Coherence Numbers of Domains

Andrej Bauer
University of Ljubljana
Slovenia

Dana S. Scott
Carnegie Mellon University
Pittsburgh, USA

Motivating the Audience

A classification of PER models on domains.

An unexpected theorem about reflexive domains.

• (Scott) domain: w-algebraic bounded complete dcpo

- (Scott) domain: ω-algebraic bounded complete dcpo
- Continuous retract: D ⊲ E ("E contains D")

$$D \stackrel{i}{\rightleftharpoons} E$$
 $r \circ i = id_D$

- (Scott) domain: ω-algebraic bounded complete dcpo
- Continuous retract: D ⊲ E ("E contains D")

$$D \stackrel{i}{\rightleftharpoons} E$$
 $r \circ i = id_D$

• Universal domain U for a class C of domains: $U \in C$ and $E \triangleleft U$ for all $E \in C$.

- (Scott) domain: ω-algebraic bounded complete dcpo
- Continuous retract: D ⊲ E ("E contains D")

$$D \stackrel{i}{\rightleftharpoons} E$$
 $r \circ i = id_D$

- Universal domain U for a class C of domains: $U \in C$ and $E \triangleleft U$ for all $E \in C$.
- Reflexive domain: $[D \rightarrow D] \triangleleft D$ and $D \neq \{\bot\}$

PER Models

A reflexive domain D is a model of untyped λ -calculus, therefore a *combinatory algebra*:

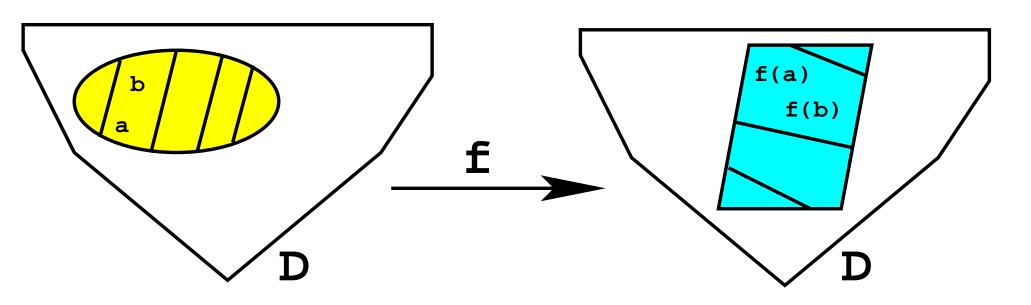
$$K = \lambda x. \lambda y. x$$
 $S = \lambda x. \lambda y. \lambda z. (xz)(yz)$

PER Models

A reflexive domain D is a model of untyped λ -calculus, therefore a *combinatory algebra*:

$$K = \lambda x. \lambda y. x$$
 $S = \lambda x. \lambda y. \lambda z. (xz)(yz)$

PER(D), category of *partial equivalence relations* on D:



How many PER models are there?

Given reflexive domains D and E, when is

$$PER(D) \simeq PER(E)$$
 ?

How many PER models are there?

Given reflexive domains D and E, when is

$$PER(D) \simeq PER(E)$$
 ?

Some well-known PER models:

- PER(Pw) where Pw is the graph model
- $PER(T^{\omega})$ where T^{ω} is Plotkin's universal coherent domain
- PER(U) where U is universal for Scott domains

These are all different.

The Answer

Theorem:

For reflexive D and E,

$$PER(D) \simeq PER(E) \iff coh(D) = coh(E)$$

where coh(D) is the *coherence number* of D,

$$1 \leq \mathsf{coh}(\mathsf{D}) \leq \omega$$
.

