
Adding Scripting to a Public Bulletin Board

Adam M. Fass
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213, USA

Tel: 1-412-268-4074
E-mail: afass@cs.cmu.edu

Randy Pausch
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213, USA

Tel: 1-412-268-3579
E-mail: pausch@cmu.edu
ABSTRACT
MessyBoard is a projected networked 2D bulletin board.
Our experience with MessyBoard suggests that it is useful
for some kinds of communication, but users have requested
new behaviors such as automatic deletion of old content,
automatic posting of new content from the web, and simple
collaborative games.

In order to rapidly build and experiment with automatic
behaviors, we have integrated the Python scripting language
into the MessyBoard client and created a simple develop-
ment environment. A group of scripters have built several
interesting behaviors, including puzzles, magnetic poetry,
automatic posting of images, and a news ticker.

KEYWORDS: Collaborative applications, MessyBoard,
Python

INTRODUCTION
MessyBoard is a networked 2D bulletin board [2], similar to
the Notification Collage [4], that we project on the wall of
our lab as shown in figure 1. Anyone can see the content in
a window on their own PC, and users can add text notes,
pictures, and web links by dragging and dropping or cutting
and pasting content from any application into the Messy-
Board window. A central server communicates with all of
the clients over the internet to keep everyone's display syn-
chronized.

Researchers at Carnegie Mellon University and the Univer-
sity of Virginia have been using MessyBoard for the past
eight months. Based on our informal observations, we
believe that MessyBoard helps in making shared decisions,
making announcements, and scheduling meetings, and that
it is a fun way for members of a group to communicate with
each other. [2] However, users have frequently requested
that we add automated behaviors. For example, users want
MessyBoard to automatically delete old content when the
board is full and add new content when nobody is posting
anything. Users have also suggested more sophisticated
behaviors, like games or making old content fade or shrink
over time.

To facilitate rapid prototyping, we have integrated the
Python scripting language [6] into the MessyBoard client.
We created an object-oriented Python API (the "Messy
API") for manipulating the contents of MessyBoard and a
simple development environment called "MessyDev" for
testing and debugging Python scripts.

EXAMPLE GAMES AND BEHAVIORS
We released MessyDev to the Stage3 research group at Car-
negie Mellon University in order to see how they would
use the Messy API and whether or not it was sufficient for
the things they wanted to do. These scripters have used
MessyDev over a two-week period and they have written
several interesting behaviors:

• Sending the text of a note to Google's image search [3]
and putting the first resulting picture on the board

• A Sliding Piece Puzzle that makes a puzzle out of any
picture on MessyBoard

• Automatically moving objects so that they don't overlap

• Automatically posting images from a USB camera on
MessyBoard at regular intervals

• A news ticker that automatically retrieves headlines and
links from RSS feeds [7]

IMPLEMENTATION
In order to experiment with automatic behaviors, we needed
a way to quickly prototype, test, and modify behaviors.
Since MessyBoard itself began as a rapid prototype, our
code base was not designed to support this kind of flexibil-
ity. Even if we could add new behaviors quickly, each
change would require us to either upgrade the server, make
all of our users upgrade to a new client program, or both.

Instead, we chose to integrate the Python scripting language
[6] with the MessyBoard client program. The Python inter-
preter is open source, and the code base was designed to
support this kind of integration. Python has been used suc-

Figure 1: MessyBoard is projected on the wall of our
lab. Users can run the client in a window on their
own computers to add content.



cessfully as a rapid prototyping language in several other
projects. [1][5][8] By integrating Python with the Messy-
Board client, we allow a single client to change the behavior
of MessyBoard using the existing network protocol without
upgrading the server or any of the other clients.

We modified the MessyBoard client so that Python scripts
can manipulate the board through a simple procedural API.
This API supports the same operations that a user can per-
form with the MessyBoard client (creating, modifying, and
destroying objects on the board) and it allows the script to
register a callback function for all the events to which the
user interface responds. Thus, the API allows Python
scripts to behave as automated users, with the same capabil-
ities for observation and manipulation as a human user.
This approach allowed us to add automation with a minimal
amount of modification to MessyBoard and preserve back-
ward compatibility with existing clients and servers.

The simple procedural API gives a Python script all the
power we thought was necessary, but we wanted an object-
oriented API with more convenience functions. We built
the "Messy API" entirely in Python on top of the simple pro-
cedural API. The new API provides a class hierarchy for
representing different kinds of objects (notes, pictures,
links, etc.) All objects have member functions to allow
modification. The Messy API allows multiple callbacks for
different event types, as opposed to the single callback for
all events provided by the simple procedural API.

