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Abstract

In this paper we address the problem of provably correct feature selection in arbi-
trary domains. An optimal solution to the problem is a Markovboundary, which
is a minimal set of features that make the probability distribution of a target vari-
able conditionally invariant to the state of all other features in the domain. While
numerous algorithms for this problem have been proposed, their theoretical cor-
rectness and practical behavior under arbitrary probability distributions is unclear.
We address this by introducing the Markov Boundary Theorem that precisely char-
acterizes the properties of an ideal Markov boundary, and use it to develop algo-
rithms that learn a more general boundary that can capture complex interactions
that only appear when the values of multiple features are considered together. We
introduce two algorithms: an exact, provably correct one aswell a more practi-
cal randomized anytime version, and show that they perform well on artificial as
well as benchmark and real-world data sets. Throughout the paper we make min-
imal assumptions that consist of only a general set of axiomsthat hold for every
probability distribution, which gives these algorithms universal applicability.

1 Introduction and Motivation
The problem of feature selection has a long history due to itssignificance in a wide range of im-
portant problems, from early ones like pattern recognitionto recent ones such as text categoriza-
tion, gene expression analysis and others. In such domains,using all available features may be
prohibitively expensive, unnecessarily wasteful, and maylead to poor generalization performance,
especially in the presence of irrelevant or redundant features. Thus, selecting a subset of features of
the domain for use in subsequent application of machine learning algorithms has become a standard
preprocessing step. A typical task of these algorithms islearning a classifier: Given a number of
input features and a quantity of interest, called thetarget variable, choose a member of a family of
classifiers that can predict the target variable’s value as well as possible. Another task isunderstand-
ing the domain and the quantities that interact with the target quantity.

Many algorithms have been proposed for feature selection. Unfortunately, little attention has been
paid to the issue of their behavior under a variety of application domains that can be encountered in
practice. In particular, it is known that many can fail undercertain probability distributions such as
ones that contain a (near) parity function [1], which contain interactions that only appear when the
values of multiple features are considered together. Thereis therefore an acute need for algorithms
that are widely applicable and can be theoretically proven to work under any probability distribution.
In this paper we present two such algorithms, an exact and a more practical randomized approximate
one. We use the observation (first made in Koller and Sahami [2]) that an optimal solution to the
problem is a Markov boundary, defined to be a minimal set of features that make the probability
distribution of a target variable conditionally invariantto the state of all other features in the domain
(a more precise definition is given later in Section 3) and present a family of algorithms for learning
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the Markov boundary of a target variable in arbitrary domains. We first introduce a theorem that
exactly characterizes the minimal set of features necessary for probabilistically isolating a variable,
and then relax this definition to derive a family of algorithms that learn a parameterized approxima-
tion of the ideal boundary that areprovably correctunder a minimal set of assumptions, including a
set of axioms that hold for any probability distribution.

In the following section we present work on feature selection, followed by notation and definitions in
Section 3. We subsequently introduce an important theorem and the aforementioned parameterized
family of algorithms in Sections 4 and 5 respectively, including a practical anytime version. We
evaluate these algorithms in Section 6 and conclude in Section 7.

2 Related Work
Numerous algorithms have been proposed for feature selection. At the highest level algorithms can
be classified asfilter, wrapper, or embeddedmethods. Filter methods work without consulting the
classifier (if any) that will make use of their output i.e., the resulting set of selected features. They
therefore have typically wider applicability since they are not tied to any particular classifier fam-
ily. In contrast, wrappers make the classifier an integral part of their operation, repeatedly invoking
it to evaluate each of a sequence of feature subsets, and selecting the subset that results in mini-
mum estimated classification error (for that particular classifier). Finally, embedded algorithms are
classifier-learning algorithms that perform feature selection implicitly during their operation e.g.,
decision tree learners.

