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What 1s wrong with these theorems?

Theorem: Three points are either collinear or not.

Theorem: A non-constant polynomial has a complex root.

Theorem: Most functions are everywhere discontinuous.
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What 1s wrong with these theorems?

Theorem: Three points are either collinear or not.

But testing for collinearity is numerically unstable.

Theorem: A non-constant polynomial has a complex root.

But classical proofs say nothing about how to compute a root.

Theorem: Most functions are everywhere discontinuous.

But such functions are irrelevant for computer science.
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Branches of Math tailored for Comp. Science

e Theory of computability

e Computational complexity & algorithms
e Numerical analysis

e Domain theory

e Cryptography

e Queueing theory

e Finite model theory

e Machine learning

e Type theory
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Did you ever ask yourself ...

... Whether mathematics itself

can be tailored for computer science?
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Did you ever ask yourself ...

... Whether mathematics itself

can be tailored for computer science?

One way to do this 1s realizability theory.
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Overview

1. Building a Realizability World
2. Life in a Realizability World

3. Practical Considerations
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How do we create a world of mathematics?

Use category theory, of course.
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How do we create a world of mathematics?

Use category theory, of course.

T'wo steps:

1. Find a category that describes our view of the world.

category = objects + morphisms

2. Apply tools of categorical logic to study it.
Take categorical logic course in the Philosophy Dept.
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Computational Views of the World

e Hverything is made of Turing machines.
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Computational Views of the World

Everything 1s made of Turing machines.
Everything 1s made of ML programs.
Everything 1s made of Scott domains.

The relative view:
1. Which data can be represented?

2. How do we compute with data?
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Relative Computability

e Data: contents of infinite RAM

e Computation: (finite) program
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Relative Computability

e Data: contents of infinite RAM

— all configurations possible, also non-computable

— other sources of data (input streams) can be added

e Computation: (finite) program
— any chosen general programming language

— different language features give different worlds
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Modest Sets

01100011101011011001011
01111111101011011001011
01111011101011011001011
01110111101011011001011
10010001110101101100101
00100011101011111001011
01000011101011011001010
01101111101011011000000
00100010001010010001010
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01111111101011011001011
01111011101011011001011
01110111101011011001011
10010001110101101100101
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clFx “c realizes (represents) x”
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Realized Functions
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Realized Functions

01100011101011011001011

01111111101011011001011

01111011101011011001011

01110111101011011001011

10010001110101101100101

00100011101011111001011

01000011101011011001010

01101111101011011000000

00100010001010010001010

A

O

01100011101011011001011

01111111101011011001011

01111011101011011001011

01110111101011011001011

10010001110101101100101

00100011101011111001011

01000011101011011001010

01101111101011011000000

00100010001010010001010

p(c) IF f(x).

clF-x then

If
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Computation-aware Sets and Functions

Foundation of classical mathematics:

sets & functions
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Computation-aware Sets and Functions

Foundation of classical mathematics:

sets & functions

Foundation of computation-aware mathematics:

modest sets & realized functions
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Category Theory at Work

Any mathematical structure that has a universal property has

a unique representation, up to isomorphism.
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Category Theory at Work

Any mathematical structure that has a universal property has

a unique representation, up to isomorphism.

1. Natural numbers

initial algebra with one constant and one unary operation

2. Real numbers

the complete Archimedean field
3. Inductive sets (lists, trees, ...)
4. Cartesian product A x B

5. Function space A — B
12/29



Example: real numbers R

A real number x € R is realized by a pair (d, e):

<d, €> ”_]R X,
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Example: real numbers R

A real number x € R is realized by a pair (d, e):
<d> €> ”_]R X,

where:
e mantissa d = dodidy ..., with d; € {—1,0,1}
e exponent e € Z

e signed binary digit representation:

o0 d:
x =2 Z Ikt
k=0

13/29



Overview

[1 Building a Realizability World
[1 Life in a Realizability World

3. Practical Considerations
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Everything 1s made of tiny invisible realizers.”

The Particle Physics of Realizability
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{9

Everything 1s made of tiny invisible realizers.”

The Particle Physics of Realizability

“T'he two basic realizers are S and K.”

