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Abstract

In this paper we address the problem of provably correctifeagelection in arbi-
trary domains. An optimal solution to the problem is a Markmundary, which

is a minimal set of features that make the probability disttion of a target vari-

able conditionally invariant to the state of all other featiin the domain. While
numerous algorithms for this problem have been proposedt, ttheoretical cor-

rectness and practical behavior under arbitrary protigldistributions is unclear.
We address this by introducing the Markov Boundary Theotehgrecisely char-
acterizes the properties of an ideal Markov boundary, aedtus develop algo-

rithms that learn a more general boundary that can captunplea interactions
that only appear when the values of multiple features arsidered together. We
introduce two algorithms: an exact, provably correct ongvalt a more practi-

cal randomized anytime version, and show that they perfoethan artificial as

well as benchmark and real-world data sets. Throughoutdabermpwve make min-
imal assumptions that consist of only a general set of axitaishold for every

probability distribution, which gives these algorithmsuansal applicability.

1 Introduction and Motivation

The problem of feature selection has a long history due teigsificance in a wide range of im-
portant problems, from early ones like pattern recognitmmecent ones such as text categoriza-
tion, gene expression analysis and others. In such domasisy all available features may be
prohibitively expensive, unnecessarily wasteful, and heagl to poor generalization performance,
especially in the presence of irrelevant or redundant featurhus, selecting a subset of features of
the domain for use in subsequent application of machinaiegualgorithms has become a standard
preprocessing step. A typical task of these algorithnmiedsning a classifier Given a number of
input features and a quantity of interest, calledtdmget variable choose a member of a family of
classifiers that can predict the target variable’s valueelkas possible. Another taskismderstand-
ing the domain and the quantities that interact with the targantjty.

Many algorithms have been proposed for feature selectiafortiinately, little attention has been
paid to the issue of their behavior under a variety of appiicadomains that can be encountered in
practice. In particular, it is known that many can fail undertain probability distributions such as
ones that contain a (near) parity function [1], which camfateractions that only appear when the
values of multiple features are considered together. Tisarerefore an acute need for algorithms
that are widely applicable and can be theoretically progemdrk under any probability distribution.
In this paper we present two such algorithms, an exact anda pnactical randomized approximate
one. We use the observation (first made in Koller and Sahajntijat an optimal solution to the
problem is a Markov boundary, defined to be a minimal set diufes that make the probability
distribution of a target variable conditionally invaridotthe state of all other features in the domain
(a more precise definition is given later in Section 3) and@néa family of algorithms for learning



the Markov boundary of a target variable in arbitrary dorsailVe first introduce a theorem that
exactly characterizes the minimal set of features necgésaprobabilistically isolating a variable,
and then relax this definition to derive a family of algoriththat learn a parameterized approxima-
tion of the ideal boundary that apgovably correctunder a minimal set of assumptions, including a
set of axioms that hold for any probability distribution.

In the following section we present work on feature selextiollowed by notation and definitions in
Section 3. We subsequently introduce an important theorehttee aforementioned parameterized
family of algorithms in Sections 4 and 5 respectively, imthg a practical anytime version. We
evaluate these algorithms in Section 6 and conclude in@ecti

2 Related Work

Numerous algorithms have been proposed for feature sahedi the highest level algorithms can
be classified afilter, wrapper, or embeddednethods. Filter methods work without consulting the
classifier (if any) that will make use of their output i.e.e ttesulting set of selected features. They
therefore have typically wider applicability since theg anot tied to any particular classifier fam-
ily. In contrast, wrappers make the classifier an integret @iatheir operation, repeatedly invoking
it to evaluate each of a sequence of feature subsets, ardisglthe subset that results in mini-
mum estimated classification error (for that particulassifier). Finally, embedded algorithms are
classifier-learning algorithms that perform feature sgecimplicitly during their operation e.g.,
decision tree learners.

Early work was motivated by the problem of pattern recognitivhich inherently contains a large
number of features (pixels, regions, signal responses #ipheufrequencies etc.). Narendra and
Fukunaga [3] first cast feature selection as a problem of miaation of an objective function over
the set of features to use, and proposed a number of searobaahps includindorward selec-
tion andbackward elimination Later work by machine learning researchers includes the F®
algorithm of Almuallim and Dietterich [4], which is a filter @thod for deterministic, noise-free
domains. The RELIEF algorithm [5] instead uses a randomsadekction of data points to update a
weight assigned to each feature, selecting the featuresemiveight exceeds a given threshold. A
large number of additional algorithms have appeared initemture, too many to list here—good
surveys are included in Dash and Liu [6]; Guyon and ElissdéffLiu and Motoda [7]. An impor-
tant concept for feature subset selection is relevanceer&enotions of relevance are discussed in
a number of important papers such as Blum and Langley [8]akiband John [9]. The argument
that the problem of feature selection can be cast as thegmobf Markov blanket discovery was
first made convincingly in Koller and Sahami [2], who alsogaeted an algorithm for learning an
approximate Markov blanket using mutual information. @thgorithms include the GS algorithm
[10], originally developed for learning of the structureaBayesian network of a domain, and ex-
tensions to it [11] including the recent MMMB algorithm [12Meinshausen andilmann [13]
recently proposed an optimal theoretical solution to thebfam of learning the neighborhood of
a Markov network when the distribution of the domain can bsuared to be a multidimensional
Gaussian i.e., linear relations among features with Gangsvise. This assumption implies that
the Composition axiom holds in the domain (see Pearl [14pfdefinition of Composition); the
difference with our work is that we address here the problegeineral domains where it may not
necessarily hold.

