| | __ 10.
Editing Dialog Models

As In the chapter on visual dialogs the systems described here are
concerned with the problem of data presentation. In particular, they are
concerned with how to integrate the presentation of the data with the
interactive input. Early UIMS attempts concentrated almost exclusively on
the input side of interaction and the handling of input events. The visual
dialog systems were concerned with drawing visual portions of the
presentation and with establishing relationships between the application
data and the visual presentation.

The approach of the systems in this chapter is that the user interface
should be determined by a model of the information to be interactively
manipulated rather than by the commands that the user will issue. It can
be asserted that most Interaction consists of either browsing or editing
information. This is found to a limited extent in the transition from MIKE
to Mickey, discussed in Chapter 8. MIKE was based exclusively on a model
of the commands that were to be issued. Data types were represented only
by names. In Mickey the type declaration information was used to create
text edit boxes, dialog boxes, check boxes, and radio buttons. Each of
these various interactive techniques is a form of editor for application data.
An editing UIMS is driven by information about application data through
the semantic interface and then provides interactive techniques for
manipulating information.

An editor combines input handling and data presentation in a unified
fragment of interaction. Take, for example, the simple text edit box. The
model for a text edit box Is that it Is editing a string. Each of the user
inputs has specific meaning for how the string iIs to be changed and is
tightly integrated with how the string is to be displayed. Radio buttons and
check boxes are similar editors for particular kinds of data. A dialog box is
a mechanism for compositing editors together to form an editor for a
composite piece of information.

Editing Dialog Models 183

e

Motivation for Data-based UIMS Models

Direct engagement with the information being manipulated is a major key
in direct manipulation. In order for a UIMS to support direct engagement
it must have a model of the information that it is manipulating. Early
UIMS work only had a model of the commands and therefore the
interfaces created by such systems were inherently indirect.

There are also a number of features a UIMS can support which are
not possible without some model of the underlying application data. An
undo facility must know about the application data so that it can put the
data back the way they were before the changes to be undone were made.
Many text editors and source code control systems provide facilities for
managing patches, changes, or versions of text files. Similar facilities are
of value in other interactive environments. A UIMS that understands the
data that it is manipulating could support such features. Most graphical
user interfaces do not provide search facilities. Again, if the UIMS
understands the data model then the UIMS can provide such search
facilities automatically. These are just a few examples of extended features
that can be part of the UIMS and, therefore, be made avalilable to all
applications built using the UIMS. Such facilities require, however, that
the UIMS knows about the application data.

Cousin

The Cousin system” was one of the earliest editing UIMSs. The heart of
Cousin is the environment, which is a set of named and typed slots
through that the interactive user can manipulate variables that

communicate with the application. Entering parameters and commands is
performed by editing the values in the slots.
The environment is controlled by a system description which specifies

all of the information that Cousin needs about each slot. Each slot is
described by:

* Name

* Data type

Default value

Constraints on legal values for the slot
The syntax for values in the slot

A textual description for explanations

For each data type Cousin provides an editor for manipulating the values
of the slot.

* @ o @

Editing Dialog Models

Editing Templates

As the MIKE prollle editor was being developed it was recognized that
patterns of commands were being repeated over and over again. A list of
menu items was manipulated in very much the same way as a list of
windows, a list of data types, or a list of commands. All of the information
about an application’s user interface was stored in a system called
(SIxUctured Files). Essentially, this facility provided Pascal-style records
and unions to be stored on disk files. The various kinds of lists were all
stored in STUF structures as linked lists with a great deal of similarity
between them. These similarities were exploited in a system called Editing
Templates.*

An editing template is a particular kind of interactive editor which is
parameterized in various ways to create particular application instances of
the editor. An editor template has not only a particular interactive behavior
but also a particular view of the data that it is editing,

A Linked List Editing Template

The linked list editor is an example of such a template. This template will
scroll through a list of data objects that are stored in a linked list form.
The parameters to this template would be:

%ObjType — the STUF data type of the objects in the list

%Link — the name of the field that is used to link successive
objects together to form the linked list

%Curldx — this is a cursor, or a simple index to the current object
tuple that is being edited.

%HeadType — the STUF data type for the object that contains the
pointer to the head of the linked list.