EXAMPLE: AUTOMATIC ARROW
To illustrate how the Messy API is used, we shall consider a
simple example: a script that automatically places an arrow
next to the newest item on the board. Our script begins by
creating an arrow off screen where nobody can see it:

arrow = desktop.createArrow(-200, -200)

Next, we define a listener function to be called every time
an object is created:

def onCreate(desktop, object):
left, top, right, bottom = object.getRect()
arrow.setPosition(left - 180, top)
arrow.bringToFront()

The listener function gets the position of the new object and
then moves the arrow to a location 180 pixels to the left of
the new object. Finally, it brings the arrow to the top of the
Z order so that it will slightly overlap the new object. The
last step is to register our listener function so that it will be
called every time a new object is created:

desktop.addListener(CREATE_EVENT, onCreate)

DEVELOPMENT ENVIRONMENT
We have created the MessyDev development environment
in order to provide a convenient way to develop and test
scripts. To avoid disturbing existing servers, MessyDev
automatically runs a local MessyBoard server. The main

window looks just like MessyBoard and has all of the same
functionality. A control panel allows the user to reset the
environment and execute a script file with a single click.
The user can experiment by executing code from a scratch
buffer in the control panel or by typing code into notes in the
main window.

FUTURE WORK
Some scripters have asked for the ability to create custom
user interfaces on MessyBoard that respond to mouse clicks,
cursor movements, etc. Current MessyBoard scripts cannot
do this because clients do not get information about clicks
and cursor movements on other clients. We plan to modify
the MessyBoard client to broadcast these events to other cli-
ents so that scripts can respond to them.

We plan to distribute MessyDev to more researchers in
order to see what they want to build and gather more sug-
gestions for improving the API and development environ-
ment. With its built-in network synchronization and simple
scripting language, we believe that MessyDev may become
a powerful tool for prototyping collaborative applications.

ACKNOWLEDGEMENTS
We would like to thank all the members of the Stage3
research group at CMU for using MessyDev and giving us
feedback. This work is funded by DARPA, the Office of
Naval Research (ONR), NSF and Intel.

REFERENCES
1. Conway, M. et al. Alice: lessons learned from building

a 3D system for novices. Proceedings, CHI 2000, 486-
493.

2. Fass, A.M., Forlizzi, J., and Pausch, R. MessyDesk and
MessyBoard: Two Designs Inspired By the Goal of
Improving Human Memory. Proceedings, DIS 2002.

3. Google. Google Image Search. http://www.google.com/

4. Greenberg, S., and Rounding, M. The Notification
Collage: Posting Information to Public and Personal
Displays. Proceedings, CHI 2001, 514-521.

5. Hinsen, K. The Molecular Modeling Toolkit: a case
study of a large scientific application in Python.
Proceedings, 6th International Python Conference.
http://www.python.org/workshops/1997-10/
proceedings/hinsen.html

6. Python Software Foundation. Python.
http://www.python.org

7. RDF Site Summary (RSS). http://www.purl.org/rss/
1.0/

8. Scherer, D., Dubois, P., & Sherwood, B. (2000).
VPython: 3D Interactive Scientific Graphics for
Students, Computing in Science and Engineering,
Sept./Oct. 2000, 82-88.


	ABSTRACT
	INTRODUCTION
	EXAMPLE GAMES AND BEHAVIORS
	IMPLEMENTATION
	EXAMPLE: AUTOMATIC ARROW
	DEVELOPMENT ENVIRONMENT
	FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES
	1. Conway, M. et al. Alice: lessons learned from building a 3D system for novices. Proceedings, C...
	2. Fass, A.M., Forlizzi, J., and Pausch, R. MessyDesk and MessyBoard: Two Designs Inspired By the...
	3. Google. Google Image Search. http://www.google.com/
	4. Greenberg, S., and Rounding, M. The Notification Collage: Posting Information to Public and Pe...
	5. Hinsen, K. The Molecular Modeling Toolkit: a case study of a large scientific application in P...
	6. Python Software Foundation. Python. http://www.python.org
	7. RDF Site Summary (RSS). http://www.purl.org/rss/ 1.0/
	8. Scherer, D., Dubois, P., & Sherwood, B. (2000). VPython: 3D Interactive Scientific Graphics fo...

	Adding Scripting to a Public Bulletin Board
	Adam M. Fass
	Carnegie Mellon University 5000 Forbes Avenue Pittsburgh, PA 15213, USA Tel: 1-412-268-4074 E-mai...
	Randy Pausch
	Carnegie Mellon University 5000 Forbes Avenue Pittsburgh, PA 15213, USA Tel: 1-412-268-3579 E-mai...