3 Notation and Preliminaries

In this section we present notation, fundamental definitiand axioms that will be subsequently
used in the rest of the paper. We use the term “feature” anddbie” interchangeably, and de-
note variables by capital letter&( Y etc.) and sets of variables by bold lettes [T etc.). We
denote the set of all variables/features in the domain (tmévérse”) byl/. All algorithms pre-
sented aréndependence-basgltarning the Markov boundary of a given target variablegshe
truth value of a number of conditional independence statésneThe use of conditional indepen-
dence for feature selection subsumes many other critesjzoged in the literature. In particular, the
use of classification accuracy of the target variable canelee ss a special case of testing for its
conditional independence with some of its predictor vdeslfconditional on the subset selected at
any given moment). A benefit of using conditional indepermdeis that, while classification error
estimates depend on the classifier family used, conditimciglpendence does not. In addition, al-
gorithms utilizing conditional independence for featuekestion are applicable to all domain types,



e.g., discrete, ordinal, continuous with non-linear oliteaby non-degenerate associations or mixed
domains, as long as a reliable estimate of probabilistiefetdence is available.

We denote probabilistic independence by the symbal *i.e., (X 1LY | Z) denotes the fact
that the variables in sé&X are (jointly) conditionally independent from those in 3&tgiven the
values of the variables in s&; (XY | Z) denotes their conditional dependence. We assume
the existence of probabilistic independence query oradleat is available to answer any query
of the form (X,Y | Z), corresponding to the question “Is the set of variableXimdependent

of the variables inY given the value of the variables ?" (This is similar to the approach of
learning from statistical queries of Kearns and Vazira®i [\l In practice however, such an oracle
does not exist, but can be approximated by a statisticapewidence test on a data set. Many tests of
independence have appeared and studied extensively itatfstisal literature over the last century;

in this work we use thg? (chi-square) test of independence [16].

A Markov blanket of variableX is a set of variables such that, after fixing (by “knowingg thalue
of all of its members, the set of remaining variables in thedim, taken together as a single set-
valued variable, are statistically independenkofMore precisely, we have the following definition.

Definition 1. A set of variablesS C U is called aMarkov blanket of variable X if and only if
(XULU-S—-{X}|9).

Intuitively, a Markov blankes of X captures all the information in the remaining domain vdeab

U — S — {X} that can affect the probability distribution &f, making their value redundant as far
as X is concerned (give®). The blanket therefore captures the essence of the festlgetion
problem for target variabl&': By completely “shielding”X, a Markov blanket precludes the exis-
tence of any possible information aboXitthat can come from variables not in the blanket, making
it an ideal solution to the feature selection problem. A miai Markov blanket is called a Markov
boundary.

Definition 2. A set of variable$ C ¢/ — {X} is called aMarkov boundary of variable X ifitis a
minimal Markov blanket oX i.e., none of its proper subsets is a Markov blanket.
Pearl [14] proved that that the axioms of Symmetry, Decortipos Weak Union, and Intersection
are sufficient to guarantee a unique Markov boundary. Thesslown below together with the
axiom of Contraction.
(Symmetry) XLY|Z) = (Y1X|Z)
(Decomposition) (X1 Y U Z) = XULY|Z) AN (X1LLW |Z)
( U =
(

W |Zz)
(Weak Union) XUYUW|Z) (XLY|ZUW) 1)
(Contraction) XULY|Z) AN (XLW|YUZ) = (XLYUW |Z)
(Intersection) (XLY|ZUW)A (XLW|ZUY) = (XULYUW|Z)

The Symmetry, Decomposition, Contraction and Weak Unidorag are very general: they are
necessanaxioms for the probabilistic definition of independence ileey hold ineveryprobability
distribution, as their proofs are based on the axioms ofadvidity theory. Intersection is not univer-
sal but it holds in distributions that are positive, i.e.y &@alue combination of the domain variables
has a non-zero probability of occurring.

