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Abstract. Given a contact network that changes over time (say, day
vs night connectivity), and the SIS (susceptible/infected/susceptible, flu
like) virus propagation model, what can we say about its epidemic thresh-
old? That is, can we determine when a small infection will “take-off” and
create an epidemic? Consequently then, which nodes should we immunize
to prevent an epidemic? This is a very real problem, since, e.g. people
have different connections during the day at work, and during the night
at home. Static graphs have been studied for a long time, with numerous
analytical results. Time-evolving networks are so hard to analyze, that
most existing works are simulation studies [5].
Specifically, our contributions in this paper are: (a) we formulate the
problem by approximating it by a Non-linear Dynamical system (NLDS),
(b) we derive the first closed formula for the epidemic threshold of time-
varying graphs under the SIS model, and finally (c) we show the use-
fulness of our threshold by presenting efficient heuristics and evaluate
the effectiveness of our methods on synthetic and real data like the MIT
reality mining graphs.

1 Introduction

The goal of this work is to analytically study the epidemic spread on time-varying
graphs. We focus on time-varying graphs that follow an alternating connectivity
behavior, which is motivated by the day-night pattern of human behavior. Note
that our analysis is not restricted to two graphs: we can have an arbitrary num-
ber of alternating graphs. Furthermore, we focus on the SIS model [19], which
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resembles a flu-like virus, where healthy nodes get the virus stochastically from
their infected neighbors, and infected nodes get cured with some probability and
become susceptible again. The SIS model can be also used in modeling many
different types of dynamical processes as well, for example, modeling product
penetration in marketing [36].

More specifically, the inputs to our problem are: (a) a set of T alternat-
ing graphs, (b) the infectivity of the virus and the recovery rate (β, δ for the
SIS model), (d) k number of “vaccinations”. We want to answer two questions
(rigorously defined in Section 3):

Q1. Can we say whether a small infection can “take-off” and create an epidemic
under the SIS model (i.e. determine the so-called epidemic threshold)?

Q2. What is an effective and fast way to vaccinate people to minimize the spread
of the virus?

While epidemic spreading on static graphs has been studied extensively (e.g.
see [19, 2, 33, 8]), virus propagation on time-varying graphs has received little
attention. Moreover, most previous studies on time-varying graphs use only sim-
ulations [5]. We review in more detail the previous efforts in Section 2.

We are arguably the first to study virus propagation analytically on arbitrary,
and time-varying graphs. In more detail, the contributions of our work can be
summarized in the following points:

1. We formulate the problem, and show that it can be approximated with a
Non-Linear Dynamical System (NLDS).

2. We give the first closed-formula for the epidemic threshold, involving the
first eigenvalue of the so-called system-matrix (see Theorem 2). The system-
matrix combines the connectivity information (the alternating adjacency
matrices) and the characteristics of the virus (infectivity and recovery rate).

3. We show the importance of our threshold by using it to develop and evalu-
ate several immunization policies on real data like the MIT Reality Mining
graph.

The rest of the paper is organized as follows: We review related work in
Section 2, explain the formal problem definitions in Section 3, and describe the
proofs for the threshold and illustrate the theorem in Section 4. We then discuss
various immunization policies in Section 5 and present experimental evaluations
in Section 6. We discuss and provide additional explanations in Section 7 and
finally conclude in Section 8.

2 Related Work

In this section, we review the related work, which can be categorized into three
parts: epidemic threshold, immunization algorithms and general graph mining.

Epidemic Thresholds. The class of epidemiological models that are most
widely used are the so-called homogeneous models [3, 29, 2]. A homogeneous
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model assumes that every individual has equal contact to others in the pop-
ulation, and that the rate of infection is largely determined by the density of
the infected population. Kephart and White [22, 23] were among the first to
propose epidemiology-based models (hereafter referred to as the KW model) to
analyze the propagation of computer viruses. The KW model provides a good
approximation of virus propagation in networks where the contact among in-
dividuals is sufficiently homogeneous. However, there is overwhelming evidence
that real networks (including social networks [10], router and AS networks [12],
and Gnutella overlay graphs [35]) deviate from such homogeneity - they follow
a power law structure instead.

