
Reconstructing Strings from Substrings in RoundsDimitris Margaritis Steven S. Skiena �Department of Computer Science Department of Computer ScienceState University of New York State University of New YorkStony Brook, NY 11794-4400 Stony Brook, NY 11794-4400dmarg@sbcs.sunysb.edu skiena@sbcs.sunysb.eduAbstractWe establish a variety of combinatorial bounds onthe tradeo�s inherent in reconstructing strings usingfew rounds of a given number of substring queries perround. These results lead us to propose a new ap-proach to sequencing by hybridization (SBH), whichuses interaction to dramatically reduce the number ofoligonucleotides used for de novo sequencing of largeDNA fragments, while preserving the parallelism whichis the primary advantage of SBH.1 IntroductionSequencing by hybridization (SBH) [4, 11] is a newand promising approach to DNA sequencing which of-fers the potential of reduced cost and higher through-put over traditional gel-based approaches. In this pa-per, we propose a new approach to sequencing by hy-bridization which permits the sequencing of arbitrar-ily large fragments without the inherently exponentialchip area of SBH, while retaining the massive par-allelism which is the primary advantage of the tech-nique. We establish the potential of our techniquethrough both analytical results and simulation on realDNA sequences. Our approach is based on our solu-tion of an interesting combinatorial problem, that ofreconstructing strings from substrings in rounds.The traditional sequencing by hybridization proce-dure attaches a set of single-stranded fragments to asubstrate, forming a sequencing chip. A solution of ra-diolabeled single-stranded target DNA fragments areexposed to the chip. These fragments hybridize withcomplementary fragments on the chip, and the hy-bridized fragments can be identi�ed using a nucleardetector. Each hybridization (or the lack thereof) de-termines whether the string represented by the frag-ment is or is not a substring of the target. The targetDNA can now be sequenced based on the constraintsof which strings are and are not substrings of the tar-get. Pevzner and Lipshutz [11] give an excellent surveyof the current state of the art in sequencing by hy-bridization, both technologically and algorithmically.The most widely used sequencing chip design, theclassical sequencing chip C(m), contains all 4m single-stranded oligonucleotides of length m. For example, in�Corresponding author. This work was partially supportedby ONR award 400x116yip01.

Fragment Classical SBH Interactive SBHLength Length Size Rounds Size80 7 16,384 7 560180 8 65,536 8 1,440260 9 262,144 8 2,080560 10 1,048,576 8 4,4801300 11 4,194,304 9 11,7002450 12 16,777,216 9 22,050Table 1: Characteristic length of unambiguously de-ciphered DNA fragment as a function of the size forclassical and interactive SBH.C(8) all 48 = 65; 536 octamers are used. Pevzner's al-gorithm [12] for reconstruction using classical sequenc-ing chips interprets the results of a sequencing experi-ment as a subgraph of the de Bruijn graph, such thatany Eulerian path corresponds to a possible sequence.Thus the reconstruction is not unique unless the sub-graph consists entirely of a directed induced path.The strength of this requirement means that enor-mous sequencing chips are needed to reconstruct rela-tively short strands of DNA. For example, the classicalchip C(8) su�ces to reconstruct 200 nucleotide longsequences in only 94 of 100 cases [10], even in error-free experiments. Unfortunately, as shown in Table 1,the length of unambiguously reconstructible sequencegrows slower than the size (ie. area) of the chip. Thusexponential growth inherently limits the length of thelongest reconstructible sequence by traditional SBH.Our approach uses interaction to reduce the re-quired amount of work. Suppose that we are given anunknown string S, over a known alphabet �, and arepermitted to ask questions of the form \is s a substringof S?", where s is a speci�c query string over �. Weare not told where s occurs in S, nor how many timesit occurs, just whether or not s a substring of S. Weneed to be able to ask many useful questions simulta-neously in order to minimize set-up costs and elapsedtime. Therefore, our goal is to determine the exactcontents of S using as few rounds of as few queries aspossible. The results of Table 1 demonstrate that wesucceed, using less than ten rounds to reduce the totalnumber of queries by a several orders of magnitudeson reasonable sized fragments.