Early work was motivated by the problem of pattern recognition which inherently contains a large
number of features (pixels, regions, signal responses at multiple frequencies etc.). Narendra and
Fukunaga [3] first cast feature selection as a problem of maximization of an objective function over
the set of features to use, and proposed a number of search approaches includingforward selec-
tion andbackward elimination. Later work by machine learning researchers includes the FOCUS
algorithm of Almuallim and Dietterich [4], which is a filter method for deterministic, noise-free
domains. The RELIEF algorithm [5] instead uses a randomizedselection of data points to update a
weight assigned to each feature, selecting the features whose weight exceeds a given threshold. A
large number of additional algorithms have appeared in the literature, too many to list here—good
surveys are included in Dash and Liu [6]; Guyon and Elisseeff[1]; Liu and Motoda [7]. An impor-
tant concept for feature subset selection is relevance. Several notions of relevance are discussed in
a number of important papers such as Blum and Langley [8]; Kohavi and John [9]. The argument
that the problem of feature selection can be cast as the problem of Markov blanket discovery was
first made convincingly in Koller and Sahami [2], who also presented an algorithm for learning an
approximate Markov blanket using mutual information. Other algorithms include the GS algorithm
[10], originally developed for learning of the structure ofa Bayesian network of a domain, and ex-
tensions to it [11] including the recent MMMB algorithm [12]. Meinshausen and B̈uhlmann [13]
recently proposed an optimal theoretical solution to the problem of learning the neighborhood of
a Markov network when the distribution of the domain can be assumed to be a multidimensional
Gaussian i.e., linear relations among features with Gaussian noise. This assumption implies that
the Composition axiom holds in the domain (see Pearl [14] fora definition of Composition); the
difference with our work is that we address here the problem in general domains where it may not
necessarily hold.

3 Notation and Preliminaries
In this section we present notation, fundamental definitions and axioms that will be subsequently
used in the rest of the paper. We use the term “feature” and “variable” interchangeably, and de-
note variables by capital letters (X, Y etc.) and sets of variables by bold letters (S, T etc.). We
denote the set of all variables/features in the domain (the “universe”) byU . All algorithms pre-
sented areindependence-based, learning the Markov boundary of a given target variable using the
truth value of a number of conditional independence statements. The use of conditional indepen-
dence for feature selection subsumes many other criteria proposed in the literature. In particular, the
use of classification accuracy of the target variable can be seen as a special case of testing for its
conditional independence with some of its predictor variables (conditional on the subset selected at
any given moment). A benefit of using conditional independence is that, while classification error
estimates depend on the classifier family used, conditionalindependence does not. In addition, al-
gorithms utilizing conditional independence for feature selection are applicable to all domain types,
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e.g., discrete, ordinal, continuous with non-linear or arbitrary non-degenerate associations or mixed
domains, as long as a reliable estimate of probabilistic independence is available.

We denote probabilistic independence by the symbol “⊥⊥ ” i.e., (X⊥⊥Y | Z) denotes the fact
that the variables in setX are (jointly) conditionally independent from those in setY given the
values of the variables in setZ; (X 6⊥⊥Y | Z) denotes their conditional dependence. We assume
the existence of aprobabilistic independence query oraclethat is available to answer any query
of the form(X,Y | Z), corresponding to the question “Is the set of variables inX independent
of the variables inY given the value of the variables inZ?” (This is similar to the approach of
learning from statistical queries of Kearns and Vazirani [15].) In practice however, such an oracle
does not exist, but can be approximated by a statistical independence test on a data set. Many tests of
independence have appeared and studied extensively in the statistical literature over the last century;
in this work we use theχ2 (chi-square) test of independence [16].

A Markov blanket of variableX is a set of variables such that, after fixing (by “knowing”) the value
of all of its members, the set of remaining variables in the domain, taken together as a single set-
valued variable, are statistically independent ofX. More precisely, we have the following definition.
Definition 1. A set of variablesS ⊆ U is called aMarkov blanket of variableX if and only if
(X⊥⊥U − S − {X} | S).
Intuitively, a Markov blanketS of X captures all the information in the remaining domain variables
U − S − {X} that can affect the probability distribution ofX, making their value redundant as far
asX is concerned (givenS). The blanket therefore captures the essence of the featureselection
problem for target variableX: By completely “shielding”X, a Markov blanket precludes the exis-
tence of any possible information aboutX that can come from variables not in the blanket, making
it an ideal solution to the feature selection problem. A minimal Markov blanket is called a Markov
boundary.
Definition 2. A set of variablesS ⊆ U − {X} is called aMarkov boundary of variableX if it is a
minimal Markov blanket ofX i.e., none of its proper subsets is a Markov blanket.
Pearl [14] proved that that the axioms of Symmetry, Decomposition, Weak Union, and Intersection
are sufficient to guarantee a unique Markov boundary. These are shown below together with the
axiom of Contraction.