Pastor-Satorras and Vespignani studied viral propagation for such power-
law networks [32, 33]. They developed an analytic model for the Barabási-Albert
(BA) power-law topology [4]. However, their derivation depends on some assump-
tions which does not hold for many real networks [25, 12]. Pastor-Satorras et al. [33]
also proposed an epidemic threshold condition, but this uses the “mean-field” ap-
proach, where all graphs with a given degree distribution are considered equal.
There is no particular reason why all such graphs should behave similarly in
terms of viral propagation. Newman [31] studied the epidemic thresholds for
multiple competing viruses on special, random graphs.

Immunization. Briesemeister et al. [7] focus on immunization of power law
graphs. They focus on the random-wiring version (that is, standard preferential
attachment), versus the “highly clustered” power law graphs. Their simulation
experiments on such synthetic graphs show that such graphs can be more easily
defended against viruses, while random-wiring ones are typically overwhelmed,
despite identical immunization policies.

Cohen et al. [9] studied the acquaintance immunization policy (see Section 5
for a description of this policy), and showed that it is much better than random,
for both the SIS as well as the SIR model. For power law graphs (with no
rewiring), they also derived formulae for the critical immunization fraction, above
which the epidemic is arrested. Madar et al. [27] continued along these lines,
mainly focusing on the SIR model for scale-free graphs. They linked the problem
to bond percolation, and derived formulae for the effect of several immunization
policies, showing that the “acquaintance” immunization policy is the best. Both
works were analytical, without studying any real graphs.

Hayashi et al. [18] study the case of a growing network, and they derive ana-
lytical formulas for such power law networks (no rewiring). They introduce the
SHIR model (Susceptible, Hidden, Infectious, Recovered), to model computers
under e-mail virus attack and derive the conditions for extinction under random
and under targeted immunization, always for power law graphs with no rewiring.

Thus, none of the earlier related work focus on epidemic thresholds for ar-

bitrary, real graphs, with only exceptions of [37, 8], and its follow-up paper by
Ganesh et al. [13]. However, even these works [37, 8, 13] assume that the under-
lying graph is fixed, which is unrealistic in many applications.

General Graph Mining. Graph mining is a very active research area in
recent years. Representative works include patterns and “laws” discovery e.g.,
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power law distributions [12, 26], small world phenomena [30, 1], and numerous
other regularities. Among them, there is a lot of research interest in studying
dynamic processes on large graphs, (a) blogs and propagations [17, 24, 21, 34], (b)
information cascades [6, 14, 16] and (c) marketing and product penetration [36].
These dynamic processes are all closely related to virus propagation.

In sum, to the best of our knowledge, including comprehensive epidemiolog-
ical texts [2, 3] and well-cited surveys [19], we are the first to analytically study
virus propagation on arbitrary, real and time-varying graphs.

3 Problem Definitions

Table 1 lists the main symbols used in the paper. Following standard notation, we
use capital bold letters for matrices (e.g. A), lower-case bold letters for vectors
(e.g. a), and calligraphic fonts for sets (e.g. S) and we denote the transpose with
a prime (i.e., A′ is the transpose of A). In this paper, we focus on un-directed
un-weighted graphs which we represent by the adjacency matrix.

Also we deal only with the SIS virus propagation model in the paper. The
SIS model is the susceptible/infected/susceptible virus model where β is the
probability that an infected node will transmit the infection over a link connected
to a neighbor and δ is the probability with which an infected node cures itself
and becomes susceptible again. Please see [19] for a detailed discussion on SIS
and other virus models.

Consider a setting with clearly different behaviors say, day/night, each char-
acterized by a corresponding adjacency matrix (A1 for day, A2 for night), then
what is the epidemic threshold under a SIS virus model? What are the best
nodes to immunize to prevent an epidemic as much as possible? More generally,
the problems we are tackling can be formally stated as follows:

Problem 1. Epidemic Threshold

Given: (1) T alternating behaviors, characterized by a set of T graphs A =
{A1,A2 . . . AT }; and (2) the SIS model [8] with virus parameters β and δ;

Find: A condition, under which the infection will die out exponentially quickly
(regardless of initial condition).

Problem 2. Immunization

Given: (1) T alternating behaviors, characterized by a set of T graphs A =
{A1,A2 . . . ,AT }; and (2) the SIS model with virus parameters β and δ and
(3) k vaccines;

Find: The best-k nodes for immunization.