Coherent Domains

[Plotkin'78]

D is *coherent* when, for all $S \subseteq D$,

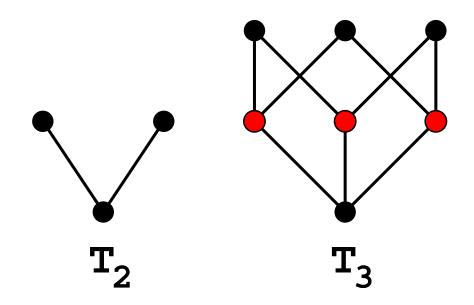
 $(\forall x_1, x_2 \in S.\{x_1, x_2\} \text{ bounded}) \Longrightarrow S \text{ bounded}$

Coherent Domains

[Plotkin'78]

D is *coherent* when, for all $S \subseteq D$,

 $(\forall x_1, x_2 \in S.\{x_1, x_2\} \text{ bounded}) \Longrightarrow S \text{ bounded}$



Coherence Numbers

Definition:

D is n-coherent, when for all $S \subseteq D$,

$$(\forall x_1, \dots, x_n \in S, \{x_1, \dots, x_n\} \text{ bounded}) \Longrightarrow S \text{ bounded}$$

Coherence Numbers

Definition:

D is n-coherent, when for all $S \subseteq D$,

 $(\forall x_1, \dots, x_n \in S, \{x_1, \dots, x_n\} \text{ bounded}) \Longrightarrow S \text{ bounded}$

Additionally, we say that every D is ω -coherent.

Coherence Numbers

Definition:

D is n-coherent, when for all $S \subseteq D$,

$$(\forall x_1, \dots, x_n \in S, \{x_1, \dots, x_n\} \text{ bounded}) \Longrightarrow S \text{ bounded}$$

Additionally, we say that every D is ω -coherent.

Coherence number:

$$coh(D) = min \{1 \le n \le \omega \mid D \text{ is } n\text{-coherent}\}$$

Examples

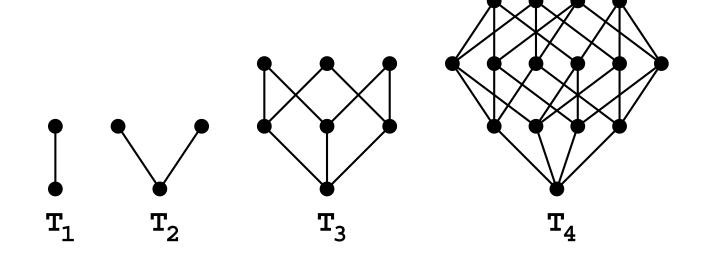
1-coherent = lattice

2-coherent = Plotkin coherent

Examples

1-coherent = lattice

2-coherent = Plotkin coherent



$$T_1 = \Sigma = \{\bot, \top\}$$

$$T_n = \mathcal{P}(\{1, \dots, n\}) \setminus \{\{1, \dots, n\}\}$$

$$(2 \le n < \omega)$$

Observations about Coherence Numbers

Proposition: $coh(T_n) = n$

Proposition:

Let $2 \le n < \omega$. Then $T_n \triangleleft D \iff \mathsf{coh}(D) \ge n$.

Observations about Coherence Numbers

Proposition: $coh(T_n) = n$

Proposition:

Let $2 \le n < \omega$. Then $T_n \triangleleft D \iff \mathsf{coh}(D) \ge n$.

Proposition:

- $coh(D \times E) = max(coh(D), coh(E))$
- $coh(D^{\omega}) = coh(D)$
- $coh([D \rightarrow E]) = coh(E)$

n-Coherent Domains

Let Coh_n be the category of n-coherent domains.

$$\mathsf{Lat} = \mathsf{Coh}_1 \subseteq \mathsf{Coh}_2 \subseteq \mathsf{Coh}_3 \subseteq \cdots \subseteq \mathsf{Coh}_{\omega} = \mathsf{Dom}$$

Each Coh_n is a cartesian-closed subcategory of Dom.

n-Coherent Domains

Let Coh_n be the category of n-coherent domains.

$$\mathsf{Lat} = \mathsf{Coh}_1 \subseteq \mathsf{Coh}_2 \subseteq \mathsf{Coh}_3 \subseteq \cdots \subseteq \mathsf{Coh}_\omega = \mathsf{Dom}$$

Each Coh_n is a cartesian-closed subcategory of Dom.