(Symmetry) (X⊥⊥Y | Z) =⇒ (Y⊥⊥X | Z)
(Decomposition) (X⊥⊥Y ∪W | Z) =⇒ (X⊥⊥Y | Z) ∧ (X⊥⊥W | Z)
(Weak Union) (X⊥⊥Y ∪W | Z) =⇒ (X⊥⊥Y | Z ∪W) (1)
(Contraction) (X⊥⊥Y | Z) ∧ (X⊥⊥W | Y ∪ Z) =⇒ (X⊥⊥Y ∪W | Z)
(Intersection) (X⊥⊥Y | Z ∪W) ∧ (X⊥⊥W | Z ∪Y) =⇒ (X⊥⊥Y ∪W | Z)

The Symmetry, Decomposition, Contraction and Weak Union axioms are very general: they are
necessaryaxioms for the probabilistic definition of independence i.e., they hold ineveryprobability
distribution, as their proofs are based on the axioms of probability theory. Intersection is not univer-
sal but it holds in distributions that are positive, i.e., any value combination of the domain variables
has a non-zero probability of occurring.

4 The Markov Boundary Theorem
According to Definition 2, a Markov boundary is a minimal Markov blanket. We first introduce a
theorem that provides an alternative, equivalent definition of the concept of Markov boundary that
we will relax later in the paper to produce a more general boundary definition.
Theorem 1 (Markov Boundary Theorem). Assuming that the Decomposition and Contraction
axioms hold,S ⊆ U − {X} is a Markov boundary of variableX ∈ U if and only if

∀T ⊆ U − {X},
{

T ⊆ U − S ⇐⇒ (X⊥⊥T | S − T)
}

. (2)

A detailed proof cannot be included here due to space constraints but a proof sketch appears in
Appendix A. According to the above theorem, a Markov boundary S partitions the powerset of
U − {X} into two parts: (a) setP1 that contains all subsets ofU − S, and (b) setP2 containing
the remaining subsets. All sets inP1 are conditionally independent ofX, and all sets inP2 are
conditionally dependent withX.

Intuitively, the two directions of the logical equivalencerelation of Eq. (2) correspond to the concept
of Markov blanket and its minimality i.e., the equation

∀T ⊆ U − {X},
{

T ⊆ U − S =⇒ (X⊥⊥T | S − T)
}
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Algorithm 1 The abstractGS(m)(X) algorithm. Returns anm-Markov boundary ofX.
1: S← ∅

2: /* Growing phase.*/
3: for all Y ⊆ U − S− {X} such that1 ≤ |Y| ≤ m do
4: if (X 6⊥⊥Y | S) then
5: S← S ∪Y

6: goto line 3 /* Restart loop.*/
7: /* Shrinking phase.*/
8: for all Y ∈ S do
9: if (X⊥⊥Y | S− {Y }) then

10: S← S− {Y }
11: goto line 8 /* Restart loop.*/
12: return S

or, equivalently,(∀T ⊆ U − S − {X}, (X⊥⊥T | S)) (asT andS are disjoint) corresponds to
the definition of Markov blanket, as it includesT = U − S − {X}. In the opposite direction, the
contrapositive form is

∀T ⊆ U − {X},
{

T 6⊆ U − S =⇒ (X 6⊥⊥T | S − T)
}

.

