Andrej Bauer
|
selected materials from talks
|
"Coherence Numbers of Domains"
with Dana S. Scott
Mathematical
Foundations of Programming Semantics XVIII,
Tulane University, New Orleans
|
March 25, 2002
A reflexive domain is one that contains its own continuous function
space as a retract. Reflexive domains are models of the untyped lambda
calculus, and from them we build categories of partial equivalence
relations, also known as PER models. The results presented in this
talk were motivated by the question how many PER models on reflexive
Scott domains there are, up to equivalence of categories.
We first discuss the notion of "n-coherent" domains, a straightforward
generalization of Plotkin's definition of coherently complete domains,
and the related notion of a "coherence number" of a domain.
Using results about the existence of universal n-coherent domains, we
prove several domain theoretic results about reflexive domains. One
such result is that a domain D is reflexive if, and only if, the
product D x D is a retract of D. We also show that there are only
countably many PER models on reflexive Scott domains, one for each
coherence number between 1 and aleph null.
Slides: [Postscript]
[PDF]
[printer-friendly Postscript]
|
"Not not to be or not to be?"
Distinguished
Lecture,
School of Computer Science,
Carnegie Mellon University
|
February 21, 2002
Classical branches of mathematics, such as geometry, real analysis and
differential calculus, were developed well before the rise of modern
computer science. They have little to say about questions that
computer scientists might ask; for example, what are good data
structures for representing real numbers, differentiable maps,
probability distributions, and other classical mathematical objects.
One way to deal with these questions is offered by realizability
theory, where we build an entire mathematical universe on top of a
computational model, for example RAM machines or a programming
language. In such a custom-made mathematical world every mathematical
construction is automatically equipped with an implementation in the
underlying computational model. The development of a
computation-sensitive mathematics can then proceed at an abstract and
conceptual level, with a clear idea of what it means to correctly
implement a given mathematical objects.
In the new world, not everything is the same as in classical
mathematics. Not all classical axioms are valid anymore, and some
classically invalid axioms are validated. These changes influence the
properties of well known mathematical objects, such as the real
numbers. A computationally minded person will admit, however, that the
new world is better than the old one.
Talk: [Windows
Media]
[low bandwidth]
Slides: [Postscript]
[PDF]
[printer-friendly Postscript]
|
"Ne ne biti ali ne biti?"
Solomonov Seminar,
Odsek za Inteligentne Sisteme,
Institut Jozef Stefan
|
5. marec, 2002
Klasične veje matematike, kot so geometrija, analiza in diferencialni
račun, so mnogo starejše od računalniške znanosti. Zato ni
presenteljivo, da ne ponujajo odgovorov na vprašanja, ki zanimajo
računalničarje; na primer, kakšne podatkovne strukture so primerne za
predstavitev realnih števil, diferenciabilnih preslikav, verjetnostnih
porazredlitev in ostalih klasičnih matematičnih struktur.
Teorija realizabilnosti ponuja en možen odgovor na ta vprašanja:
celoten matematični svet zgradimo še enkrat in ga zasnujemo na
računskem modelu kot je na primer programski jezik ali na stroj z RAM
pomnilnikom. V tako prikrojenem matematičnem svetu je vsaka
matematična konstrukcija avtomatično opremljena z ustrezno
računalniško implementacijo. Računalniško zavestno matematiko lahko
tako razvijemo povsem abstraktno, hkrati pa imamo na voljo matematična
orodja, s katerimi zagotovimo pravilnost implementacije matematičnih
struktur.
V novem matematičnem svetu ni vse tako kot v klasičnem. Nekateri
klasični aksiomi so neveljavni, drugi neklasični aksiomi pa so
veljavni. Te spremembe vplivajo na lastnosti osnovnih matematičnih
objektov, kot so na primer realna števila. Vendar pa se bodo vsi, ki
razmišljajo računsko, strinjali, da je novi svet boljši od starega.
Talk: [RealPlay]
Slides:
[Postscript]
[PDF]
[printer-friendly Postscript]
|