We will next solve Problem 1 while we discuss Problem 2 later in Section 5.
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Table 1. Symbols

Symbol Definition and Description

A,B, . . . matrices (bold upper case)
A(i, j) element at the ith row and jth column of A

A(i, :) ith row of matrix A

A(:, j) jth column of matrix A

I standard n× n identity matrix
a,b, . . . column vectors
I,J , . . . sets (calligraphic)

n number of nodes in the graphs
T number of different alternating behaviors
A1,A2, . . . ,AT T corresponding size n× n symmetric

alternating adjacency matrices
β virus transmission probability in the SIS model
δ virus death probability in the SIS model
λM first eigen-value (in absolute value) of a matrix M

uM corresponing first eigen-vector (for λM) of a matrix M

pi,t probability that node i is infected at time t
pt pt = (p1,t, p2,t, . . . , pn,t)

′

p2t+1 probability of infection vector for odd days
p2t probability of infection vector for even days
ηt the expected number of infected nodes at time t

4 Epidemic Threshold on Time-varying Graphs

To simplify discussion, we consider T = 2 in Problem 1 with A to consist of
only two graphs: G1 with the adjacency matrix A1 for the odd time-stamps
(the ‘days’) and G2 with the adjacency matrix A2 for the even time-stamps
(the ‘nights’). Our proofs and results can be naturally extended to handle any
arbitrary sequence of T graphs.

4.1 The NLDS

We first propose to approximate the infection dynamics by a Non-linear dynam-
ical system (NLDS) representing the evolution of the probability of infection
vector (pt) over time. We can compute the probability ζt(i) that node i does not
receive any infections at time t. A node i won’t receive any infection if either any
given neighbor is not infected or it is infected but fails to transmit the infection
with probability 1− β. Assuming that the neighbors are independent, we get:

ζ2t+1(i) =
∏

j∈NE1(i)

(pj,2t+1(1− β) + (1 − pj,2t+1))

=
∏

j∈{1..n}

(1− βA1(i, j)pj,2t+1)) (1)
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where NE1(i) is the set of neighbors of node i in the graph G1 with adjacency
matrix A1. Similarly, we can write ζ2t+2(i) as:

ζ2t(i) =
∏

j∈NE2(i)

(pj,2t(1− β) + (1 − pj,2t))

=
∏

j∈{1..n}

(1− βA2(i, j)pj,2t)) (2)

So, pi,2t+1 and pi,2t+2 are:

1− pi,2t+1 = δpi,2t + (1 − pi,2t)ζ2t(i)

⇒ pi,2t+1 = 1− δpi,2t − (1− pi,2t)ζ2t(i) (3)

and

1− pi,2t+2 = δpi,2t+1 + (1− pi,2t+1)ζ2t+1(i)

⇒ pi,2t+2 = 1− δpi,2t+1 − (1− pi,2t+1)ζ2t+1(i) (4)

Note that we can write our NLDS as:

p2t+1 = g2(p2t) (5)

p2t+2 = g1(p2t+1) (6)

where g1 and g2 are corresponding non-linear functions as defined by Equations 3
and 4 (g1 depends only on A1 and g2 on A2).

We have the following theorem about the asymptotic stability of a NLDS at
a fixed point:

Theorem 1. (Asymptotic Stability, e.g. see [20]) The system given by

pt+1 = g(pt) is asymptotically stable at an equilibrium point p∗, if the eigenval-

ues of the Jacobian J = ▽g(p∗) are less than 1 in absolute value, where,

Jk,l = [▽g(p∗)]k,l =
∂pk,t+1

∂pl,t
|pt=p∗

The fixed point of our interest is the 0 vector which is the state when all
nodes are susceptible and not infected. We want to then analyze the stability of
our NLDS at p2t = p2t+1 = 0. From Equations 5 and 6, we get:

∂p2t+2

∂p2t+1
|p2t+1=0 = (1− δ)I+ βA1 = S1 (7)

∂p2t+1

∂p2t
|p2t=0 = (1− δ)I+ βA2 = S2 (8)

Any eigenvalue λi
S1

of S1 and λi
S2

of S2 (i = 1, 2, ...) is related to the correspond-

ing eigenvalue λi
A1

of A1 and λi
A2

of A2 as:

λi
S1

= (1− δ) + βλi
A1

(9)

λi
S2

= (1− δ) + βλi
A2

(10)
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Recall that as A1 and A2 are symmetric real matrices (the graphs are undi-
rected), from the Perron-Frobenius theorem [28], λA1

and λA2
are real and

positive. So, from Equations 9 and 10 λS1
and λS2

are also real and positive.