This corresponds to the concept of minimality of the Markov boundary: It states that all sets that
contain a part ofS cannot be independent ofX given the remainder ofS. Informally, this is because
if there existed some setT that contained a non-empty subsetT

′ of S such that(X⊥⊥T | S − T),
then one would be able to shrinkS by T

′ (by the property of Contraction) and thereforeS would
not be minimal (more details in Appendix A).

5 A Family of Algorithms for Arbitrary Domains
Theorem 1 defines conditions that precisely characterize a Markov boundary and thus can be thought
of as an alternative definition of a boundary. By relaxing these conditions we can produce a more
general definition. In particular, anm-Markov boundary is defined as follows.
Definition 3. A set of variablesS ⊆ U − {X} of a domainU is called anm-Markov boundary of
variableX ∈ U if and only if

∀T ⊆ U − {X} such that|T| ≤ m,
{

T ⊆ U − S ⇐⇒ (X⊥⊥T | S − T)
}

.

We call the parameterm of anm-Markov boundary theMarkov boundary margin. Intuitively, an
m-boundaryS guarantees that (a) all subsets of its complement (excluding X) of sizem or smaller
are independent ofX given S, and (b) all setsT of sizem or smaller that are not subsets of its
complement are dependent ofX given the part ofS that is not contained inT. This definition is a
special case of the properties of a boundary stated in Theorem 1, with each setT mentioned in the
theorem now restricted to having sizem or smaller. Form = n − 1, wheren = |U|, the condition
|T| ≤ m is always satisfied and can be omitted; in this case the definition of an(n − 1)-Markov
boundary results in exactly Eq. (2) of Theorem 1.

We now present an algorithm calledGS(m), shown in Algorithm 1, that provably correctly learns
anm-boundary of a target variableX. GS(m) operates in two phases, agrowing and ashrinking
phase (hence the acronym). During the growing phase it examines sets of variables of size up tom,
wherem is a user-specified parameter. During the shrinking phase,singlevariables are examined for
conditional independence and possible removal fromS (examining sets in the shrinking phase isnot
necessary for provably correct operation—see Appendix B). The orders of examination of the sets
for possible addition and deletion from the candidate boundary are left intentionally unspecified in
Algorithm 1—one can therefore view it as an abstract representative of a family of algorithms, with
each member specifying one such ordering. All members of this family arem-correct, as the proof
of correctness does not depend on the ordering. In practice numerous choices for the ordering exist;
one possibility is to examine the sets in the growing phase inorder of increasing set size and, for
each such size, in order of decreasing conditional mutual informationI(X,Y,S) betweenX and
Y givenS. The rationale for this heuristic choice is that (usually) tests with smaller conditional sets
tend to be more reliable, and sorting by mutual information tends to lessen the chance of adding false
members of the Markov boundary. We used this implementationin all our experiments, presented
later in Section 6.

Intuitively, the margin represents a trade-off between sample and computational complexity and
completeness: Form = n − 1 = |U| − 1, the algorithm returns a Markov boundary in unrestricted
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Algorithm 2 TheRGS(m,k)(X) algorithm, a randomized anytime version of theGS(m) algorithm,
utilizing k random subsets for the growing phase.
1: S← ∅

2: /* Growing phase.*/
3: repeat
4: Schanged ← false
5: Y ← subset ofU − S− {X} of size1 ≤ |Y| ≤ m of maximum dependence out ofk random subsets
6: if (X 6⊥⊥Y | S) then
7: S← S ∪Y

8: Schanged ← true
9: until Schanged = false

10: /* Shrinking phase.*/
11: for all Y ∈ S do
12: if (X⊥⊥Y | S− {Y }) then
13: S← S− {Y }
14: goto line 11 /* Restart loop.*/
15: return S

(arbitrary) domains. For1 ≤ m < n − 1, GS(m) may recover the correct boundary depending
on characteristics of the domain. For example, it will recover the correct boundary in domains
containing embedded parity functions such that the number of variables involved in everyk-bit
parity function ism + 1 or less i.e., ifk ≤ m + 1 (parity functions are corner cases in the space
of probability distributions that are known to be hard to learn [17]). The proof ofm-correctness of
GS(m) is included in Appendix B. Note that it is based on Theorem 1 and the universal axioms of
Eqs. (1) only i.e., Intersection is not needed, and thus it iswidely applicable (to any domain).