Kxy = x Sxyz = (xz)(yz)
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The Cosmology of Realizability

“The universe 1s becoming denser at an exponential rate.”

(Gordon Moore, 1965)

| Dehsity —

1965 1970 1975 1980 1985 1990 1995 2000
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The Language of Realizability

Computational understanding of truth:

“A statement 1s true when it 1s witnessed by a program.”

17/29



The Language of Realizability

Computational understanding of truth:
“A statement 1s true when it 1s witnessed by a program.”

Example: a witness for

Vx e Ri(x <0V x>0)

17/29



The Language of Realizability

Computational understanding of truth:
“A statement 1s true when it 1s witnessed by a program.”

Example: a witness for
Vx e Ri(x <0V x>0)
is a program p such that, for (d,e) IFg X,

p(d,e)=0 ifx<0
p(de)=1 ifx>0

17/29



Intuitionistic Logic

The logic of realizability is intuitionistic.
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Intuitionistic Logic
The logic of realizability is intuitionistic.

The Law of Excluded Middle is not generally valid:

Ve

Proof by contradiction in not generally valid:

T =0

This 1s a good thing!
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Markov’s Principle

If elements of a set A can be enumerated and

@(x) is a semi-decidable predicate then

(—Vx e A.—p(x)) = Ix€A.p(x)
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Markov’s Principle

If elements of a set A can be enumerated and

@(x) is a semi-decidable predicate then

(—Vx e A.—p(x)) = Ix€A.p(x)

Witnessed by a program which iterates through all
elements x1, x2, ... of A and tests @(x;) until one is
found to hold.
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All functions are continuous

“All f : R — R are continuous.”
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All functions are continuous

“All f : R — R are continuous.”

“Only finite precision of input 1s required

for given finite precision of output.”

Witnessed by a program which, given p IF f and n € N,
finds a k € N such that p reads only k digits of input to

produce n digits of output.

Such a witness exists only if we can use a throw—catch

programming construct, or a similar control mechanism.
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The “not not” translation

Classical logic can be translated into intuitionistic logic.
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The “not not” translation

Classical logic can be translated into intuitionistic logic.

Classical Intuitionistic

¢ = P —— (@ = ¥~
@ A\ ——(p* AV*)
@V ——(* V*)
Ix. @(x) ——dx. @(x)*
Vx. @(x) ——Vx. @(x)*
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Not not a Classic Masterpiece

Not not, not to not be, or not to be:
not that 1s not the question:
Not not, whether not ’tis not nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or not to not take arms against a sea of troubles,

And not by not opposing not not end them?

(not not Hamlet)
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What is still the same?

The “not not” stable statements do not change:
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What is still the same?

The “not not” stable statements do not change:

1. All equations and inequations:

p witnesses “a; = ay” if, and only if, a; i1s a,

2. Any statement built from =, <, /A, =— and V.

Finite combinatorics 1s pretty much the same.
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Overview

[1 Building a Realizability World
[1 Life in a Realizability World

[] Practical Considerations
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Tailored for Computer Science

From the proof of a statement

we obtain an associated program witnessing it.
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Tailored for Computer Science

From the proof of a statement

we obtain an associated program witnessing it.

From the construction of a set or a function

we obtain an associated implementation.

We prove correctness of an implementation

by showing it realizes the desired specification.
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A Question for Hardware Designers

Real numbers are represented with signed binary digits.
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A Question for Hardware Designers

Real numbers are represented with signed binary digits.

Would negative digits be useful in hardware

implementation of floating point arithmetic?
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A Challenge for Computational Geometers

Testing for collinearity is not just numerically unstable,

1t 1s non-constructive.
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A Challenge for Computational Geometers

Testing for collinearity is not just numerically unstable,

1t 1s non-constructive.

Prove theorems without using the dichotomy
VxeR.(x <0Vx>0)
Use 1nstead

Ve >0.VxeR. (x <eVx>—¢)
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A Task for Programming Language Designers

Ordinary if—then—else control mechanism is

inappropriate for exact arithmetic.
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A Task for Programming Language Designers

Ordinary if—then—else control mechanism is

inappropriate for exact arithmetic.

Design practical data structures for real numbers and
invent new control mechanisms for programming with

them.
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In Conclusion

The world of realizability 1s your world.
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