Other variants of SBH (such as nested-strand SBH[13, 14] and positional SBH [2, 6]) have been proposedto increase the resolving power of classical SBH. How-ever, none of them o�er the potential of interactiveSBH to sequence very long fragments.Skiena and Sundaram [15] studied the complexityof sequentially reconstructing unknown strings fromsubstring queries. Speci�cally, they show that (� �1)n+�(�pn) queries are su�cient to reconstruct anunknown string, where � is the alphabet size and nthe length of the string, matching the information-theoretic lower bound for binary strings. Further,they show that � �n=4 queries are necessary, whichis within a factor of 4 of the upper bound for largeralphabets. However, achieving a high degree of paral-lelism is critical for this approach to lead to a practicalmethod of DNA sequencing.In this paper:� We show a wide range of tradeo�s between thenumber of rounds of substring queries and thenumber of queries per round su�cient to deter-mine an unknown string of length n on an alpha-bet of size �. Our results are summarized in thetable below:Number of Rounds Questions per Round�n 1n �lg2 n nlg n n2= lg nlg lgn ��(1+o(1))(lgn= lg lgn)2 �O(pn lgn)1 3�bn=2c+1Each of these tradeo�s require di�erent ideas toachieve.� We prove an exponential lower bound on the ca-pacity of any prefabricated sequencing chip ca-pable of reconstructing n-strings, and give a newchip design whose capacity approaches this lowerbound.� We give a strategy which uses (with probability1�1=n�) O(�� lgn) rounds of n queries per round,and present simulation results which demonstratethe practicality of this approach. Indeed, our sim-ulations suggest a much stronger result, that farfewer number of rounds of n queries per roundsu�ce to reconstruct sequences of length n. Thissuggests a very e�cient technique to sequencelarge DNA fragments, and also an application todesigning custom, prefabricated chips to identifymutations for diagnostic purposes.In the sense of being biological techniques proposedby computer scientists, our work is philosophicallyakin to the recent work of Adleman [1] and Lipton[8] on biocomputing. We stress that for our proposedtechniques, the issue is not one of feasibility, but ofcost, since either the photolithography methods of [4]

or the primer walking technique of [7] can be used torealize interactive SBH, albeit in an expensive man-ner. We are con�dent that biologists can develop ex-perimental protocols to reduce these costs, once theyunderstand the combinatorial advantages of our ap-proach.In Section 2, we analyze the one round case, cor-responding to conventional sequencing chips, and es-tablish tight upper and lower bounds for capacity. InSection 3, we establish bounds on chip capacity su�-cient to achieve a sub-logarithmic number of rounds.In Section 4, we present our most interesting tradeo�s,showing that polylog rounds of subquadratic capacitychips always su�ce for reconstruction. Finally, in Sec-tion 5 we prove better bounds in the average case. Inan appendix, we give the results of simulations to es-tablish the practicality of our techniques.2 Reconstruction in One RoundIn this section, we consider the problem of recon-structing strings using a �xed set of queries, as in con-ventional SBH. A sequencing chip C is de�ned by agiven set of query strings c1; . . . ; cm over a given alpha-bet �. The capacity or sizem of the chip is the numberof strings which de�ne it. The spectrum Sp(C; S) ofchip C with respect to string S partitions the stringsof C into two sets, those which are substrings of S andthose which are not. A string S can be reconstructedwith a given chip C i� there does not exist a stringS0 2 �� such that Sp(C; S) = Sp(C; S0). In otherwords, the spectrum of S uniquely describes S.In this section, we consider the question of mini-mizing the size of any chip capable of reconstructingall strings of length n. Clearly, a chip containing all�n strings of length n su�ces for reconstruction, sincethe spectrum of any string S will contain only onepositive substring, ie. S itself. However, signi�cantlysmaller chips are in fact possible.Consider a classical sequencing chip C(l), where l =bn=2c+1, consisting of all �l l-strings. A string S hasperiod k if Si = Si+k for all 1 � i � n � k. Observethat strings of period k � l cannot be reconstructedusing C(l). For example, the strings abcdabc, bcdabcd,cdabcda, and dabcdab all contain exactly the same setof 4-substrings; abcd, bcda, cdab, and dabc. Thus C(l)does not su�ce for reconstructing n-strings, but weshall show that a slightly larger chip does while nosmaller chip can.Our arguments will be based on two n-strings S andT , both composed of the same set of l-strings. Let S[i]denote the ith character of S. Let Si (Ti) denote thel-string beginning in the ith position of S (T ), ie. theith through (i+ l�1)th characters. Thus Si and Si+1share l � 1 characters in common. Given S, string Tis completely described by a permutation PT of the(n� l + 1) l-substrings of S.Lemma 1 Let S and T be distinct n-strings such thatSp(C(m); S) = Sp(C(m); T ), where C(m) is the clas-sical sequencing chip and m > n=2. If Tx = Sj+1and Tx+p = Si, then S[z] = S[z + (j � i + 1 + p)] for1 � z � m� p. In other words, the �rst m+ j � i+ 1characters of S form a period (j � i + 1 + p) string.
