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Motivating the Audience

A classification of PER models on domains.

An unexpected theorem about reflexive domains.
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Terminology

e (Scott) domain: w-algebraic bounded complete dcpo
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Terminology

(Scott) domain: w-algebraic bounded complete dcpo

Continuous retract: D<E  (“E contains D”)

1
D=—/E ro1l1=1dp
T

Universal domain U for a class C of domains:
Ue(C and E<U for all E € C.

Reflexive domain: [D — D] <D and D #{L}
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PER Models

A reflexive domain D 1s a model of untyped A-calculus,

therefore a combinatory algebra:

K = Ax.Ay. x S = Ax.Ay. Az. (xz)(yz)
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PER Models

A reflexive domain D 1s a model of untyped A-calculus,

therefore a combinatory algebra:

K = Ax.Ay. x S = Ax.Ay. Az. (xz)(yz)
PER(D), category of partial equivalence relations on D:
’ﬂ’l f(a)
' f (b)
f

— \
D D
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How many PER models are there?

Given reflexive domains D and E, when i1s

PER(D) ~ PER(E) ?
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How many PER models are there?

Given reflexive domains D and E, when i1s

PER(D) ~ PER(E) ?

Some well-known PER models:
e PER(Pw) where Pw is the graph model
e PER(T®) where T is Plotkin’s universal coherent domain

e PER(U) where U is universal for Scott domains

These are all different.
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The Answer

Theorem:

For reflexive D and E,
PER(D) ~ PER(E) <4= coh(D) = coh(E)

where coh(D) is the coherence number of D,

)
] <coh(D) <w
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Coherent Domains

|Plotkin’78]
D is coherent when, for all S C D,

(Vx1,%x2 € S.{x7,%x2} bounded) =—> S bounded
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Coherence Numbers

Definition:
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Coherence Numbers

Definition:

D is n-coherent, when for all S C D,
(Vx1,...,Xn € S.{x1,...,%xn} bounded) = S bounded

Additionally, we say that every D i1s w-coherent.

Coherence number:

coh(D) =min {1 <n < w | D is n-coherent}
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Eixamples

1-coherent = lattice

2-coherent = Plotkin coherent
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Examples

1-coherent = lattice

2-coherent = Plotkin coherent

T, T, T3 Ty

Ty =X ={L,T}
Tn =PI, ...,n)\ U, ... ,nj (2 <n<w)
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Observations about Coherence Numbers

Proposition: coh(T,,) =n

Proposition:
Let 2<n < w. Then T,, <D &= coh(D) > n.
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Observations about Coherence Numbers

Proposition: coh(T,,) =n

Proposition:
Let 2<n < w. Then T,, <D &= coh(D) > n.

Proposition:

e coh(D x E) = max(coh(D), coh(E))
e coh(D%®) = coh(D)

e coh(|[D — E]) = coh(E)

10/18



Nn-Coherent Domains

Let Coh,, be the category of n-coherent domains.

Lat = Cohy € Cohy C Cohy C -.- C Coh, = Dom

Elach Coh,, 1s a cartesian-closed subcategory of Dom.

11/18



Nn-Coherent Domains

Let Coh,, be the category of n-coherent domains.

Lat = Cohy € Cohy, C Cohy C -.- C Coh, = Dom

Elach Coh,, 1s a cartesian-closed subcategory of Dom.

Does Coh,, have a universal domain?

11/18



Nn-Coherent Domains

Let Coh,, be the category of n-coherent domains.

Lat = Cohy € Cohy, C Cohy C -.- C Coh, = Dom
Elach Coh,, 1s a cartesian-closed subcategory of Dom.

Does Coh,, have a universal domain?

T," is universal for Coh;.
T5" is universal for Coh,.

Therefore by induction. ..
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Universal domain for Coh,

Let F,, = {x C N ‘ x| < n}, and define:

Cn ={(a,B) € PN x PF, |Vb €B.b Z a}
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Universal domain for Coh,
Let F,, = {x C N ‘ x| < n}, and define:
Cn ={(a,B) € PN x PF, |Vb €B.b Z a}

A typical element (a,{by,b>,...}) of Cy:

(b: - 2 (o)

b

Cy=PN=T®  Cp=TY
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Universal domain for Coh,

Theorem: C,, is universal for Coh.
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Universal domain for Coh,

Theorem: C,, is universal for Coh.

Proof: a generalization of [Plotkin’78|.

Theorem:

o Ch<«Tl¢ forn<w,

o Cuallicy T

Hence T 1s universal for Cohy,,

and | [,,_, Tn 1s universal for Coh,, = Dom.
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Domains

A Theorem about Reflexive |

Theorem:
Let D be a domain with n = coh(D).

The following are equivalent:

1. D 1s reflexive
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A Theorem about Reflexive Domains

Theorem:
Let D be a domain with n = coh(D).

The following are equivalent:

1. D 1s reflexive

2. Dx D«D
3. Ex D <D for some E with coh(E) = coh(D)
4. T x DD forallk<1+4+n

5. D is universal for Coh

14/18



Reflexive domains are easy to come by

Corollary:

D® 1s reflexive for any non-trivial domain D.
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Reflexive domains are easy to come by

Corollary:

D® 1s reflexive for any non-trivial domain D.

Proof: DY x D® = D%

Corollary:

E — D] is reflexive if max(E) is infinite and D non-trivial.

Proof: N| < E, therefore D «[N; — D]« [E — D]

15/18



Classification of PER models

Theorem:

For reflexive D and E,

coh(D) = coh(E) — PER(D) ~ PER(E).

Proof:
Sufficient to prove D < E and E<D.
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Classification of PER models

Theorem:

For reflexive D and E,

coh(D) = coh(E) — PER(D) ~ PER(E).

Proof:
Sufficient to prove D < E and E<D.
Let n = coh(D) = coh(E).

D reflexive —> D universal for Coh,, =— E <« D.
Similarly for D < E. QED.
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Classification of PER models

Every PER(D) is equivalent to precisely one of

PER(T;")
PER(T5")
PER(T;")

PER(] [,o o, Tn)
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Classification of PER models

Every PER(D) is equivalent to precisely one of

PER(T;")
PER(T5")
PER(T;")

PER(] [,o o, Tn)

An analogous statement holds for realizability toposes.
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Questions

What 1s this good for?
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Questions

What 1s this good for?

What 1s the computational understanding of Ty?
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The ‘whodoneit’ interpretation

{A,B}

A}

{A,C}

<

U

{B,C}

{C}
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