

Creating
Spherical Worlds

Kate Compton, James Grieve, Ed Goldman,
Ocean Quigley, Christian Stratton, Eric Todd,

Andrew Willmott

Maxis, Electronic Arts

Background

• Spore based on “powers of 10”
– Cell life (2D world)
– Planet: creatures, tribes, civilisations
– Solar System
– Interstellar
– Galaxy

• Want seamless transitions
 planets need to be spherical

Planet Constraints

• Need to have lots (millions? billions?)
– many more than we can manually author

• Need to be playable
• Must look good
• Need to be fast to generate

– We can’t store all these planets
– Would like to transmit them at some point

• Need to support terraforming
– Player modification of planet to support life

Areas of Interest

• Parameterization
– How do we store planet representation over

surface? How do we store game data?

• Generating Heightfields
– What are the operations? How can we make it fast?

• Texturing
– Must be heightfield driven

• Authoring
– Variety, art control

Parameterization

• Possible approaches:
– Longitude/latitude (pole cap)
– Gnomic
– Freeform 3D: Sparse Voxel
– Charts

• Regular: cubemap, diamond, duodecahedron ...
• On-the-fly (Voronoi-style)
• Orthographic projection
• Perspective projection

Parameterization Goals

• Minimize distortion and discontinuities
• Efficient (heightfield) storage
• Fast mapping from (x,y,z) to (u,v) and back

• Wrapping between charts
• Rectangular area splatting
• Efficient normal map generation

Parameterization: Cube Maps

• Chose cube maps as the best compromise

Parameterization: Cube Maps

• Chose cube maps as the best compromise
• Faces are grids

– Familiar from previous games

• Distortion at corners
– But not too bad, much better than pole distortion

• Face wrapping is tractable
– Pick right face mappings -> simple permutation rules

• Projective projection
– Lines map to great circles on sphere: very useful!

Colour Map

Normal Map

• Derived from height map
– Large source of CPU time early on

• Standard DDF to find ‘flat’ normal map
– Can then use Jacobian to warp to spherical form

J(s, t, h) =




h/w(1− s2/w2) −sth/w3 −sh/w3

−sth/w3 h/w(1− t2/w2) −th/w3

s/w t/w 1/w





w =
√

(s2 + t2 + 1)

Normal Map

Generating Height Fields

• Brush system that operates on the sphere
• Brushes are 2D textured rects

• Several different brush operations
– Conditionally raise or lower terrain

• Applied on GPU, after clipping brush footprint
to faces

Example
brush
footprint

Example
brush
footprint

Example
brush
footprint

Controlling Terrain Brushes

• Use our effects system, Swarm, to run
brushes over the surface

• Controlled by:
– Particle systems (spawning other particle systems)
– Randomized parameter ranges, random walks
– Terrain forces
– Force/control operates in the tangent plane

Texturing

• Derive Control Map from height field
– Filter: water level, gradient, curvature
– Combine according to tech artist formula

• Blends source textures to form base colour
– Blends detail maps on the fly

• Planets have type, atmosphere, temperature
– Control colour ramps, and atmosphere/fogging

Terraforming

Authoring

• Concept Sketches

Authoring

• Originally one mega effects script
– random selection between various child effects

• Difficult to control
– Hard to get art-directed

• Introduced a top layer with more control:
terrain scripts

• Each script produces a particular kind of
planet

The Result

Authoring: Planet Editor

Demo

Questions?