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(S) (T)Figure 1: Forcing a low-period substring.Proof: Figure 1 illustrates the situation. By de�ni-tion, Si[z+j�i+1] = Sj+1[z] for 1 � z � m�(j�i+1).Similarly, Tx+p[z] = Tx[z + p] for 1 � z � m � p.Therefore, Si[z] = Sj+1[z + p] for 1 � z � m� p, andthe result follows since Sx[y] = S[x+ y � 1].We say a permutation P on f1; . . . ; ng ispre�x-separable if there exists k < n such thatmax(P1; . . . ; Pk) = k.Lemma 2 Let S and T be distinct n-strings suchthat Sp(C(m); S) = Sp(C(m); T ) and PT is pre�x-separable. Then there exist proper distinct n0-stringsS0 and T 0 such that S0 is a substring of S and T 0 is asubstring of T , where Sp(C(m); S0) = Sp(C(m); T 0).Proof: Since PT is pre�x-separable, the sets of the�rst k m-strings of S and T are identical, as are thesets of the last (n�k�m) m-strings. If either S[1;m+k�1] 6= T [1;m+k�1] or S[k+1; n] 6= T [k+1; n], wehave our S0 and T 0. If not, S = T and S and T werenot distinct n-strings.Lemma 3 Let S and T be distinct n-strings such thatSp(C(m); S) = Sp(C(m); T ), where C(m) is the clas-sical sequencing chip, PT is not pre�x-separable, andm > n=2. Then for any i < n�m, there exists a j > i,p, and x such that (j � i + 1 + p) � m, Tx = Sj+1and Tx+p = Si. Thus, S[i;m + j + 1] is a period(j � i + 1 + p) � m string.Proof: Since PT is not pre�x-separable, for any i < n,there exists at least one j > i such that the startingposition of Sj+1 is to the left of Si in T . Let j be thesmallest such integer. Thus Si+1; . . . ; Sj in T must allbe to the right of the starting position of Si in T . Thusthere can be at most m� 1� (j � i) starting positionsto the left of Si in T , and p � m � j + i � 1.Therefore, by Lemma 1, S[i;m � j + 1] is a period(j � i+ 1+ p) string. Since j � i+ 1+ p � j � i+ 1+(m� j+ i� 1) = m, this string has period at most m.