%HeadField - the field in the header object that points to the first
element in the list

%XExt and %YExt — the X and Y extent of each element in the list's
display.

%Window — the window that the list is to be displayed in.

%ObjDisp(Obj, X,Y) — an application routine which will display the
Obj in the screen location specified by X and Y.

%ObjDel(Obj) — an application routine to delete Obj.

The parameters represent the information that will tailor a generic linked
list editor to a specific application. The linked list editor template would
then supply the following command procedures which can be exposed
directly to MIKE as part of the user interface.

Editing Templates

%WindowUp — move %Curldx up one item in the list. (Because of
MIKE's command erientation all interfaces are key or event
driven rather than direct manipulation. There are no scroll
bars)

%WindowDown — move %Cur{dx down one item.

%WindowLeft and %WindowRight — if the window is wide enough
for multiple columns of items, this will move %Curldx to

the item immediately to the right or left of the current one.

%WindowPageUp and %WindowPageDown — moves %Curidx up
or down a full window's worth.

%WindowDelete — deletes the object referenced by %Curldx.

In addition to the above command procedures there are several additional
routines which can be used by the application code to interface with the
generated Instance of the template.

Restore%Window — will redraw the entire window by means of
appropriate calls to %ObjDisp.

¥%WindowUpdateCur — will update the display of the current object
in the event that changes have been made by the application.

%WindowInsert(Obj) — will insert the specified object into the
linked list immediately after %Curldx, make it the current
object and update the display appropriately.
%WindowChangeCursor(Obj) — will make Obj the new current
object in the list.

The editing template is primarily a piece of code that has been
parameterized for a simple macro processor. In early versions of editing
templates, a template user would supply values for each of the parameters
and then run the template code through the macro processor to produce
all of the code for a new instance of the linked list editor. The editor code
would handle all of the editing and screen update issues for multiple
column presentations of lists of anything. This provided a significant
speedup in the creation of similar pieces of interaction. The routines
shown above would all have application-specific text substituted for the
parameter names (% —).

The application would then expose some of the routines directly to
MIKE (as in the case of %WindowUp). The application could provide many
other command procedures which would all work on the object referenced
by %Curldx. After changing the object they could invoke
%WindowUpdateCur to get the screen updated. Insertion of new objects
would be handled in this way since only the application would know how
to create new objects of various kinds.

The linked list template is only an example. Several other editor
templates were created. A simple extension to the linked list is the sorted

m

186 Editing Dialog Models

linked list which uses an application-specific compare routine to determine
if items are in sorted order. A tree editor provides for traversal and display
of tree structured data. A schematic was created which provided editing
facilities for nodes that were connected by arrows. The application data
structures contain only the node and connection information, the editor
provided all of the layout and maintained the node connections.

Architecture of Editing Templates

The original editing templates system consisted only of the code for each
template, a sct of parameters for each instance of the template, and the
macro processor necessary to create an instance of the template from the
parameters. This simple system was augmented by the creation of two
special purpose applications (TED and ICE) which were built with the
editing templates system.” Figure 10:1 shows the editing templates

architecture.

T T
Designer
Template
Editor
(TED)

Template
ibes cmp ot describes
File

Instance
Class Editor generales

ace)

s o T e i = i i Lo P ST A e S 5 S e
Architecture of Editing Templates

i e

When one creates a new editing template, one builds a general library that
will perform the desired editing functions. A template descriptor is also
created which contains all of the information about how the template
should be used. A template descriptor is created by TED (Template EDitor)
and specifies the parameters to the template as well as the types that it
uses, the application routines that it needs from the application, and the
routines that the template will generate.

When an application programmer wants to use an editing template
they use ICE (Instance Class Editor) to create a new instance class. An
instance class is created when a template has parameters substituted into
It. An Instance class can then be used to create instances of the editor in
multiple windows. For example, one could take the linked list editor
template and describe it in a template descriptor. One could then create a
student editor from the linked list template by supplying the information
about linked lists of students. This student editor is an instance class. The
student editor can then be used at run time to create Instances of the
editor in different windows for different lists of students.

Most of the code generated by ICE was to interface between the
application and the generic code in the template librares. This was
particularly necessary because of Pascal's excessively restrictive
mechanism for handling callback procedure addresses.