4.2 The Threshold

We are now in a position to derive the epidemic threshold. First, we have the
following lemma:

Lemma 1. If λS < 1, then p2t dies out exponentially quickly; and 0 is asymp-

totically stable for p2t, where S1 = (1 − δ)I + βA1, S2 = (1 − δ)I + βA2 and

S = S1 × S2.

Proof. Since p2t+2 = g1(g2(p2t)) (from Equations 5 and 6), we have

∂p2t+2

∂p2t
|p2t=0 = (

∂p2t+2

∂p2t+1
× ∂p2t+1

∂p2t
)|p2t=0

= (
∂p2t+2

∂p2t+1
|p2t+1=0)× (

∂p2t+1

∂p2t
|p2t=0)

= S1S2 = S (11)

The first equation is due to chain-rule, second equation is because p2t = 0
implies p2t+1 = 0; and the final step is due to Equations 7 and 8.

Therefore, using Theorem 1, we get that if λS < 1, we have that 0 is asymp-
totically stable for p2t.

We now prove that p2t in fact goes down exponentially to 0 if λS < 1. To
see this, after linearizing both g1 and g2 at p2t = p2t+1 = 0, we have

p2t+2 ≤ S1p2t+1

p2t+1 ≤ S2p2t (12)

Doing the above recursively, we have

p2t ≤ (S1S2)
tp0 = (S)tp0 (13)

Let ηt be the expected number of infected nodes at time t. Then,

η2t = |p2t|1 ≤ |(S)tp0|1
≤ |(S)t|1|p0|1 = |(S)t|1η0
≤ √

n|(S)t|2η0 =
√
nλt

Sη0 (14)

Therefore, if λS < 1, we have that η2t goes to zero exponentially fast. ⊓⊔
The above lemma provides the condition for the even time-stamp probability

vector to go down exponentially. But, the next lemma shows that this condition
is enough to ensure that even the odd time-stamp probability vector to go down
exponentially.
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Lemma 2. If λS < 1, then p2t+1 dies out exponentially quickly; and 0 is asymp-

totically stable for p2t+1, where S1 = (1− δ)I+ βA1, S2 = (1 − δ)I+ βA2 and

S = S1 × S2.

Proof. Doing the same analysis as in Lemma 1, we can see that the condition
for p2t+1 to be asympotically stable and die exponentially quickly is:

λS2×S1
< 1 (15)

Now note that as S1 and S2 are invertible: S1 × S2 = S1 × S2 × S1 × S−1
1 .

But this implies that S2 × S1 is similar to S1 × S2 (matrix P is similar to Q if
P = BQB−1, for some invertible B). We know that similar matrices have the
same spectrum [15], thus S2×S1 and S1×S2 have the same eigenvalues. Hence,
the condition for exponential die out of p2t+1 and asymptotic stability is the
same as that for p2t which is λS < 1. ⊓⊔

Lemma 1 and Lemma 2 imply that this threshold is well-defined in the sense
that the probability vector for both the odd and even time-stamps go down
exponentially. Thus we can finally conclude the following theorem:

Theorem 2. (Epidemic Threshold) If λS < 1, then p2t and p2t+1 die out

exponentially quickly; and 0 is asymptotically stable for both p2t and p2t+1, where

S1 = (1− δ)I + βA1, S2 = (1 − δ)I+ βA2 and S = S1 × S2. Similarly for any

general T , the condition is:

λ∏
i
Si

< 1 (16)

where ∀i ∈ {1, 2, .., T } Si = (1− δ)I+ βAi.

We call S as the system-matrix of the system; thus, the first eigenvalue of
the system-matrix determines whether a given system is below threshold or not.

4.3 Salient Points

Sanity check: Clearly, when T = 1, the system is equivalent to a static graph
system with A1 and virus parameters β, δ. In this case the threshold is (from
Theorem 2) λ(1−δ)I+βA1

< 1 ⇒ βλA1
/δ < 1 i.e. we recover the known threshold

in the static case [8].
A conservative condition:Notice that from Equations 7 and 8 and Theorem 1,
for our NLDS to be fully asymptotically stable at 0 (i.e. pt decays monotoni-
cally), we need the eigenvalues of both S1 and S2 be less than 1 in absolute
value. Hence, βλ/δ < 1 where λ = max(λA1

, λA2
) is sufficient for full stability.