By the GCD Lemma of Lyndon and Schutzenberger[9]:Lemma 4 Let S = abc be a string formed by concate-nating strings a, b, and c. Let string ab have periodi, and string bc have period j, where jbj > max(i; j).Then� If i = j, then S has period i = j.� If i = d � j, for integer d, S has period i.� If i ? j, S has period 1.Lemma 5 The classical chip C(m) su�ces to recon-struct any n-string of period k > m if m > n=2.Proof: We show that if Sp(C(m); S) = Sp(C(m); T ),and S 6= T , then both S and T must have period atmost m. Consider the smallest sized counter-example.Assume PT is pre�x-separable. By Lemma 3, for all1 � i � n �m, the substring Si = S[i;m + j + 1] hasperiod � m for some j � i. Thus Si overlaps Si+1 inat least m positions. By the GCD Lemma of [9], theintersection of these strings must have period at mostm, which can be extended to comprise all of S. Thecase of T follows by symmetry.Now suppose PT is not pre�x-separable. By Lemma2 this could not be the smallest counter-example, acontraction and the result follows.Lemmas 5 leads directly to an e�cient sequencingchip design:Theorem 6 One round of 3�bn=2c+1 queries su�cesto reconstruct any n-string on an alphabet �, � = j�j.Proof: Our sequencing chip consists of all distinct(bn=2c + 1)-strings, plus all n-strings of period atmost (bn=2c + 1). By Lemma 5, the former are suf-�cient to reconstruct any long period strings, andnone of the latter strings will prove substrings ofthe unknown long-period string. If the unknownstring has a short period, exactly one of the latterstrings will prove a substring. This chip contains�bn=2c+1 +Pbn=2c+1i=1 �i � 3�bn=2c+1 strings.Period bn=2c+ 1 strings prove the key to the lowerbound as well:Theorem 7 Any sequencing chip capable of recon-structing all strings of length n must have size at least2�bn=2c+1=n� 1.Proof: Let l = bn=2c+1. Consider a set of questionsadequate to reconstruct each of the �l the period-ln-strings. We can partition these strings into equiva-lence classes, where each of these n-strings are equiva-lent under circular shifts. Thus the size of these equiv-alence classes ranges from one to l, depending uponthe minimum period of the string. Observe that:



� Any question capable of distinguishing betweenmembers of the same equivalence class must havelength greater than l, since all the strings in thesame class have the same l-spectrum.� Any question of length greater than l will be sub-strings of members of at most one equivalenceclass, since all l-substrings of this question mustbe equivalent under circular shift (if not, the ques-tion will be a substring of none of the period lstrings).Thus none of the lg jCj � 1 queries necessary todistinguish between the C members of an equivalentclass can possibly be substrings of any string outsidethe equivalence class. Since each equivalence class con-tains at most l members, there are at least �l=l suchclasses, and the result follows from making at leastone query per class.3 Reconstruction using Few RoundsTo show how interaction can be used to reduce thetotal number of queries, we �rst review the results ofSkiena and Sundaram [15] on reconstructing stringswith one substring query per round. A subtlety of theproblem is whether the length of the unknown stringis presented in advance, or must be determined usingthe results of queries. For ease of exposition, we willassume that the length n is known, since it resultsin simpler strategies whose complexities are identicalexcept for lower order terms.Lemma 8 An unknown string S of known length n onalphabet �, j�j = � can be reconstructed in �(n + 1)substring queries.Proof: Begin by making substring queries of single-character substrings, so after at most � queries weknow a character of S. Let s be a known substring of Sand � = f�1; �2; . . . ; ��g. In general, we can increasethe length of this known substring by one characterby querying on the strings s�i, for 1 � i � �. Atleast one of these query strings must be a substring ofS, unless s is a su�x of S. When s can no longer beextended, s is a su�x of S and we can continue theprocess by prepending each character to the knownsubstring, until it is of length n and S is determined.In [15], we show how to reduce the multiplicativeconstant by one, ie. that (� � 1)n + 2 lg n + O(�)substring queries su�ce if n is known, while if n isunknown, (� � 1)n + �(�pn) queries su�ce. Withour lower bounds of (lg�)n and �n=4, this strategyis tight for binary strings and within a factor of 4 ofoptimal over any alphabet.The strategy of Lemma 8 can be parallelized in atrivial way, by observing that each of the � extensionqueries can be done in parallel, yielding:Corollary 1 n+ 1 rounds of � substring queries perround su�ce to reconstruct an unknown string oflength n on an alphabet of size �.