ITS

A more advanced model for editors is called Interactive Transaction
Systems (ITS).° The semantic view of the ITS model is that a user is
Interactively editing information stored in tables. These tables are similar
In nature to relational databases in that they contain tuples with fields of
information and fields have types. The prime thrust of ITS development
has been in abstracting the style (or presentation) of an interface from the
rest of the dialog description and eliminating any syntactic specification
Issues by using an editing model for interaction.

This section will first discuss the four main components of ITS,
followed by a deeper discussion of how dialog information is represented.
The generation of a dialog specification tree will then be discussed in
conjunction with the issue of style or presentation independence. Finally,
some run-time issues will be covered.

Four Parts of ITS

The specification of an ITS dialog consists of a data definition, an interface
content definition, style specification, and the run-time structures, All of

T g o e T e R
Editing Dialog Models

these definitions are represented as trees of tagged items, each item having
a number of attributes.

Data Definition

The data definition specifies the majority of the semantic interface to the
application in the form of data and table definitions. For example:

:data type=fullname, structure=disjoint
- :di feld=last, type=string

di fleld=middle, type=string

:di field=first, type=string
:edata

‘data type=student, structure=disjoint
:di field=name, type=fullname, emphasis=special
:di field=address, type=us_address
«di field=parent, type=fullname
:di field=class, type=integer
:edata

‘table name=students
:t fleld=std, types=student
:etable

The purpose of the data definition is to specify the information to be
Interacted with. There are a varlety of attributes that can be specified with
each part of the data definition in order to provide information to the
dialog about how this data is to be used and manipulated. Examples of
such attributes are “structure=disjoint™ and “emphasis=special.” Such
information is used by the views and the style rules to control the
presentation.

Dialog Content

The purpose of the dialog content is to represent the logical (not
presentational) form of the dialog and to specify the nonediting actions
that the dialog is to take. The dialog content is specified at a relatively
abstract level which consists of five basic components: lists, forms,
choices, info, and frames. The dialog content specification is a neutral
ground between the data definition and the style specifications.

A list is an arbitrary collection of things to be presented to the user,
such as a list of all students or a list of files. All items in the list are
assumed to be similar in structure and amenable to similar presentations
for each element of the list. Note that the concept of a list does not specify

ITS 189

i
!
:

how it is ordered, stored, or otherwise accessed (this is a data definition
issue), nor does it specify how the list should be displayed (this is a style
issue). The content specification simply indicates that a list of items
should appear and specifies what information should appear. 1t is the
business of the dialog content specification to indicate if all of the
information about a student should be presented or only the name of the
student. For example, a list of student names would be:

:list listname=student_names, table=students
:li field=name
:elist

A form is a fixed collection of things. A form corresponds to a dialog box o1
property sheet. As with a list, a form would only specify what items are fc
appear in the form. The form would not specify how the items are to be
displayed.

A choice represents a set of items from which a user must choose.
Choices subsume constructs like buttons, menus, check boxes, and lists
of check baxes. The dialog content specifies what the choices are, as wel
as what is to be done when a choice is made. A choice might be a cholce ol
values such as:

:choice message="Class In School", field=class,
kind=1_and only_I
:cl message="Freshman", value=1
:cl message="Sophomore”, value=2
:cl message="Junior”, value=3
:ci message="Senior”, value=4
:ci message="Graduate”, value=5
:echoice
A choice might also select among a list of actions to be taken. Such as:
:choice kind=1_and_only 1
:ci message="Apply~, action=Apply
:ci message="Register”, action=Register
:ci message="Expel", action=Delete
:echoice

Info items are simply pieces of textual or graphical information that are tc
be presented to the user, such as help texts.
The dialog content is organized into a set of frames. A frame is a single

conceptual unit of dialog. It would correspond to a top-level window on the
Macintosh or in X. A frame Is also analogous to a card or background ir

T =

Editing Dialog Models

HyperCard. 1t is a single, logical screen of information. An example frame
might be:

:frame table=students
:cholce kind=1_and_only_1
:cl message="Apply~, action=Apply
:cl message="Register”, action=Regjster
:cl message="Expel”, action=Delete
:echoice
:list listname=student_names, table=students
:li field=name
relist
:eframe

This frame would present a list of names of students and provide three
possible actions to be taken on a student. The entire dialog content
specification consists of a list of such frames.