Does Cohn have a universal domain?

n-Coherent Domains

Let Coh_n be the category of n-coherent domains.

$$\mathsf{Lat} = \mathsf{Coh}_1 \subseteq \mathsf{Coh}_2 \subseteq \mathsf{Coh}_3 \subseteq \cdots \subseteq \mathsf{Coh}_\omega = \mathsf{Dom}$$

Each Coh_n is a cartesian-closed subcategory of Dom.

Does Cohn have a universal domain?

- T_1^{ω} is universal for Coh₁.
- T_2^{ω} is universal for Coh₂.
- Therefore by induction...

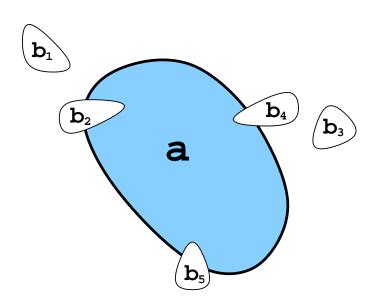
Let
$$\mathbb{F}_n = \{x \subseteq \mathbb{N} \mid |x| < n\}$$
, and define:

$$\mathbb{C}_{n} = \left\{ \langle a, B \rangle \in \mathcal{P}\mathbb{N} \times \mathcal{P}\mathbb{F}_{n} \mid \forall b \in B. \, b \not\subseteq a \right\}$$

Let $\mathbb{F}_n = \{x \subseteq \mathbb{N} \mid |x| < n\}$, and define:

$$\mathbb{C}_{n} = \left\{ \langle a, B \rangle \in \mathcal{P}\mathbb{N} \times \mathcal{P}\mathbb{F}_{n} \mid \forall b \in B. \, b \not\subseteq a \right\}$$

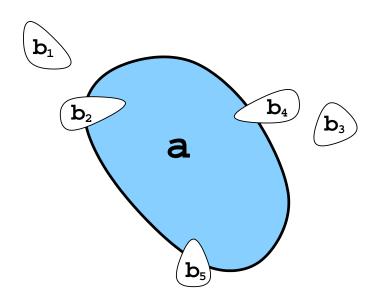
A typical element $\langle a, \{b_1, b_2, \ldots \} \rangle$ of \mathbb{C}_n :



Let
$$\mathbb{F}_n = \{x \subseteq \mathbb{N} \mid |x| < n\}$$
, and define:

$$\mathbb{C}_{n} = \left\{ \langle a, B \rangle \in \mathcal{P}\mathbb{N} \times \mathcal{P}\mathbb{F}_{n} \mid \forall b \in B. \, b \not\subseteq a \right\}$$

A typical element $\langle a, \{b_1, b_2, \ldots \} \rangle$ of \mathbb{C}_n :



$$\mathbb{C}_1 \cong \mathcal{P}\mathbb{N} \cong \mathsf{T}_1^{\omega} \qquad \mathbb{C}_2 \cong \mathsf{T}_2^{\omega}$$

Theorem: \mathbb{C}_n is universal for Coh_n .

Theorem: \mathbb{C}_n is universal for Coh_n .

Proof: a generalization of [Plotkin'78].

Theorem: \mathbb{C}_n is universal for Coh_n .

Proof: a generalization of [Plotkin'78].

Theorem:

- $\mathbb{C}_n \triangleleft \mathsf{T}_n^{\omega}$ for $n < \omega$,
- $\mathbb{C}_{\omega} \triangleleft \prod_{n < \omega} \mathsf{T}_n$.

Hence T_n^{ω} is universal for Coh_n , and $\prod_{n<\omega} T_n$ is universal for $Coh_{\omega} = Dom$.

Theorem:

Let D be a domain with n = coh(D).

The following are equivalent:

1. D is reflexive

Theorem:

Let D be a domain with n = coh(D).

- 1. D is reflexive
- 2. $D \times D \triangleleft D$

Theorem:

Let D be a domain with n = coh(D).

- 1. D is reflexive
- 2. $D \times D \triangleleft D$
- 3. $E \times D \triangleleft D$ for some E with coh(E) = coh(D)

Theorem:

Let D be a domain with n = coh(D).