Intuitively, this argument says that the alternating sequence of graphs can not be
worse than static case of having the best-connected graph of the two repeated
indefinitely. Let λA1

> λA2
. Consider a sequence of graphs S = {A1,A1 . . .}

repeating indefinitely instead of our alternating {A1,A2,A1,A2, . . .} sequence.
Clearly, if an infection dies exponentially in S, then it will die exponentially
in our original alternating sequence as well because λA1

> λA2
. The set S is

essentially just the static graph case: hence, if βλA1
/δ = βλ/δ < 1, then 0
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is asymptotically stable for pt. The case when λA1
< λA2

is similar. But this
notion of a threshold is too stringent and conservative: it can happen that a
stronger virus can still lead to a general exponential decrease instead of a strict
monotonous decrease. This is because we forced the eigenvalues of both S1 and
S2 to be less than 1 in absolute value here, when we can probably get away
with less. Theorem 2 precisely formalizes this idea and gives us a more practi-
cal condition for a general decreasing trend of every corresponding alternating
time-stamp values decaying. We illustrate this further in the experiments.

4.4 Experiments
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state vs λS (lin-log)

Fig. 1. SIS simulations on our synthetic example (all values averages over 20 runs) (A)
Fraction of nodes infected vs Time-stamp (lin-log scale). Note the qualitative difference
in behavior under (green) and above (red) the threshold. Also, note that the green line
is below the threshold but is actually above the conservative threshold (βλ/δ = 1.100
here). Hence while both p2t and p2t+1 decrease exponentially separately, but pt itself
does not monotonously go down. (B) Plot of Max. number of infected nodes till steady
state vs λS (by varying β) (lin-log). As predicted by our results, notice that there is a
sudden ‘take-off’ and a change of behavior of the curve exactly when λS = 1.

Figures 1 and 2 demonstrate our result on a synthetic example and graphs
from MIT reality data (more details on the reality mining graphs are in Sec-
tion 6). In the synthetic example, we have 100 nodes, such that G1 is a full
clique (without self loops) whereas G2 is a chain. All values are average over
several runs of the simulations and the infection is started by infecting 5 nodes.
In short, as expected from the theorem, the difference in behavior above, below
and at threshold can be distinctly seen in the figures.

Figures 1(A) and 2(A) show the time-plot of number of infections for λS val-
ues above and below the threshold. While above threshold the infection reaches
a steady state way above the starting point, below threshold it decays fast and
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Fig. 2. SIS simulations on the MIT reality mining graphs (all values averages over 20
runs) (A) Fraction of nodes infected vs Time-stamp (lin-log scale). Note the qualitative
difference in behavior under (green) and above (red) the threshold. (B) Plot of Max.
number of infected nodes till steady state vs λS (by varying β) (lin-log). As predicted
by our results, notice that there is a sudden ‘take-off’ and a change of behavior of the
curve when λS = 1.

dies out. In case of Figure 1(A), also note the the difference between the conser-
vative threshold and our threshold. The green curve is below our threshold but
above the conservative threshold. But again, as predicted from our theorems,
clearly while there are dampening oscillations and the infection decays but pt

itself does not monotonously go down (and hence the “bumpy” nature of the
curve). This exemplifies the practical nature of our threshold and its usefulness
as we are more concerned with the general trend of the number of infections
curve and not every small ‘bump’ because of the presence of alternating graphs.

Figures 1(B) and 2(B) show a ‘take-off’ plot showing max. number of infec-
tions till steady state (intuitively the ’footprint’) for different values of λS (by
varying β). As predicted by our theorem, note the sudden steep change and spike
in the size of the footprint when λS = 1 in both the plots.

5 Immunization Algorithms

Given the theoretical results in the previous section, can we exploit them to our
advantage to ensure effective immunization (Problem 2)?

5.1 Quality Metric

Using our results, we can evaluate the quality of any immunization policy. Note
that smaller the value of λS, lesser are chances of the virus causing any epidemic.
Put differently, we want to decrease the λS value of the system as much as
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possible. Thus, the efficacy of any immunization policy should be measured using
the amount of “drop” in λS it causes and the resulting λS after immunization.

