations and specification power.

Brooks proposes recognizing three kinds of results, together with criteria for judging
the quality of those results [Brooks88]:

findings well-established scientific truths truthfulness and rigor
observations reports on actual phenomena interestingness
rules-of-thumb generalizations, signed by an author usefulness

but perhaps not fully supported by data
all three freshness

Bibliography

[Brooks88] Frederick P. Brooks, Jr. Grasping Reality Through Illusion -- Interactive Graphics Serving
Science. Proceedings of the ACM SIGCHI Human Factors in Computer Systems Conference, May
1988, pp. 1-11.

[Finch51] James Kip Finch. Engineering and Western Civilization. McGraw-Hill 1951.

[NaRan69] Peter Naur and Brian Randell (eds). Software Engineering: report on a conference sponsored
by the NATO Science Committee, Garmisch Germany 1968. NATO 1969.

[Shaw80] Mary Shaw. The Impact of Abstraction Concerns on Modern Programming Languages. Proc
IEEE, September 1980, also IEEE Software Oct 1984.

[Shaw90] Mary Shaw. Prospects for an Engineering Discipline of Software. IEEE Software, November
1990.

[ShGar95] Mary Shaw and David Garlan. Formulations and Formalisms in Software Architecture.
Computer Science Today (LNCS 1000), Jan van Leeuwen (ed), Springer-Verlag 1995.