- 1. D is reflexive
- 2. $D \times D \triangleleft D$
- 3. $E \times D \triangleleft D$ for some E with coh(E) = coh(D)
- 4. $T_k \times D \triangleleft D$ for all k < 1 + n

Theorem:

Let D be a domain with n = coh(D).

- 1. D is reflexive
- 2. $D \times D \triangleleft D$
- 3. $E \times D \triangleleft D$ for some E with coh(E) = coh(D)
- 4. $T_k \times D \triangleleft D$ for all k < 1 + n
- 5. D is universal for Coh_n

Corollary:

 D^{ω} is reflexive for any non-trivial domain D.

Corollary:

 D^{ω} is reflexive for any non-trivial domain D.

Proof: $D^{\omega} \times D^{\omega} \cong D^{\omega}$

Corollary:

 D^{ω} is reflexive for any non-trivial domain D.

Proof: $D^{\omega} \times D^{\omega} \cong D^{\omega}$

Corollary:

 $[E \rightarrow D]$ is reflexive if max(E) is infinite and D non-trivial.

Corollary:

 D^{ω} is reflexive for any non-trivial domain D.

Proof: $D^{\omega} \times D^{\omega} \cong D^{\omega}$

Corollary:

 $[E \rightarrow D]$ is reflexive if max(E) is infinite and D non-trivial.

Proof: $\mathbb{N}_{\perp} \triangleleft E$, therefore $D^{\omega} \triangleleft [\mathbb{N}_{\perp} \rightarrow D] \triangleleft [E \rightarrow D]$

Theorem:

For reflexive D and E,

$$coh(D) = coh(E) \implies PER(D) \simeq PER(E)$$
.

Proof:

Sufficient to prove $D \triangleleft E$ and $E \triangleleft D$.

Theorem:

For reflexive D and E,

$$coh(D) = coh(E) \implies PER(D) \simeq PER(E)$$
.

Proof:

Sufficient to prove $D \triangleleft E$ and $E \triangleleft D$.

Let n = coh(D) = coh(E).

D reflexive \Longrightarrow D universal for $Coh_n \Longrightarrow E \triangleleft D$.

Similarly for $D \triangleleft E$. QED.

Every PER(D) is equivalent to precisely one of

$$PER(T_1^{\omega})$$

$$PER(T_2^{\omega})$$

$$PER(T_3^{\omega})$$

•

$$PER(\prod_{n<\omega}T_n)$$

Every PER(D) is equivalent to precisely one of

$$PER(T_1^{\omega})$$

$$PER(T_2^{\omega})$$

$$PER(T_3^{\omega})$$

•

$$PER(\prod_{n<\omega}T_n)$$

An analogous statement holds for realizability toposes.

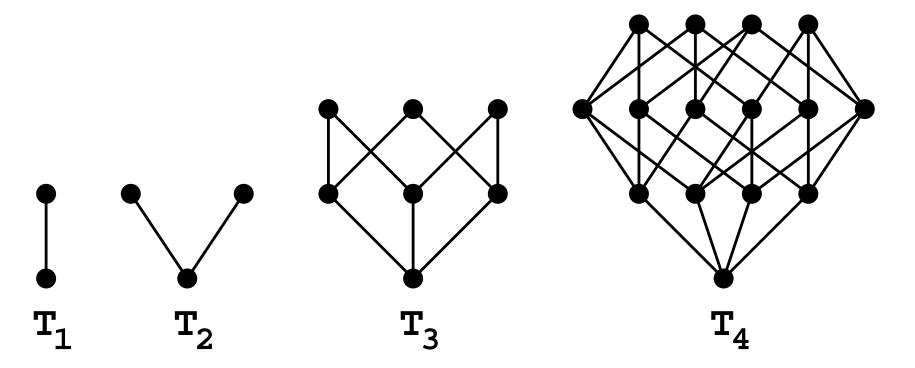
Questions

What is this good for?

Questions

What is this good for?

What is the computational understanding of T_k ?



The 'whodoneit' interpretation