5.2 Proposed immunization policies

We now discuss some new immunization policies for time-varying graphs, par-
tially motivated by known policies used for static graphs. Again, for ease of
exposition we focus our attention only on the {A1,A2} system of Section 3.
From the above, it is clear that optimally we should choose that set of k nodes
which result in the smallest λS value possible after immunization. This implies
that for each set of k node we test, we need to delete k rows/columns from
both A1 and A2 to get new matrices A∗

1 and A∗
2 and then compute the new λS

value. The number of k sets is
(

n
k

)

and therefore this method is combinatorial
in nature and will be intractable even for small graphs. Nevertheless, we call
this strategy Optimal and show experimental results for this policy too, because
this policy will give us the lower-bound on the λS that can be achieved after k
immunizations.

We want policies which are practical for large graphs and at the same time
be efficient in lowering the λS value of the system i.e. they should be close to
Optimal. Specifically to this effect, we now present several greedy policies as
well. As the heuristics are greedy in nature, we only describe how to pick the
best one node for immunization from a given set of G1 and G2 graphs. Our
proposed policies are:

Greedy-DmaxA (Highest degree on A1 or A2 matrices) Under this policy,
at each step we select the node with the highest degree considering both the
A1 or A2 adjacency matrices. This is motivated by the degree immunization
strategy used for static graphs.

Greedy-DavgA (Highest degree on the “average” matrix) We select the node
with the highest degree in the Aavg matrix where Aavg = (A1 +A2)/2.

Greedy-AavgA (Acquaintance immunization [9] on the average matrix)
The “acquaintance” immunization policy works by picking a random person,
and then immunizing one of its neighbors at random (which will probably
be a ‘hub’). We run this policy on the Aavg matrix.

Greedy-S (Greedy on the system-matrix) This is the greedy strategy of
immunizing the node at each step which causes the largest drop in λS value.
Note that even this can be expensive for large graphs as we have to evaluate
the first eigenvalue of S after deleting each node to decide which node is the
best.

Optimal Finally, this it the optimal through combinatorial strategy mentioned
above of finding the best-k set of nodes which decrease λS the most.

6 Experimental Evaluations

In this section we present experimental results of applying the various immuniza-
tion policies discussed previously. We have already demonstrated our theoretical
threshold results in Section 4.
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6.1 Experimental Setup

We conducted a series of experiments using the MIT Reality Mining data set
[11]. The Reality Mining data consists of 104 mobile devices (cellular phones)
monitored over a period of nine months (September 2004 - June 2005). If another
participating Bluetooth device was within a range of approximately 5-10 meters,
the date and time of the contact and the device’s MAC address were recorded.
Bluetooth scans were conducted at 5-minute intervals and aggregated into two
12-hour period adjacency matrices (day and night). The epidemic simulations
were accomplished by alternating the day and night matrices over the period of
simulation. All experiments were run on a 64-bit, quad-core (2.5Ghz each) server
running a CentOS linux distribution with shared 72 GB of RAM. Simulations
were conducted using a combination of Matlab 7.9 and Python 2.6.

6.2 Results
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Fig. 3. Experiments on Reality Mining graphs: λS vs k for different immunization
policies. Lower is better. Greedy-DavgA clearly drops the λS value aggressively and is
close to the Greedy-Opt.

Figure 3 shows the λS value after immunizing k = 1, 2, . . . , 10 nodes using
each of the policies outlined in Section 5. As Optimal and Greedy-S require β
and δ as inputs, we set β = 0.5, δ = 0.1. Running Optimal became prohibitively
expensive (> 4 hours on the MIT reality graphs) after k = 7 - hence we don’t
show data points for k ≥ 8 for Optimal. Moving on to the greedy strategies we
find that Greedy-S performs the best after k = 10 by dropping the λS value
as aggressively as possible - equal to Optimal at many places. We find that
Greedy-DavgA also performs very well. Intuitively this is because the highest
degree node in Aavg is very well-connected and hence has a huge effect in re-
ducing the Aavg value (we discuss more about Aavg later in Section 7). At the
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same time, Greedy-DmaxA is comparable to Greedy-DavgA as we find the highest
degree among both the graphs: so this highest degree will also mostly have the
highest mean degree. Finally, Greedy-AavgA drops the λS value the least among
all the policies. Given the first random choice of node, Greedy-AavgA can be
“trapped” in the neighborhood of a node far form the best node to immunize,
and thus can be forced to make a choice based on the limited local information.
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Fig. 4. Scatter plot of Max. infections till steady state and λS for different immuniza-
tion policies after k = 10 immunizations. Points closer to the origin are better. All
policies perform in accordance to the λS values achieved (see Figure 3).