Style Specification

The style specification is what controls the actual presentation of the user
interface. The style specification is controlled by environments and rules.
An environment is simply a named set of attribute values. Environments
can also inherit attribute values from other environments.

The style rules are the key to the style independence of the dialogs.
Style rules are basic if/then constructs. The if part specifies a pattern of
attributes to which the rule will apply. The then part specifies an
environment of attributes to inherit as well as additional units to be
instantiated to flesh out the presentation.

Take, for example, the following two environments:

define text, view=string, font=times, size=10, justify=left
define special, parent=text, size=15

The following style rules could be defined

if (TAG=Form) & (Emphasis=special) Then (Match special)
if (type=string) then (Match text)

The rules and environments map special cases of the attributes into more
extended attribute definitions. The idea is that issues of font size, color,
font face, justification, line width, etc., should be specified relative to the
abstract issues of what the item is for. A style then, Is a mapping from the
high level content specification to a particular presentation, as represented
by the attribute settings.

RETS

C B et e

The style rules are not limited to simple attribute settings. A style rule
can also elaborate a particular item in the tree to a more complex
structure. Take, for example, an item in a cholce that has
“kind=1_and_only_1." The style rule may want to specify that this be
implemented as a radio button. To do this it must generate an item for the
button and from the message attribute of the choice it must generate the
label to go next to the button. The full scope of this rule language is
beyond the scope of this discussion.

The most important attribute setting is the view. A view is a
generalized editor that controls not only the presentation of the
information but also how it responds to input events in manipulating the
information.

Run Time

At run time all of the frames are represented as trees of views within ITS.
These trees have had all of the style rules applied and are fully elaborated.
When a frame is made active, its static representation is copied and the
copy is decorated with appropriate information to tie its parts to the
appropriate data instances. This forms the actual connection between the
ITS dialog tree and the application data in the tables.

Generation of the View Tree
As has been mentioned, the run-time description consists of trees of views

which handle the interaction between the user and the application. The
key to ITS is in its generation of these trees from the various descriptions.

Mixing of Dialog Content with Data Definition

The first step Is to use the data definition information to elaborate the
content definition. In our example list only the fleld was specified for the
elements of the list.

:list listname=student_names, table=students
:li field=name
selist

By searching the data deflnition we can elaborate this item with the type of
the name field, which is “fullname,” and the “emphasis=special” attribute.
We can further elaborate this list item with a form that consists of the last,
middle, and first name fields. The result might be:

[t s s i al s
Editing Dialog Models

:list listname=student_names, table=students
:form ficld=name, type=fullname, emphasis=special
‘0 field=last, type=string
Al field=middle, type=string
‘A feld=frst, type=string
:eform
:elist

This dialog compilation phase fleshes out the dialog content specification
by adding the additional information about the data being presented.

Mixing in of Style

The second step is style compilation. In this phase the style rules are
applied to the new tree to add the necessary additional attributes. It is
Important to note that all elements of the tree inherit attributes from their
ancestors in the tree. The fields in our example list would inherit the
“emphasis=special” attribute. This would cause the “special” environment
to be invoked which would decorate each of the fields with the attributes
associated with special text.

Summary of ITS

ITS is based on a model of editing information. It has further refined the
traditional UIMS model by factoring out the style rules. In essence, the
style rules are those presentation specifications that are independent of a
particular application. Mickey forms an Instructive counterpoint to ITS.

Mickey used a semantic data definition which had similar content to
that of ITS's data definition. The programmer, however, must explicitly
control what Is presented to the user interface, whereas in ITS the dialog
content specification controls what is seen. The dialog compilation phase
of ITS exploits the same semantic information that Mickey does in fleshing
out the dialog definition. Mickey forces a particular style for presenting the
abstract interaction defined by the semantics. ITS, however, has
generalized these style issues in the form of style rules and environments
rather than hard coding them into the syster.

Sushi

Sushi (Raw Editable Objects) is a merge of the concepts found in editing
templates and the architecture of Mickey. In Sushi the semantic model is
specifled by a set of object classes that are defined in COS (C Object
System). COS is a C preprocessor which provides a simple class structure
and message passing system and has the features needed to support

m

Sushi 193

e e R IR R————————..

