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Abstract

In this paper we present a method for learning the structure
of Bayesian networks (BNs) without making any assumptions
on the probability distribution of the domain. This is mainly
useful for continuous domains, where there is little guidance
and many choices for the parametric distribution families to
be used for the local conditional probabilities of the Bayesian
network, and only a few have been examined analytically. We
therefore focus on BN structure learning in continuous do-
mains. We address the problem by developing a conditional
independence test for continuous variables, which can be
readily used by any existing independence-based BN struc-
ture learning algorithm. Our test is non-parametric, making
no assumptions on the distribution of the domain. We also
provide an effective and computationally efficient method for
calculating it from data. We demonstrate the learning of the
structure of graphical models in continuous domains from
real-world data, to our knowledge for the first time using
independence-based methods and without distributional as-
sumptions. We also experimentally show that our test com-
pares favorably with existing statistical approaches which use
prediscretization, and verify desirable properties such as sta-
tistical consistency.

Introduction and Motivation
One of the first problems that a researcher who is interested
in learning a graphical model from data is faced with, is
making a choice on the kind of probability distributions she
will use. Such distributions are used to model local inter-
actions among subsets of variables in the model. For ex-
ample, in a Bayesian network (BN), a local probability dis-
tribution function (PDF) needs to be defined between ev-
ery variable and its parents. The choice is easier in discrete
domains, where every variable can take only a fixed num-
ber of values; the standard choice for discrete PDFs is the
multinomial, which is usually sufficient for modeling com-
plex interactions among variables, and whose parameters are
straightforward to estimate from data.

In continuous or mixed continuous-discrete domains how-
ever the problem is considerably harder, prompting the use
of simplifying assumptions. The common assumption is for
the local PDFs between parents and children to be linear
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relations with additive Gaussian errors (Geiger & Hecker-
man 1994; Spirtes, Glymour, & Scheines 1993). However,
there are many real-life situations where this assumption
fails (e.g., stock market prices, biometric variables, weather
status, etc.), where the interactions are far from linear. In
these cases, such an assumption can lead to inaccurate net-
works that are a poor fit to the data and the underlying prob-
ability distribution, and can produce incorrect structures.

Our work addresses the learning of the structure of graph-
ical models without making any such assumptions about
the distributions of the local PDFs. Although we focus on
Bayesian network structure learning, application to Markov
network structure learning is straightforward. To learn the
structure of a Bayesian network, there exist two general
classes of algorithms. The first, called the score-based ap-
proach, employs a search in the space of all possible legal
structures guided by a heuristic function, usually penalized
log-likelihood (Lam & Bacchus 1994). The search proce-
dure maximizes this score, usually by hill-climbing. Other
search techniques have also been used (Heckerman 1995).

The second class of Bayesian network structure learning
algorithms use the fact that the structure of a BN implies that
a set of conditional independence statements hold in the do-
main it is modeling. They exploit this property by conduct-
ing a number of statistical conditional independence (CI)
tests on the data and use their results to make inferences
about the structure. Assuming no errors in these tests, the
idea is to constrain, if possible, the set of possible structures
that satisfy the conditional independencies that are found in
the data to a singleton, and infer that structure as the only
possible one. For this reason these algorithms are called
constraint-based or independence-based.

Our work uses the second class of algorithms to learn BN
structure in continuous domains. The crucial observation
is that the independence-based algorithms interact with the
data only through the conditional independence tests done
during their operation. Therefore, the use of a CI test be-
tween continuous variables, and in particular one that does
not assume anything about the distribution of the variables
involved in the test, would be sufficient for learning the
structure in such domains in a distribution-independent fash-
ion. CI tests that do not assume any particular family of
distributions are called non-parametric. Although such tests
exist for discrete variables—the χ2 (chi-square) test of inde-



Figure 1: Two very different data sets have similar 3 × 3 his-
tograms. Left: X, Y strongly dependent. Right: X, Y indepen-
dent by construction.

pendence is perhaps the most common one—for continuous
variables the standard approach is to discretize the continu-
ous variables and perform a discrete test. One problem with
this method is that the discretization has to be done with
care; for example, Fig. 1 depicts two very different situa-
tions where X and Y are dependent (left) and independent
(right), that produce two very similar histograms after a 3×3
discretization. The (unconditional) multi-resolution test of
Margaritis & Thrun (2001), outlined in the next section, ad-
dresses cases such as this. Independence-based algorithms
however require conditional independence tests. In this pa-
per we extend the above-mentioned unconditional test to a
conditional version that carefully discretizes the Z axis, per-
forms an (unconditional) independence test on the data in
each resulting bin, and combines the results into a single
probabilistic measure of conditional independence.