In the rest of this section, we use a divide-and-conquer approach to deliver a much higher degree ofparallelism.Lemma 9 Any string S on an alphabet of size �can be reconstructed using at most r rounds of�n1=r lg(r�1)=r n substring queries per round.Proof: Consider the following r round reconstruc-tion strategy, which is parameterized by the constantsk1; . . . ; kr:� round 1: Query all �n=k1 strings of length n=k1.Let S1 denote the resulting set of substrings of Sof length n=k1.� round 2 � i � r: Let Si�1 denote the set ofall of the (at most n) distinct (Qi�1j=2 kj � (n=k1))-substrings of S. Query all of the nki strings whichcan be formed as a sequence of ki elements ofSi�1.This strategy is correct whenever Qrj=2 kj=k1 � 1,as Si is determined at the end of round i, and Sr = S.We select k1 and kj (2 � j � r) to satisfy the followingrelations: n=k1 � lg n � kjk1 = kr�1jSolving for k1 and kj yields:k1 = (n= lgn)(r�1)=rkj = (n= lg n)1=rIn the �rst round, �n=k1 = �n1=r lg(r�1)=r n queriesare made. In the second through rth rounds, nkj =�n1=r lg(r�1)=r n queries are made, giving the result.Corollary 2 Any string of length n on an alphabet ofsize � can be determined using 2 rounds of ��(pn lgn)queries per round.Corollary 3 Any string of length n on an alphabetof size � can be determined using lg lg n rounds of��(1+o(1))(lgn= lg lgn) queries per round.Corollary 4 Any string of length n on an alphabetof size � can be determined using lg n rounds of n�queries per round.4 Reconstruction using PolylogRoundsThe results in the previous sections demonstratethat it is possible to reconstruct strings from sub-strings in few rounds, but at a cost of an exponentialnumber of queries per round. Practical implementa-tion of interactive SBH forbids such extravagance {



the largest currently realized sequencing chip containsonly 65,384 oligonucleotides. We seek to reconstructlong sequences with chips of capacity on this order ofmagnitude.In this section, we consider strategies which use apolylogarithmic number of rounds, but a low-orderpolynomial number of queries per round. Our algo-rithms are based on the following observations:Lemma 10 A string S of length n contains � n�l+1di�erent substrings of length l.Proof: Any particular l-substring has a unique �rststarting position in S, since no two distinct l-stringscan begin at the same position in S. The result followssince there are only n�l+1 possible starting positionsin S.Lemma 11 Given the set of all distinct l-substringsof S, jSj = n, one round of (n� l+1)2 queries su�ceto �nd all distinct 2l-substrings of S.Proof: Any 2l-substring of S can be formed by con-catenating two l-substrings of S. By Lemma 10, thereare only a linear number of l-substrings.Lemma 11 immediately gives an algorithm for re-constructing strings in dlg ne rounds of n2 queries,by starting with one character queries and repeatedlydoubling. This strategy may be seen as wasteful, how-ever, since some of the n2 concatenations may con-tain l-strings which are not l-substrings of S. Theseprospective queries can be eliminated without e�ect-ing the accuracy of the algorithm.Theorem 12 O(lg n) rounds of n2= lgn substringqueries per round su�ce to reconstruct any string oflength n on an alphabet of size � � n.Proof: We use the previously described doublingstrategy, where we ask queries concatenating two l-substrings i� all l distinct l-substrings of the length2l queries are in fact substrings of S. Thus the al-gorithm proceeds in lg n meta-rounds, where the ithmeta-round consists of mi queries surviving from atmost n � 2i � 1 candidates. If we are restricted torounds of n2= lgn queries, the total number of roundsin this strategy is given byR = lgnXi=1dmi=(n2= lgn)eWe analyze the complexity of R by partitioning allqueries asked into two sets, those queries which proveto be substrings of S (ie. return `true' to the query)and those queries which prove not to be substrings ofS. By Lemma 10, at most n queries per round can besubstrings of S, for a total of at most n log n queriesin the �rst set.A no-query asked in round i corresponds to the con-catenation xy of two 2i�1-substrings of S, where x