Figure 4 demonstrates the effectiveness of our quality metric i.e. the λS value
for each immunization policy after k = 10 immunizations. It is a scatter plot
of Max. infections till steady state and the various λS values at the end of
the immunizations. So points closer to the origin (minimum footprint and λS)
represent better policies. Clearly, Optimal should theoretically be the closest
to the origin (we don’t show it as it didn’t finish). Also as discussed before,
Greedy-AavgA is the worst and that is demonstrated by its point. From Figure 3
we can see that Greedy-S has the least λS value after k = 10, hence it is closest
to the origin and thus has the smallest footprint. Others perform well too, as
their final λS values were close as well.

To summarize, in our experiments we demonstrated that policies decreasing
λS the most are the best policies as they result in smaller footprints as well.
Also, simple greedy policies were effective and achieved similar λS values like
expensive combinatorial policies.

7 Discussion

We discuss some pertinent issues and give additional explanations in this section.

Generality of our results: How can we model more complex situations like
‘unequal duration’ behaviors etc.? Note that the alternation period T can be
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longer than 2 and we can have repetitions in the set A as well e.g. to repre-
sent a weekly-style (work day-weekend) alternation we can have T = 7 and
A = {A1,A1, . . . ,A1,A2,A2}. Similarly, we can model situations like unequal
duration of ‘day’ and ‘night’ i.e. unequal duration of matrices A1 and A2. Say,
A1 is present for only 8 hours at work, while A2 is present for the remaining 16
hours at home. Then, thinking of an hour as our time-step i.e. T = 24, the set
A = {A1, . . . ,A1,A2,A2, . . .}, where A1 occurs 8 times in A while A2 occurs 16
times. All the threshold results carry forward seamlessly in all the above cases.

Goodness of the Aavg matrix: We saw that Greedy-DavgA gave very good
results and was close to Greedy-S and Optimal. This can be explained with the
help of the following lemma.

Lemma 3. (1 − 2δ)I+ 2βAavg is a first-order approximation of the S matrix.

Proof. Note that (T = 2),

S = S1 × S2

= ((1 − δ)I+ βA1)× ((1 − δ)I+ βA2)

= (1− δ)2I+ (1− δ)β(A1 +A2) + β2A1A2

≈ (1− 2δ)I+ β(A1 +A2) = (1− 2δ)I+ 2β

(

A1 +A2

2

)

where we neglected second order terms involving β and δ. Thus (1−2δ)I+2βAavg

is a first-order approximation of the S matrix. ⊓⊔
In other words, we can consider the time-varying system to be approximated by
a static graph system of the Aavg graph adjacency matrix with a virus of the
same strength (β/δ remains the same). The threshold for a static graph with
adjacency matrix A is βλA/δ. So in our static case, we should aim to reduce
λAavg

as much as possible. Any policy which aims to reduce the λAavg
value

will approximate our original goal of dropping the λS value. Thus, this gives a
theoretical justification of why Greedy-DavgA gave good results.

Temporal Immunization: In this paper, we concentrated only on static im-
munization policies - policies where once immunized, a node is ‘removed’ from
the contact graphs. While this makes sense for biological vaccinations, in a more
complex ‘resource’ oriented scenario where each ‘glove’ protects a person only
for the time it is worn, a time-varying immunization policy might be more use-
ful. e.g. we may have finite number of gloves to give and we can change the
assignment of gloves during day/night. In this case, it may be better to immu-
nize nurses in hospitals during the day by giving them the gloves but during the
night, we can decide to give gloves to restaurant waiters or children, because the
nurses are now not well-connected in the contact graph. Our threshold results
can trivially estimate the impact or any ‘what-if’ scenarios w.r.t. such temporal
immunization algorithms.
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8 Conclusion

In this paper, we analytically studied virus-spreading (specifically the SIS model)
on arbitrary, time-varying graphs. Given a set of T alternating graphs, modeling
e.g. the day/night pattern of human behavior, we ask: (a) what is the epidemic
threshold? and (b) what are the best-k nodes to immunize to defend against an
epidemic? Our main contributions are:

1. We show how to formulate the problem, namely by approximating it with a
Non-Linear Dynamical System (NLDS).

2. We give the first closed-formula for the threshold, involving the first eigen-
value of the system-matrix (see Theorem 2).

3. We use the insight from our threshold to develop and evaluate several im-
munization policies on real data like MIT reality mining graphs.

Future work can focus on providing bounds for the effectiveness of our immu-
nization heuristics.
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