Outline of Unconditional Test
In this section we outline the unconditional multi-resolution
test of independence between two continuous variables X
and Y of Margaritis & Thrun (2001). A central idea is the
comparison of two competing statistical models, MI (the in-
dependent model) and M¬I (the dependent model), accord-
ing to the data likelihood of a data set consisting of (X, Y )
pairs. For a given fixed resolution, the test uses a discretized
version of the data set at that resolution (resolution is the
size of the histogram or “grid” placed over the data e.g.,
3×3 in Fig. 1). The dependent model M¬I corresponds to a
joint multinomial distribution while the independent model
MI to two marginal multinomials along the X- and Y -axes.
Margaritis & Thrun calculate the data likelihoods of each
model analytically:

Pr(D |M¬I) =
Γ(γ)

Γ(γ + N)

N
∏

i=1

M
∏

j=1

Γ(γij + cij)

Γ(γij)

and

Pr(D |MI) =

(

Γ(α)

Γ(α + N)

N
∏

i=1

Γ(αi + ci+)

Γ(αi)

)

×





Γ(β)

Γ(β + N)

M
∏

j=1

Γ(βj + c+j)

Γ(βj)



 ,

where D denotes the data set and cij the counts of the N×M
histogram. This closed form is due to the use of a Dirich-
let conjugate prior distribution over the parameters of the
multinomials (which are typically unknown). The terms γij ,
αi and βj are the parameters of the Dirichlet (hyperparam-
eters). Using Bayes’ theorem, the posterior probability of
MI is given by

Pr(MI | D) = 1

/(

1 +
1−P

P
·
Pr(D |M¬I)

Pr(D |MI)

)

and Pr(M¬I | D) = 1 − Pr(MI | D). P def
= Pr(MI) is

the prior probability of the independent model. A common
choice for P in situations where there is no prior informa-
tion is guided by the principle of indifference, which assigns
equal prior probability to either case i.e., P = 0.5.

The above equations hold for a given resolution and a
given placement of the histogram boundaries. Margari-
tis & Thrun average (integrate) in a Bayesian fashion over
all possible positions that the histogram boundaries may
take. Since this is prohibitively expensive for anything
but very small data sets, the practical implementation em-
ploys a maximum-value approximation to the Bayesian in-
tegral. They also use this fixed-resolution test to develop a
multi-resolution test by discretizing the data set at a num-
ber of gradually increasing resolutions and combining the
results—see Margaritis & Thrun (2001) for details.

To conclude independence or dependence, the ratio
Pr(MI | D)/ Pr(MI) is compared with unity:

Pr(MI | D)

Pr(MI)
=

{

≥ 1⇒ X, Y independent
< 1⇒ X, Y dependent.

The comparison of the ratio to a number greater (smaller)
than unity can be used to reflect a bias of a researcher toward
dependence (independence).

An extension to testing for independence between two
sets of variables X and Y, rather than single variables X
and Y , is straightforward.

Probabilistic Measure of Conditional
Independence

The unconditional test described in the previous section
takes a data set of continuous-valued (X, Y ) pairs and re-
turns the estimated posterior probability of the model repre-
senting independence vs. the one representing dependence.
In this paper we extend this to a conditional version that tests
for conditional independence of X and Y given Z, in a do-
main that contains continuous-valued triples (X, Y, Z). This
is denoted as X ⊥⊥ Y | Z and defined at “all values of Z
except a zero-support subset” (Lauritzen 1996).

We make the standard assumption that the data points
are drawn independently and from the same distribution,
namely the domain PDF. This is frequently called the
i.i.d. assumption, standing for independently and identically
drawn data, and is a basic assumption in statistics—for ex-
ample the analytical forms of traditional distributions (multi-
nomial, Poisson, hypergeometric etc.) depend on it.