Sushi. It is possible that object-oriented languages such as C++ or Elilfel
could support Sushi if modifications were made to the compiler to provide
the needed information.

The interactive model is provided by object editors. An object editor is
a COS class which is a subclass of ObjectEditor. User interfaces are built
by combining application objects with editors appropriate to their class
and then instantiating them on the screen.

COS

COS class descriptions are defined in a special language and then run
through the generator to create C code for compilation and linking with
the application program and Sushi. A COS class consists of a superclass
and a list of methods and fields. The following are some example classes .
defined in COS.

Enumerated RegStatus Is {NotRegistered, Registered, OnHold}

Class Student Superclass Obj [.. .]{
Data Field string Name;
Data Field Address HomeAddr;
Data Field Address SchoolAddr;
Data Field Picture Photo;
Method Field RegStatus Registration
Read {* ... ¥}
Write (* ... *);
Method void Expel {*. . . *}
Method void Hire{ Wages)
T -
}
Class Address Superclass Obj [... | {
Data Field string Street;
Data Field string City;
Data Field string State;
Data Field long Zip;
)
Class Wages Superclass Obj [...]
Data Field long Hours;
Data Field long DollarsPerHour;
]

Every class has a superclass and a set of fields and methods. COS defines
both data fields and method fields. Normal methods also have their bodies

Editing Dialog Models

programmed in C. A method in COS may or may not return a result, and
may or may not have a single argument. If multiple values are needed as
an argument they must be encapsulated in a COS object. This is
somewhat awkward for programming but is natural for direct
manipulation user interfaces.

A data field defines an actual field in the class's data definition and
then defines two methods (for example Name and Name_) which will read
and write that field. A method field, such as RegStatus, allows the
programmer to code the read and write methods directly in C. This view of
fields and methods allows a COS facade to be placed over any data model
that the application programmers desire. The COS classes are only a user
interface view of the application.

Aside from the generation of the C code to handle the class
declarations and method invocation, COS also generates descriptive
information for each class which provides two important capabilities.

1. A description of all methods with their names, argument, types,
and result types.
2. A mechanism for formulating object messages at run time.

The class descriptor is attached to all COS objects and is used both by
Sushi and by the underlying message-passing mechanism.

Object Editors

The key to Sushi's interactive behavior is the set of editor classes that it
makes available. An editor class embodies a particular style for interacting
with information. An editor class is refined or specialized by its descriptor.
A descriptor is simply a COS object of whatever class is convenient for that
class of edilor. The descriptor for long integers, for example, would contain
information about how many digits to allow, foreground color, text font,
etc. A descriptor for a dialog box is more complex and contains
information about where in the box the labels and subeditors should be
placed. A descriplor contains information similar to the attributes in an
ITS dialog tree. It is by editing descriptors that the interface designer can
control the presentation aspects of the user interface. Since all descriptors
are themselves objects, editors can be applied to these descriptors in the
same way that any other portion of the user interface is defined.

When an editor class is combined with a particular descriptor an
editor is formed. Every editor will edit objects of a specific class or any of
its subclasses. An editor can be combined with an application object of the
correct class and a window to form an editor instance. The role of an editor

instance is to allow Interactive users to browse, modify, and manipulate
the application object according to the dialog specified by the combination
of editor class and descriptor.

Editor classes generally come in two flavors: class-specific editors and
composers. Class-specific editors always apply to a particular class of
objects. The descriptor for a class-specific editor is only used to specify the
presentation aspects of the editor. Composers are more general editor
classes which can be specialized to a wide variety of object classes.

The editors and composers are stored in two lists which belong to the
editor environment object. The prime purpose of the editor environment
object is to maintain these two lists. The editor list contains editors whose
descriptors have already been defined and specialized to a particular class.
Editors are stored in the list by the name of the class that they edit and as
a descriptive name. The descriptive name is important since more than
one editor can exist for a given class of object. Composers are listed by
name and type form (class, enumeration, union, or sequence) since they
have not yet been specialized to a particular object class.

When an application exposes the editor environment object to the
Interactive user (by using an appropriate object editor for the
environment object’s class) the user or interface designer will have access
to the editors and their descriptors. By selecting editors, editing their
descriptors, or creating new editors from the composers, the interface can
be interactively modified.