ends at position p(x) in S, y begins at position p(y)in S, and p(x) 6= p(y). In no subsequent round, will aquery be asked concatenating a string ending in p(x)with a string beginning in p(y), because such a querywill contain xy, which is known not to be a substringof S. Thus at most n2 queries will prove to be no-queries, and lgnXi=1mi = n2 + n lognSubject to this contraint, R is maximized at 2 lg n,giving the result.Theorem 12 gets us to a tradeo� approaching prac-ticality, but n2= logn queries per round still appearstoo large to sequence long pieces of DNA. For n >1000, we exceed the capacity of the largest sequencingchip constructed to date. Below, we consider e�cientstrategies using a linear number of queries per round.Lemma 13 Consider a set U of m strings on alphabet�, j�j = �, where each string begins with the samesubstring s. There exists a string s0 which is containedin at leastm=(2�+1) and at most 2m�=(2�+1) stringsof U .Proof: By de�nition, s is a pre�x of each string in U .We will construct s0 one character at a time, extend-ing it by the character c 2 � such that cs0 or s0c is asubstring of the largest number of strings in U . Sincethere are only 2� possibilities, by the pigeonhole prin-ciple the most popular character/position pair will re-duce the cardinality of U by a factor of at most 1=2�.We stop extending s0 when the number of remainingstrings lies between m=(2�+1) and 2m�=(2�+1), asit must eventually do.Lemma 14 Given the set of all distinct l-substringsof S, jSj = n, O(log(1+�=�) n) rounds of n queriessu�ce to �nd all distinct 2l-substrings of S.Proof: We construct the set of � n2 concatenationstrings xy, and distribute them into � n piles, wherepile p(x) consists of all concatenation strings sharingsame the l-substring x.For each pile, we use Lemma 13 to identify a stringq1 which which partitions the pile into two smallerbut roughly equal-sized piles, p1y(x) containing q1 andpin(x) not containing q1.Applying Lemma 13 to each of these piles yields atotal of two more query strings (q2 for p1y(x) and q3 forp1n(x)) which partitions p(x) into four roughly equal-size piles. There are eight possible outcomes to theset of queries q1, q2, and q3. If q1 returns false, all ofthe candidates in pile p1y(x) can be eliminated, as allof these contain q1 where S does not. This test is notsymmetrical, however. If q1 returns true, we cannoteliminate the candidates of p1n(x), because all we haveproven is that S must contain q1 somewhere but this



does not preclude it from containing substrings in pilep1n(x).If either of queries q2 or q3 return false, all the can-didates in at least one subpile can be eliminated, re-ducing the size of the original pile by a constant frac-tion. All three queries return true only if there existat least two distinct substrings in S beginning with x,with one in p1y(x) and another in p1n(x).Thus we have shown that after three queries perpile, each pile is either reduced by a constant fractionor split into roughly equal subpiles. Each subpile isde�ned by a substring starting from a unique positionin S, so there can never be more than n active subpiles.Thus in O(lg n) rounds of n queries per round, eachpile can be can be reduced to at most one string perpile, each corresponding to a distinct 2l-substring ofS. Further, each of the 2l-substrings must representedby a pile if the given set of l-substrings was indeedcomplete.Performing the lg n meta-round doubling strategyof Theorem 12 with the pruning implementation ofLemma 14 gives:Theorem 15 O(lg n � log(1+�)=�) n) rounds of n sub-string queries per round su�ce to reconstruct a stringS of length n5 Probabalistic AnalysisThroughout this paper we have been concernedwith worst-case results. In this chapter, we considerthe expected number of rounds to