A Practical Randomized Anytime Version

WhileGS(m) is provably correct even in difficult domains such as those that contain parity functions,
it may be impractical with a large number of features as its asymptotic complexity isO(nm). We
therefore also we here provide a more practical randomized version calledRGS(m,k) (Randomized
GS(m)), shown in Algorithm 2. TheRGS(m,k) algorithm has an additional parameterk that limits its
computational requirements: instead of exhaustively examining all possible subsets of(U−S−{X})

(asGS(m) does), it instead samplesk subsets from the set of all possible subsets of(U −S−{X}),
wherek is user-specified. It is therefore a randomized algorithm that becomes equivalent toGS(m)

given a large enoughk. Many possibilities for the method of random selection of the subsets exist;
in our experiments we select a subsetY = {Yi} (1 ≤ |Y| ≤ m) with probability proportional
to

∑|Y|
i=1(1/p(X,Yi | S)), wherep(X,Yi | S) is the p-value of the corresponding (univariate) test

betweenX andYi givenS, which has a low computational cost.

The RGS(m,k) algorithm is useful in situations where the amount of time toproduce an answer
may be limited and/or the limit unknown beforehand: it is easy to show that the growing phase of
GS(m) produces an an upper-bound of them-boundary ofX. Therefore, theRGS(m,k) algorithm,
if interrupted, will return an approximation of this upper bound. Moreover, if there exists time
for the shrinking phase to be executed (which conducts a number of tests linear inn and is thus
fast), extraneous variables will be removed and a minimal blanket (boundary) approximation will
be returned. These features make it ananytimealgorithm, which is a more appropriate choice for
situations where critical events may occur that require theinterruption of computation, e.g., during
the planning phase of a robot, which may be interrupted at anytime due to an urgent external event
that requires a decision to be made based on the present state’s feature values.

6 Experiments

We evaluated theGS(m) and theRGS(m,k) algorithms on synthetic as well as real-world and
benchmark data sets. We first systematically examined the performance on the task of recov-
ering near-parity functions, which are known to be hard to learn [17]. We comparedGS(m)

and RGS(m,k) with respect to accuracy of recovery of the original boundary as well as com-
putational cost. We generated domains of sizes ranging from10 to 100 variables, of which
4 variables (X1 to X4) were related through a near-parity relation with bit probability 0.60
and various degrees of noise. The remaining independent variables (X5 to Xn) act as “dis-
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tractors” and had randomly assigned probabilities i.e., the correct boundary ofX1 is B1 =
{X2,X3,X4}. In such domains, learning the boundary ofX1 is difficult because of the large
number of distractors and because eachXi ∈ B1 is independent ofX1 given any proper subset
of B1 − {Xi} (they only become dependent when including all of them in theconditioning set).
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To measure an algorithm’s feature selection performance, ac-
curacy (fraction of variables correctly included or excluded)
is inappropriate as the accuracy of trivial algorithms suchas
returning the empty set will tend to 1 asn increases. Preci-
sion and recall are therefore more appropriate, with precision
defined as the fraction of features returned that are in the cor-
rect boundary (3 features forX1), and recall as the fraction
of the features present in the correct boundary that are re-
turned by the algorithm. A convenient and frequently used
measure that combines precision and recall is theF1 mea-
sure, defined as the harmonic mean of precision and recall
[18]. In Fig. 1 (top) we report 95% confidence intervals for
theF1 measure and execution time ofGS(m) (marginsm =

1 to 3) andRGS(m,k) (margins 1 to 3 andk = 1000 random
subsets), using 20 data sets containing 10 to 100 variables,
with the target variableX1 was perturbed (inverted) by noise
with 10% probability. As can be seen, theRGS(m,k) and
GS(m) using the same value for margin perform comparably
with respect toF1, up to their 95% confidence intervals. With
respect to execution time howeverRGS(m,k) exhibits much
greater scalability (Fig. 1 bottom, log scale); for example, it
executes in about 10 seconds on average in domains contain-
ing 100 variables, whileGS(m) executes in 1,000 seconds on
average for this domain size.