Our procedure for testing for conditional independence of
X and Y given Z can be summarized in the following three
steps:



1. Subdivide the Z axis into m bins b1, b2, . . . , bm, re-
sulting in a partition of the data set D of size N into
D1,D2, . . . ,Dm disjoint data sets.

2. Measure conditional independence in each bin by per-
forming an unconditional independence test of X and Y ,
using the test described in the previous section (obtaining
a posterior probability of independence from each bin).

3. Combine the results from each bin into a single number.
This immediately introduces the following three questions:
(a) What discretization of the Z axis is appropriate (step 1)?
(b) When and why is conducting an unconditional test in a
bin sufficient to measure conditional independence in that
bin (step 2)? (c) How do we combine the (unconditional)
test results using the result from each bin (step 3)?

Testing for Conditional Independence In Each Bin
For clarity of exposition, we start with question (b). Let us
assume we are given a subset of the data Di that fall within
a particular bin bi, produced by some discretization of the
Z-axis. To determine whether (X ⊥⊥ Y | Z) in this bin, it is
sufficient to test (X ⊥⊥ Y ) if we know that ({X, Y } ⊥⊥ Z)
(in this bin), as the following theorem states.
Theorem 1. If ({X, Y } ⊥⊥ Z), then (X ⊥⊥ Y | Z) if and
only if (X ⊥⊥ Y ).

Proof. We are using the following theorems that hold for any
probability distribution, due to ? (?): Decomposition, Contraction,
and Weak Union.

(Proof of ⇒): We want to prove that
({X, Y } ⊥⊥ Z) and (X ⊥⊥ Y | Z) ⇒ (X ⊥⊥ Y ).

• From Decomposition and ({X, Y } ⊥⊥ Z) we get (X ⊥⊥ Z).
• From Contraction and (X ⊥⊥ Z) and (X ⊥⊥ Y | Z) we get

(X ⊥⊥ {Y, Z}).
• From Decomposition and (X ⊥⊥ {Y, Z}) we get (X ⊥⊥ Y ).

(Proof of ⇐): We want to prove that
({X, Y } ⊥⊥ Z) and (X ⊥⊥ Y ) ⇒ (X ⊥⊥ Y | Z).

• From Weak Union and ({X, Y } ⊥⊥ Z) we get (X ⊥⊥ Z | Y ).
• From Contraction and (X ⊥⊥ Z | Y ) and (X ⊥⊥ Y ) we get

(X ⊥⊥ {Z, Y }).
• From Weak Union and (X ⊥⊥ {Z, Y }) we get (X ⊥⊥ Y | Z).

We can use the above theorem as follows. Suppose that
we conduct an unconditional test ({X, Y } ⊥⊥ Z) in bin bi,
using the unconditional test of Margaritis & Thrun (2001)
(extended to handle sets), obtaining Pr({X, Y } ⊥⊥ Z | Di).
Denoting ({X, Y } ⊥⊥ Z)

def
= U , (X ⊥⊥ Y )

def
= I , and

(X ⊥⊥ Y | Z)
def
= CI , consider two extreme cases:

• Given certain independence of {X, Y } and Z, i.e., Pr(U |
Di) = 1, conditional independence of X and Y given Z
is the same as unconditional, according to the theorem.
Therefore, Pr(CI | U,Di) = Pr(I | Di).

• Given certain dependence of {X, Y } and Z, i.e., Pr(U |
Di) = 0, nothing can be said about the conditional in-
dependence of X and Y given Z without actually con-
ducting a conditional test; this is because the distribu-
tion of {X, Y } is certain to change with Z within the
bin, making the theorem inapplicable. Therefore, in this
case, the posterior is taken equal to the prior probability:
Pr(CI | ¬U,Di) = P = 0.5.

In the general case, by the theorem of total probability,
Pr(CI | Di) is:

Pr(CI | Di) = Pr(CI | U,Di) Pr(U | Di)+ (1)
Pr(CI | ¬U,Di) Pr(¬U | Di) =

Pr(I | Di) Pr(U | Di) + P(1− Pr(U | Di))

The test of Margaritis & Thrun (2001) can be used for both
Pr(U | Di) and Pr(I | Di) since they are unconditional.
We therefore now have a way of estimating the posterior
probability of conditional independence from the results of
two unconditional independence tests, in each bin of a given
discretization of the Z-axis.