determine a ran-dom n-string when we are allowed to make n queriesper round. We present a simple probabilistic analy-sis that O(lgn) rounds su�ce for random strings withhigh probability.The key issue in this kind of analysis is the prob-ability that an arbitrary l-string is a substring of arandom n-string. Because of clustering e�ects for low-period strings, (for example, the string 0k is likely tooccur more than once in a binary string if it occursat all) the probability that a given string s occursin a random n-string is a function of s, not just thelength of s. Guibas and Odlyzko [5] and Wilf [16] usegenerating function methods to count the number ofn-strings containing a substring s. However, simplecounting arguments show that the probability goes tozero for l-strings where l � (1 + �) log� n and to onefor l � (1� �) log� n.Theorem 16 Let S be a random n-string on an al-phabet of size �. With a probability of 1�1=n�, S canbe determined using O(� �� log� n) rounds of n queriesper round.Proof: We will use a three-phase strategy to deter-mine S. First, we use one round of n queries to imple-ment the classical sequencing chip C(blog� nc), thusdetermining all � n distinct (log� n)-substrings of S.Second, we will use � �� log� n rounds to `grow' each ofthese strings to length l = (1+�) log� n using the tech-nique of Lemma 8. Finally, we perform the doubling

strategy of Lemma 12 to complete the determinationof S, starting from the set of l-substrings.The remaining issue is to analyze the number ofquestions asked in the �rst round of the third phase.Since O(n) of the concatenations correspond to actual2l-substrings of S, all of these questions must be asked,plus any of the O(n2) `false' questions which happento have all l-substrings occur in S.Suppose we just refrain from asking the `false' ques-tions xy whose central l-substring s is not in S. Thereare three di�erent cases where s is in X but xy is not{ (1) the l=2 characters after x form s with x, (2) thel=2 characters before y form s with y, or (3) s occurselsewhere in S, not anked by x or y. Cases (1) and(2) each occur with probability �l=2, while case (3)occurs with probability �l. Thus the expected num-ber of `false' questions to survive to the �rst doublingis 2n2=n(1+�), which is sublinear for � > 1. Thus anexpected O(n) questions need to be asked in the �rstdoubling round, which can simulated using a constantnumber of rounds of n questions. Further, the ex-pected number of false questions decreases in subse-quent doubling rounds, so O(lg n) rounds of n ques-tions su�ces for this last stage.In fact, it is obvious that fewer rounds on averageshould su�ce, since the concatenation of two l-stringsshould go unasked if any of its l-substrings is not inS, instead of just the middle one. The lack of inde-pendence makes the analysis of this di�cult, however,our simulation results in the appendix shows that theimprovement is considerable.6 ConclusionsWe conclude with a list of open problems:� Give improve our upper bounds or prove interest-ing lower bounds on capacity for the cases of fewrounds. We have presented tight lower boundsfor the cases of one round and one question perround, but nothing interesting in between.� Generalize these results to sequencing multipletarget strings, ie. where we are simultaneouslysequencing many strings. This approach is appli-cable to Crkvenjakov and Drmanac's target downapproach to sequencing by hybridization [3, 11],which makes one query per round but achievesparallelism through multiple targets.� Generalize these results for the case of positiveand negative errors.� Design more e�cient sequencing chips (in theaverage case), and reconstruction algorithms forthem.� Does our interactive model have a practical lab-oratory implementation? The issue is not oneof feasibility, but of cost, since either the pho-tolithography methods of [4] or the primer walk-ing technique of [7] can be used to realize it, albeitin an expensive manner.