We also comparedGS(m) andRGS(m,k) to RELIEF [5], a well-known algorithm for feature selec-
tion that is known to be able to recover parity functions in certain cases [5]. RELIEF learns a weight
for each variable and compares it to a thresholdτ to decide on its inclusion in the set of relevant vari-
ables. As it has been reported [9] that RELIEF can exhibit large variance due to randomization that
is necessary only for very large data sets, we instead used a deterministic variant called RELIEVED
[9], whose behavior corresponds to RELIEF at the limit of infinite execution time. We calculated
theF1 measure forGS(m), RGS(m,k) and RELIEVED in the presence of varying amounts of noise,
with noise probability ranging from 0 (no noise) to 0.4. We used domains containing 50 variables, as
GS(m) becomes computationally demanding in larger domains. In Figure 2 (left) we show the per-
formance ofGS(m) andRGS(m,k) for m equal to 1 and 3,k = 1000 and RELIEVED for thresholds
τ = 0.01 and 0.03 for various amounts of noise on the target variable.Again, each experiment was
repeated 20 times to generate 95% confidence intervals. We can observe that even thoughm = 1
(equivalent to the GS algorithm) performs poorly, increasing the marginm makes it more likely to
recover the correct Markov boundary, andGS(3) (m = 3) recovers the exact blanket even with few
(1,000) data points. RELIEVED does comparably toGS(3) for little noise and for a large threshold,
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but appears to deteriorate for more noisy domains. As we can see it is difficult to choose the “right”
threshold for RELIEVED—better performingτ at low noise can become worse in noisy environ-
ments; in particular, smallτ tend to include irrelevant variables while largeτ tend to miss actual
members.

We also evaluatedGS(m), RGS(m,k), and RELIEVED on benchmark and real-world data sets from
the UCI Machine Learning repository. As the true Markov boundary for these is impossible to know,
we used as performance measure a measure ofprobabilistic isolationby the Markov boundary re-
turned of subsets outside the boundary. For each domain variableX, we measured the independence
of subsetsY of size 1, 2 and 3 given the blanketS of X returned byGS(3) and RELIEVED for
τ = 0.03 (as this value seemed to do better in the previous set of experiments), as measured by
the average p-value of theχ2 test betweenX andY givenS (with p-values of 0 and 1 indicating
ideal dependence and independence, respectively). Due to the large number of subsets outside the
boundary when the boundary is small, we limited the estimation of isolation performance to 2,000
subsets per variable. We plot the results in Figure 2 (middleand right). Each point represents a vari-
able in the corresponding data set. Points under the diagonal indicate better probabilistic isolation
performance for that variable forGS(3) compared to RELIEVED (middle plot) or toRGS(3,1000)

(right plot). To obtain a statistically significant comparison, we used the non-parametric Wilcoxon
paired signed-rank test, which indicated thatGS(3) RGS(3,1000) are statistically equivalent to each
other, while both outperformed RELIEVED at the 99.99% significance level (α < 10−7).

7 Conclusion
In this paper we presented algorithms for the problem of feature selection in unrestricted (arbitrary
distribution) domains that may contain complex interactions that only appear when the values of
multiple features are considered together. We introduced two algorithms: an exact, provably cor-
rect one as well a more practical randomized anytime version, and evaluated them on on artificial,
benchmark and real-world data, demonstrating that they perform well, even in the presence of noise.
We also introduced the Markov Boundary Theorem that precisely characterizes the properties of a
boundary, and used it to provem-correctness of the exact family of algorithms presented. We made
minimal assumptions that consist of only a general set of axioms that hold for every probability
distribution, giving our algorithms universal applicability.