Discretization and Probabilistic Measure
We now address questions (c) and (a). Even though we can
use Eq. (1) directly to calculate the posterior probability of
conditional independence on the entire data set D of size N ,
this will be useless in most cases, because the distribution of
{X, Y }will likely vary along the Z-axis, resulting in Pr(U |
D) ≈ 0 and therefore Pr(CI | D) ≈ P = 0.5 according to
Eq. (1). To improve the chance that the PDF of {X, Y } will
be uniform along Z, we divide the Z axis into subregions,
resulting into a partition of D into subsets.

Let us assume that we are given a discretization result-
ing in m subsets D1, . . . ,Dm, and we have calculated the
independence of X with Y in each bin bi, i.e., Pr(CI |

Di)
def
= Ii and the independence of {X, Y } with Z in bi,

i.e., Pr(U | Di)
def
= Ui. These estimates are independent for

different values i and j due to the i.i.d. assumption, which
implies that the (X, Y, Z) values of the i-th data point do
not depend on the values any of the remaining (N − 1) data
points. Therefore, Ii is independent of Ij (and Ui of Uj) for
i 6= j, because they are functions of the independent data
sets Di and Dj .

We therefore measure conditional independence by the
product of the corresponding estimates Ii over all bins. Due
to the practical consideration that the fewer data points an
interval contains, the more unreliable the test of indepen-
dence becomes, we scale each term in the product by the
fraction of data points in the corresponding bin, resulting in
the following expression:

I =
m
∏

i=1

Pr(CI | Di)
ci/N =

m
∏

i=1

I
ci/N
i . (2)

where ci is the number of data points in bin bi. Each term in
the product can be calculated using Eq. (1). I ranges from
0 to 1. We use it as a probabilistic measure of conditional
independence for a given discretization. To conclude depen-
dence or independence, we compare I with its value when
we have no data i.e.,

m
∏

i=1

Pr(CI )ci/N =

m
∏

i=1

Pci/N = P .

This addresses question (c) (combination of results). For
question (a), the determining factor on the appropriateness



(I,U) = RECURSIVE-MEDIAN(X, Y, Z,D):

1. if |D| ≤ 1,
2. return (0.5, 0.5)
3. U = Pr({X, Y } ⊥⊥ Z | D)
4. I = Pr(X ⊥⊥ Y | D) × U + P × (1 − U)
5. z∗ = median(D, Z)
6. D1 = {points j of D such that zj ≤ z∗}
7. D2 = {points j of D such that zj > z∗}
8. (I1,U1) = RECURSIVE-MEDIAN(X, Y, Z,D1)
9. (I2,U2) = RECURSIVE-MEDIAN(X, Y, Z,D2)
10. f1 = (z∗ − zmin)/(zmax − zmin) /* f1 ≈ 0.5 */
11. f2 = (zmax − z∗)/(zmax − zmin) /* f2 ≈ 0.5 */
12. I′ = exp(f1 lnI1 + f2 lnI2)
13. U ′ = exp(f1 lnU1 + f2 lnU2)
14. if U > U ′,
15. return (I,U)
16. else
17. return (I′,U ′)

Figure 2: The recursive-median algorithm.

of a discretization is a measure of how uniform each bin is
with respect to {X, Y } and Z, allowing the use of Theo-
rem 1. We measure uniformness in a fashion similar to I,
calling the result U :

U =

m
∏

i=1

Pr(U | Di)
ci/N =

m
∏

i=1

U
ci/N
i . (3)

As with I, U also ranges from 0 to 1. The insight here is that
U is theoretically constant and equal to 1 everywhere along
the Z-axis at the limit where the length of each interval tends
to 0. (This is a consequence of U monotonically tending to 1
within an interval as its length is made shorter. The proof of
this is simple once we observe that independence of {X, Y }
with Z within an interval is logically implied by indepen-
dence within two intervals that partition it.) We can there-
fore use U to compare two discretizations by their resulting
U values, preferring the one with the greater U value (i.e.,
the one closer to 1).