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Appendix: Simulation ResultsWe implemented two di�erent algorithms for inter-active SBH, and experimented with them on real andsimulated DNA. For consistency, we performed n sub-string queries in each simulated round, where n is thelength of the string to be sequenced. To calibrate forsmaller size chips, observe that c�k rounds su�ce usinga chip of size n=c if k rounds su�ce for a chip of sizen. To calibrate for larger size chips, observe that thenumber of rounds can only decrease with increasingchip size.The algorithms we implemented are:� The Doubling Algorithm { This is a direct im-plementation of the worst-case O(lg n) round al-gorithm of Theorem 12. Given the set of alll-substrings of the unknown n-string S, we askall 2l-length queries formed by concatenating twosubstrings together, provided all the l-substringsof the prospective query are l-substrings of S. Ifthere are Mi queries in the ith meta-round whichsurvive this test, they are asked in dMi=ne roundsof n. In our experiment, the �rst round startsall questions of length one, and no walking steps(as recommended in the probabilistic algorithmof Theorem 16) were performed.� The Adaptive Length Algorithm { This algorithmis an version of the expected O(lg n) round algo-rithm of Theorem 16 which has been enhanced intwo ways. First, as in the previous algorithm, aquery is pruned unless all the l-substrings of theprospective query are l-substrings of S. Second,and more importantly, instead of always extend-ing the query length by one each round in thecritical region, we �nd the longest l0 such that atmost c �n length l0 queries are consistent with theset of l-substrings of S. Each such meta-round issimulated by at most c rounds of n queries, exceptfor the special case where l0 = l+1, and � roundsmay be required. Note that l0 may grow veryrapidly. For example, although our �rst stageasks only length one questions, the second stagequeries are typically lg� n in length.Certain details are necessary for an e�cient im-plementation of the adaptive length algorithm forlong strings. We �nd that c = 2 minimizes thenumber of rounds for both � = 2 and � = 4.Also, we use a one-sided binary search to searchfor l0 from l, and a linear-space su�x-tree datastructure to quickly establish the necessity of aprospective query.We have evaluated these algorithms on both sim-ulated and real data. In Figures 2 and 3, we showthe number of rounds required for both algorithmsto determine random binary and quadrary strings oflength 2i, for 2 � i � 16. For each size and algo-rithm, ten random strings were `sequenced'. It is clearthat the number of rounds required for the adaptive-length algorithm is growing extremely slowly, perhapsO(lg lgn). The number of rounds is essentially a small



Sequence Length Rnds QueriesHuman alpha globin 12,847 12 125,546Human beta globin 18,060 11 167,722Chicken collagen 21,180 9 153,836HIV 9,718 11 83,954Bacteriophage lambda 48,502 11 386,218Mouse mitochondrion 16,295 10 120,030Rat MHC gene 25,759 11 235,652Rabies virus 11,928 11 99,167Human rhinovirus type 14 7,212 9 52,634Human Ribosomal DNA 42,999 16 573,014Simian Virus 40 5,243 11 48,003Drosophila white locus 14,245 10 113,202Table 2: Performance of The Adaptive Algorithm onGenBank Sequences.constant for imaginable values of n, which bodes wellfor the potential of interactive SBH.The number of rounds used by the doubling al-gorithm demonstrates a startling degree of non-monotonicity, ie. longer strings can require substan-tially fewer rounds to sequence. This cycling dependsupon the value of � = blg� nc � lg� n, as can be il-lustrated by the di�erence in periods for binary andquadrary alphabets. Since almost all �lg� n (lg� n)-strings are likely to occur as substrings of S, a largefraction of the O(n2) possible concatenations will sur-vive (for � � 0) to be asked as queries in the nextround. It is this behavior that the `walking' steps ofTheorem 16 was designed to avoid.In Table 2, we report on the number of rounds re-quired to determine actual DNA sequences, as drawnfromGenBank. The number of rounds required for ac-tual DNA sequences seems to be slightly larger thanfor random data, presumably because of longer repeatsequences in DNA. However, a dozen rounds su�ce tosequence all but one of the DNA sequences in our test,still very modest considering the small sizes of the se-quencing chips required. The total number of queriesgiven in Table 2 is less than the number of roundstimes the maximum number of questions allowed perround because not all rounds are completely �lled.In fact, the total number of questions over the set ofrounds is su�ciently small to justify using these algo-rithms for the design of customized sequencing chips,which seek to identify mutations in speci�c genes fordiagnostic purposes. By making a chip which is theunion of all of the queries made over all rounds fora speci�c sequence, we are guaranteed that any mu-tation will be detected, since if all questions are an-swered identically to the original sequence, the testsequence must be identical to the original. Further,we would expect to be able to identify the exact mu-tation in many cases, from the sequence of di�erencesin the answers.
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Figure 2: The performance of both algorithms on bi-nary alphabets.
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Figure 3: The performance of both algorithms on 4-letter alphabets.