Appendix A: Proof sketch of the Markov Boundary Theorem
Proof sketch.(=⇒ direction) We need to prove that ifS is a Markov boundary ofX then (a) for
every setT ⊆ U − S − {X}, (X⊥⊥T | S − T), and (b) for every setT′ 6⊆ U − S that does not
containX, (X 6⊥⊥T

′ | S − T
′). Case (a) is immediate from the definition of the boundary andthe

Decomposition theorem. Case (b) can be proven by contradiction: Assuming the independence of
T

′ that contains a non-empty partT
′
1 in S and a partT′

2 in U − S, we get (from Decomposition)
(X⊥⊥T

′
1 | S − T

′
1). We can then use Contraction to show that the setS − T

′
1 satisfies the inde-

pendence property of a Markov boundary, i.e., that(X⊥⊥U − (S − T
′
1) − {X} | S − T

′
1), which

contradicts the assumption thatS is a boundary (and thus minimal).

(⇐= direction) We need to prove that if Eq. (2) holds, thenS is a minimal Markov blanket. The
proof thatS is a blanket is immediate. We can prove minimality by contradiction: AssumeS =
S1 ∪ S2 with S1 a blanket andS2 6= ∅ i.e.,S1 is a blanket strictly smaller thanS. Then(X⊥⊥S2 |
S1) = (X⊥⊥S2 | S − S2). However, sinceS2 6⊆ U − S, from Eq. (2) we get(X 6⊥⊥S2 | S − S2),
which is a contradiction.

Appendix B: Proof of m-Correctness ofGS
(m)

Let the value of the setS at the end of the growing phase beSG, its value at the end of the shrinking
phaseSS , and their differenceS∆ = SG − SS . The following two observations are immediate.

Observation 1. For everyY ⊆ U − SG − {X} such that1 ≤ |Y| ≤ m, (X⊥⊥Y | SG).

Observation 2. For everyY ∈ SS , (X 6⊥⊥Y | SS − {Y }).

Lemma 2. Consider variablesY1, Y2, . . . , Yt for somet ≥ 1 and letY = {Yj}
t
j=1. Assuming that

Contraction holds, if(X⊥⊥Yi | S − {Yj}
i
j=1) for all i = 1, . . . , t, then(X⊥⊥Y | S − Y).

Proof. By induction onYj , j = 1, 2, . . . , t, using Contraction to decrease the conditioning setS

down toS − {Yj}
i
j=1 for all i = 1, 2, . . . , t. SinceY = {Yj}

t
j=1, we immediately obtain the

desired relation(X⊥⊥Y | S − Y).
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Lemma 2 can be used to show that the variables found individually independent ofX during
the shrinking phase are actuallyjointly independent ofX, given the final setSS . Let S∆ =
{Y1, Y2, . . . , Yt} be the set of variables removed (in that order) fromSG to form the final setSS

i.e.,S∆ = SG − SS . Using the above lemma, the following is immediate.
Corollary 3. Assuming that the Contraction axiom holds,(X⊥⊥S∆ | SS).
Lemma 4. If the Contraction, Decomposition and Weak Union axioms hold, then for every set
T ⊆ U − SG − {X} such that(X⊥⊥T | SG),

(X⊥⊥T ∪ (SG − SS) | SS). (3)
FurthermoreSS is minimal i.e., there does not exist a subset ofSS for which Eq. (3) is true.
Proof. From Corollary 3,(X⊥⊥S∆ | SS). Also, by the hypothesis,(X⊥⊥T | SG) = (X⊥⊥T |
SS ∪ S∆), whereS∆ = SG − SS as usual. From these two relations and Contraction we obtain
(X⊥⊥T ∪ S∆ | SS).

To prove minimality, let us assume thatSS 6= ∅ (if SS = ∅ then it is already minimal). We prove
by contradiction: Assume that there exists a setS

′ ⊂ SS such that(X⊥⊥T ∪ (SG − S
′) | S′). Let

W = SS − S
′ 6= ∅. Note thatW andS

′ are disjoint. We have that
SS ⊆ SS ∪ S∆ =⇒ SS − S

′ ⊆ SS ∪ S∆ − S
′ ⊆ T ∪ (SS ∪ S∆ − S

′)

=⇒ W ⊆ T ∪ (SS ∪ S∆ − S
′) = T ∪ (SG − S

′)

• Since(X⊥⊥T∪ (SG − S
′) | S′) andW ⊆ T∪ (SS ∪ S∆ − S

′), from Decomposition we
get(X⊥⊥W | S′).