Recursive-median algorithm
We can now put all the above together in the recursive-
median algorithm shown in Fig. 2. The algorithm takes as
input the names of variables X , Y and Z and a data set D. It
begins by calculating the measure of posterior probability of
independence I (using Eq. (1)) and U using a single inter-
val along the Z-axis that contains the entire data set. It then
splits the data set along the Z-axis at the median, producing
in two non-overlapping intervals containing the same num-
ber of points (plus or minus one) and recursively calls itself
on each of the two subsets. When only one point remains,
the recursion reaches its base case; in this case 0.5 (the prior)
is returned both for I and U , since both the independent and
the dependent model are supported by the single data point
equally well. Upon return from the two recursive calls, the
results I1, I2 and U1, U2 are combined into I ′ and U ′ re-
spectively using Eqs. (2) and (3), respectively. The greater

of U (representing the estimated uniformness of the interval
before splitting) andU ′ (representing the estimated uniform-
ness after splitting) is returned, along with the corresponding
conditional independence estimate (I or I ′). At the end of
the run on the entire data set, the value of U returned can
be discarded or used as a measure of confidence in the main
result (I value), if desired. We conclude conditional inde-
pendence if and only if I/P ≥ 1.

Related Work
Work specific to non-parametric conditional independence
testing in continuous domains is scarce. The most relevant
work is in the area of discretization. Virtually all work in this
area has focused in the past on PDF estimation (e.g., Scott
(1992)). However, it is arguable whether a method well-
suited for PDF estimation can also perform well in indepen-
dence testing (those tested here did not, as will be seen in the
Experiments section below). Discretization methods can be
categorized as supervised or unsupervised. Since here there
exists no concept of “class,” supervised methods are not ap-
plicable. Unfortunately, these form the bulk of the research
in the area (e.g., see survey in Dougherty, Kohavi, & Sahami
(1995)). A small number of unsupervised methods exist:
• Sturges’s method is widely recommended in introduc-

tory statistics texts (Scott 1992). It dictates that the the
optimal number of equal-width histogram bins is k =
1 + log2 N , where N is the number of points.

• Scott’s method (Scott 1979) dictates that the optimal bin
width is ĥ = 3.5σ̂N−1/(2+d) for multiple dimensions,
where σ̂ is the sample standard deviation and d is the num-
ber of dimensions.

• Freedman and Diaconis’s method (Freedman & Di-
aconis 1981) is an improvement over Scott’s method
intended to be more robust to outliers. It sets ĥ =
2(IQ)N−1/(2+d), where IQ is the interquartile range (the
distance between the points splitting the data into 25%–
75% and 75%–25% subsets).

We compare our approach with these methods in the next
section.

Experiments
Real-World BN Structure Learning Experiments
We evaluated the suitability of the recursive-median algo-
rithm for learning the structure of a graphical model on the
BOSTON-HOUSING and ABALONE real-world data sets:

Data set No. of data points No. of variables
HOUSING 506 14
ABALONE 4177 8

HOUSING is a relatively small data set, making non-
parametric testing for independence especially difficult. We
applied the PC algorithm (Spirtes, Glymour, & Scheines
1993) using the recursive-median test for learning the struc-
ture of a graphical model in this domain. The output of PC
is not always a Bayesian network; in domains where its as-
sumptions fail, the resulting structure may contain bidirected
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Figure 3: Output of the PC algorithm for the HOUSING domain.
The model contains bidirected and undirected edges (see text).
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Figure 4: Output of the PC algorithm for the ABALONE domain.
The model contains bidirected edges (see text).

(indicating the existence of a latent variable) as well as undi-
rected (undirectable) edges. The resulting graphical model
is shown in Fig. 3. This structure implies a set of condi-
tional independencies; for example that INDUS (proportion
of non-retail business acres per town) is independent of other
variables given CRIM (per capita crime rate by town). We
note that the resulting network agrees with the original study
of the data that concluded that there is no direct link between
NOX (a pollution indicator) and MEDV (the median value
of owner-occupied homes)—their dependence in Fig. 3 is
through a number of intermediate relationships.

The ABALONE data set contains measurements from a
study conducted to predict the age of abalones from their
physical characteristics. The domain contains 9 variables
in total, one of which is categorical (SEX), 7 continuous,
and one ordinal discrete (the number of rings, which denotes
the age). Since the test for continuous variables assumes an
ordering of the values, we did not use the categorical vari-
able. The network structure resulting for the ABALONE do-
main is shown in Fig. 4. The structure indicates a number of
conditional independencies, including that HEIGHT is inde-
pendent of other variables given the SHELL WEIGHT, and
LENGTH is independent of other variables given WHOLE
WEIGHT and DIAMETER.