Object Class-specific Editors

The editors specific to particular classes include those defined on primitive
types. There are editors provided for long integers, character strings, and
Boolean values.

Supplying new class-specific editors is one of the easiest ways to
extend Sushi. An example is an image editor. A COS class has been
defined which provides access to images stored in a variety of formats with
varying numbers of bits per pixel. Based on this class a special editor has
been built and placed in the editor list under the BitMap class. Whenever
BitMap objects are encountered, this special purpose editor is used. Other
such special purpose editors have been built for color look up tables and
color selection. The application programmer is completely free to extend
this set.

Composers
A prime function of a composer is its GenerateDefaultDescriptor method
which generates a default descriptor given a particular object class. As an

h
Editing Dialog Models

example of how this works, consider the DialogBax editor class. Given the
class of a particular object the dialog box editor would generate a default
descriptor that provides a subeditor for each feld in the class and a button
for every method in the class, In the case of fields that themselves contain
new objects, the default is to generate a button that will open a new editor
on the object stored in that field. :

summary editor for that class. A new button could be added to the dialog
box which would invoke the full editor on the same object.

The Application Programmer’s View

As an example of how Sushi works we can trace through the process a
programmer will take in developing a new application. Suppose that one
wanted to build a simple application to store students with their pictures
and mailing information,

COos

The first step would be to define COS classes for the information to be
edited.

Enumerated RegStatus Is {NotRegistered, Registered, OnHold)

Class Student Superclass Obj[...]{
Data Field string Name;
Data Field Address HomeAddr:
Data Field Address SchoolAddr;
Data Field Picture Photo;
Data Fleld RegStatus Registration;
Method void Expel {* . . . b
Method void Hire(Wages)

i W%

}

Class Address Superclass Obj[...]{
Data Field string Street;
Data Field string City;
Data Field string State;
Data Field long Zip;

}

Class Wages Superclass Obj [...] {
Data Field long Hours;
Data Field long DollarsPerHour;
}
Class Picture Superclass Obj [...]
Method Fleld long Pixelldx
Read . . .%}
Write {* ...}
Method Field long CurPixel
Read [*...%)
Write (*... *};
Methed long Xdimension
I -
Metheod long Ydimension
{50k
Method void ScanPicture
f*...%
Private Field charPtr image;
}

In the class Student, the Expel and Hire methods would have their
implementations written in C by the application programmer. In the
Picture class the fields Pixelldx and CurPixel would need their Read and
Write methods written in C as well as the methods Xdimension,
Ydimension, and ScanPicture. The ScanPicture method might run the
scanner to enter a new picture.

The application programmer can create and manipulate objects of
these classes by using the message-passing macros provided with COS.

EditObject

The programmer's primary interface with Sushi is via the EditObject
routine. The programmer passes to EditObject the object that is to be
shared with the user and the name of an editor to be used on that object.
In addition, the programmer can84

indicate where on the screen the editor should be placed.

EditObject will take the class of the object and search the editor list in
the environment object for an editor with the specified name and class. If
such an editor is not found, EditObject will select an appropriate
composer. EditObject makes a copy of the composer, sets its class name,
and then invokes GenerateDefaultDescriptor to create a default descriptor
for that class of object. This generation of default editors guarantees that

Editing Dialog Models

an editor is always available for any class of object. Figures 10:2 and 10:3
show the editors automatically created for Student and Address.

Fig. 10:2
Default
Student Editor

Fig. 10:3

Default
Address Editor

Once the new descriptor is generated the new editor is added to the editor
list for future use. This eliminates regeneration of the same editor. This

new editor Is then copied again and instantiated by assigning it the object
to be edited and invoking the editor’s Create method. If an appropriate

editor already exists in the editor list, then it is copied and instantiated

Sushi 199

Rt

s —————

R

with the object to be edited.
The programmer’s view of Sushi can be summarized as: 1) create a
semantic model as COS classes and 2) call EditObject to have the user

interface objects displayed. Note that the programmer may only need to
call EditObject once for a root or environment object which can then have

subobjects which will cause new editors to open.

Adding New Editors
In the case of the Picture class the default generated editor would be as
shown in figure 10:4.