• From (X⊥⊥W | S
′) and Weak Union we have that for everyY ∈ W, (X⊥⊥Y | S

′ ∪
(W − {Y })).

• SinceS
′ and W are disjoint and sinceY ∈ W, Y 6∈ S

′. Applying the set equality
(A−B)∪C = (A∪B)−(A−C) toS

′∪(W−{Y }) we obtainS′∪W−({Y }−S
′) =

SS − {Y }.
• Therefore,∀Y ∈ W, (X⊥⊥Y | SS − {Y }).

However, at the end of the shrinking phase, all variablesY in SS (and therefore inW, asW ⊆ SS)
have been evaluated for independence and found dependent (Observation 2). Thus, sinceW 6= ∅,
there exists at least oneY such that(X 6⊥⊥Y | SS − {Y }), producing a contradiction.
Theorem 5. Assuming that the Contraction, Decomposition, and Weak Union axioms hold, Algo-
rithm 1 ism-correct with respect toX.
Proof. We use the Markov Boundary Theorem. We first prove that

∀T ⊆ U − {X} such that|T| ≤ m,
{

T ⊆ U − SS =⇒ (X⊥⊥T | SS − T)
}

or, equivalently,∀T ⊆ U − SS − {X} such that|T| ≤ m, (X⊥⊥T | SS).

SinceU −SS −{X} = S∆ ∪ (U −SG −{X}), S∆ andU −SG −{X} are disjoint, there are three
kinds of sets of sizem or less to consider: (i) all setsT ⊆ S∆, (ii) all setsT ⊆ U − SG − {X},
and (iii) all sets (if any)T = T

′ ∪ T
′′, T′ ∩ T

′′ = ∅, that have a non-empty partT
′ ⊆ S∆ and a

non-empty partT′′ ⊆ U − SG − {X}.

(i) From Corollary 3,(X⊥⊥S∆ | SS). Therefore, from Decomposition, for any setT ⊆ S∆,
(X⊥⊥T | SS).

(ii) By Observation 1, for every setT ⊆ U − SG − {X} such that|T| ≤ m, (X⊥⊥T | SG).
By Lemma 4 we get(X⊥⊥T ∪ S∆ | SS), from which we obtain(X⊥⊥T | SS) by
Decomposition.

(iii) Since |T| ≤ m, we have that|T′′| ≤ m. SinceT′′ ⊆ U − SG − {X}, by Observation 1,
(X⊥⊥T

′′ | SG). Therefore, by Lemma 4,(X⊥⊥T
′′ ∪ S∆ | SS). SinceT

′ ⊆ S∆ ⇒
T

′′ ∪T
′ ⊆ T

′′ ∪ S∆, by Decomposition to obtain(X⊥⊥T
′′ ∪T

′ | SS) = (X⊥⊥T | SS).

To complete the proof we need to prove that

∀T ⊆ U − {X} such that|T| ≤ m,
{

T 6⊆ U − SS =⇒ (X 6⊥⊥T | SS − T)
}

.

Let T = T1 ∪ T2, with T1 ⊆ SS andT2 ⊆ U − SS . SinceT 6⊆ U − SS , T1 contains at least one
variableY ∈ SS . From Observation 2,(X 6⊥⊥Y | SS − {Y }). From this and (the contrapositive of)
Weak Union, we get(X 6⊥⊥ {Y }∪ (T1−{Y }) | SS −{Y }− (T1−{Y })) = (X 6⊥⊥T1 | SS −T1).
From (the contrapositive of) Decomposition we get(X 6⊥⊥T1 ∪ T2 | SS − T1) = (X 6⊥⊥T |
SS − T1), which is equal to(X 6⊥⊥T | SS − T1 − T2) = (X 6⊥⊥T | SS − T) asSS andT2 are
disjoint.
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