Comparison with Prediscretization Methods
We compared the recursive-median algorithm with meth-
ods that prediscretized the data using Sturges’s, Scott’s, and
Freedman and Diaconis’s method, described in the Related
Work section. After discretization, we conducted a χ2 (chi-
square) test of independence for each bin of the condition-
ing variable—combining over all Z intervals in the standard
way—to produce a significance (a p-value) in the null hy-
pothesis (conditional independence). To evaluate the perfor-
mance of these tests, artificial data sets were necessary. This
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Figure 5: 15 Lambda-network results from recursive-median,
Sturges, Scott, and Freedman-Diaconis methods. Only recursive-
median (correctly) indicates conditional independence in all cases.

is because the ground truth (whether the variables in the data
set are in fact conditionally independent or not) cannot be
known with certainty except for artificially generated data
sets. We therefore used data sets generated from the follow-
ing 3-variable BNs:
• “Lambda” networks: These are structured as X ←

Z → Y , and therefore (X ⊥⊥ Y | Z) by construction.
• “V” networks: These are structured as X → Z ← Y ,

and therefore (X 6⊥⊥ Y | Z) by construction.

Functions
f1 x
f2 2 sin(x)
f3 ln |x|
f4 1/(x/5 + 1)
f5 ex

We used all pairs of the func-
tions shown in the table on
the right for the BN edges,
combined additively in the case
of the V-networks, and added
Gaussian noise. 20,000 data
points were used in each experi-
ment. The matrices of CI test re-
sults for all function combinations are summarized in Figs. 5
and 6. For clarity we do not show results below the matrix
diagonal since it is symmetric. As can be seen, while all pre-
discretization methods were able to capture conditional de-
pendence (Fig. 6), only the recursive-median algorithm was
able to detect conditional independence (I > 0.5) in all 15
Lambda-networks (Fig. 5).

We also measured statistical consistency, which is defined
as a property of an estimator to have mean square error tend
to 0 as the data set size tends to infinity. For this purpose we
used the MEANDER data set, shown in the top left part of
Fig. 7. It resembles a spiral, and is challenging because the
joint PDF of X and Y given Z changes dramatically with Z,
making Theorem 1 inapplicable without subdivision of the
Z axis. The data set was generated using the following non-
linear equations:

Z ∼ 0.75×N(0, 1/5) + 0.25×N(1, 1/3)

X ∼ Z/10 + (1/2) sin(2πZ) + 0.1×N(0, 1)

Y ∼ Z/5 + sin(2πZ + 0.35) + 0.1×N(0, 1)
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Figure 6: Top row: 15 V-network results from recursive-median,
Sturges, Scott, and Freedman-Diaconis methods. All methods (cor-
rectly) indicate conditional dependence.

where N(µ, σ) denotes a normal (Gaussian) distribution
with mean µ and standard deviation σ. According to the
these functional descriptions, X and Y are independent
given Z. However, as can be seen in the top right part of
Fig. 7, they are unconditionally dependent. We generated
20 data sets of 25,000 examples each, and then ran all algo-
rithms on subsets of each, of sizes ranging from 1,000 to all
25,000 data points. For each data set size, we averaged over
the 20 data sets of that size to obtain a 95% confidence inter-
val of our estimates of I and U using the recursive-median
algorithm. We plot I and U values for recursive-median,
and also the p-values for the prediscretization methods in
Fig. 7 (bottom). As can be seen, all three prediscretization
methods returned a very low p-value (too close to 0 to be
seen clearly in the graph), strongly indicating conditional
dependence (incorrectly), with little or no improvement for
larger data sets. The recursive-median returns values of I
much greater than 0.5 and tending to 1 with increasing sam-
ple size, indicating statistical consistency of both I and U .

Conclusion
To the best of our knowledge, this is the first time the
learning of structure of graphical models in continuous do-
mains is demonstrated, using independence-based methods
and without making use of any distributional assumptions.
This was made possible by the use of the probabilistic non-
parametric conditional independence test presented in this
paper, and an effective algorithm (recursive-median) for es-
timating it from a data set. Our evaluation on both real and
artificial data sets shows that can be used to learn a graphical
model consistent with previous studies of the application do-
main, and that it performs well against alternative methods
drawn from the statistical literature.
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