Fig. 10:4
Default
Picture Editor

This is not a useful interface to pictures. The programmer could take the
COS class ObjectEditor and create a new subclass called PictureEditor.
Inside the PictureEditor class the programmer would implement all of the
methods necessary to edit pictures graphically. Having written this new
editor class, the programmer would add an object of this editor class to
the environment object’s editor list. Whenever the programmer, or some
editor, invokes EditObject on a Picture object, the new editor will be used.

Applications such as a paint program or a word processor frequently
have some central editor that characterizes the application. Such a central
editor will often need a user interface design that is carefully crafted to
that application. The peripheral portions of the interface, like selecting
colors, selecting fonts, or opening and closing files can be automatically
supported by Sushi with little or no effort. Once that central editor has
been created it is easily integrated into other applications that need to edit
similar data.

M
Editing Dialog Models

Interface Designer's View

The Interface design of a particular application is characterized by the
editors in the editor list and each of their descriptor objects. By saving the
class name and descriptor object of every editor one can completely
capture the interface design. The application programmer can make the
interface design available to users by calling EditObject on the editor
environment object. The primary purpose of the editor for the editor
environment object is to allow interface designers to: 1) create new editors
from the composers; 2) copy existing editors to make new editors; or 3)
modify existing editors by editing their descriptor objects. The editor for
the editor environment object simply invokes EditObject on any descriptor
object to allow interface designers to modify an editor. In their simplest
form an editor for a descriptor may be a dialog bax for setting fonts,
patterns, or other resource type information. A descriptor editor may be a
more complex editor like the one for dialog baxes, which allows designers
to move subeditors, labels, and buttons around graphically as well as
deleting subeditors and adding new ones from the editor list. Since
descriptor objects are edited just like any other object, the interface design
environment is just as extensible as any other part of the Sushi system.

Summary

In ITS editors (or views) are generalized by the use of numerous attributes
that can be either specified directly or supplied by the environments and
style rules. In X this same information is stored in resources. In Sushi this
information is stored in descriptors but the descriptors are themselves
editable objects. Sushi does have the capability of some style control in the
use of the GenerateDefaultDescriptor message on ‘composers. This is not
as powerful, however, as the style rules of ITS. On the other hand, Sushi
has a mechanism which neither X nor ITS directly support, which is the
ability to apply its own interface model to itself in editing the descriptive
information about the interface.

All of these systems support more of the data and dialog presentation
parts of the UIMS architecture than the language and automata-based
approaches. They accomplish this by explicitly representing the
application information that is to be manipulated. None of these systems
contain an explicit dialog specification. The dialog specification is implicitly
derived from the combination of data to be edited with the selection of a
particular editable presentation for that data. Systems like ITS and Cousin
represent their presentations in a form suitable only for programmers or
programming-oriented professionals. Although such presentation-based

tools are the domain of the graphics designers the tools have not been
geared to their particular skills. Sushi does allow the interactive editing of
the interface in a way that a graphics designer could use. It suffers from
the problem of each design being unique, whereas the style rules of ITS
can be applied repeatedly to new applications. The extension of Sushi's
GenerateDefaultDescriptor method to include ITS-like rules may provide

the best of both worl_g:is‘._

References - -

1 Olsen, DR A Bmuseﬂ-::ix Model for User Interface Management. Graphics Interface

'88. Canadian Information Processing Sodlety, June 1988,
. R

2 Ball, E. and P. Hayes. A Test-Bed for User Interface Deslgns. Human Factors in
Computer Systems, March 1982, 85-88.

3 Olsen, D.R. and R P. Burfon. Structured Flles for Interactive Graphics Programs. ISECON
'88 Conference Proceedings, 1988,

4 Olsen, D.R. Editing Templates: A User Interface Generation Tool IEEE Computer
Graphics and Applicatiops 6(11), November 1986.

§ Blackham, G.D. Editing Templates. MS Thesis. Computer Scence Department, Brigham
Young University, Provo, Utah, 1986.

6 Wiecha, C., W. Bennett, § Boles, J. Goold, and S. Greene. ITS: A Tool for Rapidly
Developing Interactive Applications. ACM Transactions on Information Systems 8(3):
204-36, July 1990.

Editing Dialog Models