4 The Markov Boundary Theorem

According to Definition 2, a Markov boundary is a minimal Mavkblanket. We first introduce a
theorem that provides an alternative, equivalent defimitibthe concept of Markov boundary that
we will relax later in the paper to produce a more general danndefinition.

Theorem 1 (Markov Boundary Theorem). Assuming that the Decomposition and Contraction
axioms holdS C U/ — {X} is a Markov boundary of variabl& < ¢/ if and only if
VTQU—{X},{TQZ/{—S<:>(XJ_LT|S—T)}. @)

A detailed proof cannot be included here due to space camstriaut a proof sketch appears in
Appendix A. According to the above theorem, a Markov bound&upartitions the powerset of
U — {X} into two parts: (a) seP; that contains all subsets &f — S, and (b) setP, containing
the remaining subsets. All sets 4 are conditionally independent of, and all sets irP, are
conditionally dependent witkx.

Intuitively, the two directions of the logical equivalenegation of Eq. (2) correspond to the concept
of Markov blanket and its minimality i.e., the equation

VT CU - {X}, {Tgufs — (XJJ_T|SfT)}

3



Algorithm 1 The abstrac€6S™ (X) algorithm. Returns am-Markov boundary ofX .
1. S— o

2: [* Growing phase?*/

3:forall Y CU —S —{X}suchthatl <|Y| <mdo
4: if (XJ)LY |S)then

5: S—SuUY
6
7
8
9

: gotoline 3 /* Restart loop*/
. [* Shrinking phase*/
:forall Y € Sdo
o f(XLY |S—{Y}) then
10: S—S—{Y}
11: gotoline 8 /* Restart loop*/
12: return S

or, equivalently, VT C &/ — S — {X}, (X1 T | S)) (asT andS are disjoint) corresponds to
the definition of Markov blanket, as it includds = &/ — S — {X}. In the opposite direction, the
contrapositive form is

VTguf{X},{T,@ufS — (XLT[S-T)}.
This corresponds to the concept of minimality of the Markowuhdary: It states that all sets that
contain a part o cannot be independent &f given the remainder @8. Informally, this is because
if there existed some s@t that contained a non-empty sub&&tof S suchthaf X 1L T | S — T),
then one would be able to shrirtskby T’ (by the property of Contraction) and theref@eavould
not be minimal (more details in Appendix A).

5 A Family of Algorithms for Arbitrary Domains

Theorem 1 defines conditions that precisely characterizarkd¥ boundary and thus can be thought
of as an alternative definition of a boundary. By relaxingstheonditions we can produce a more
general definition. In particular, an-Markov boundary is defined as follows.

Definition 3. A set of variable$ C i/ — { X'} of a domairi/ is called anm-Markov boundary of
variable X € U/ if and only if

VT CU —{X}suchthalT|<m,{TCU-S < (XU T|S-T);.
We call the parametern. of anm-Markov boundary thévlarkov boundary margin Intuitively, an
m-boundaryS guarantees that (a) all subsets of its complement (exadusiinof sizem or smaller
are independent ok given S, and (b) all setdl' of sizem or smaller that are not subsets of its
complement are dependent &fgiven the part o8 that is not contained ifT". This definition is a
special case of the properties of a boundary stated in Thedrevith each s€T’ mentioned in the
theorem now restricted to having sizeor smaller. Form = n — 1, wheren = |U|, the condition
|T| < m is always satisfied and can be omitted; in this case the definif an(n — 1)-Markov
boundary results in exactly Eq. (2) of Theorem 1.

We now present an algorithm call&B ™, shown in Algorithm 1, that provably correctly learns
anm-boundary of a target variabl®. GS™ operates in two phases,gaowing and ashrinking
phase (hence the acronym). During the growing phase it examsiets of variables of size uprig
wherem is a user-specified parameter. During the shrinking plsaisglevariables are examined for
conditional independence and possible removal fiofexamining sets in the shrinking phaseat
necessary for provably correct operation—see Appendix B¢ drders of examination of the sets
for possible addition and deletion from the candidate bamnare left intentionally unspecified in
Algorithm 1—one can therefore view it as an abstract repttasiga of a family of algorithms, with
each member specifying one such ordering. All members sffimily arem-correct, as the proof
of correctness does not depend on the ordering. In praaticerous choices for the ordering exist;
one possibility is to examine the sets in the growing phasardier of increasing set size and, for
each such size, in order of decreasing conditional mutdairimation7(X,Y,S) betweenX and

Y givenS. The rationale for this heuristic choice is that (usualdgts with smaller conditional sets
tend to be more reliable, and sorting by mutual informatends to lessen the chance of adding false
members of the Markov boundary. We used this implementéati@il our experiments, presented
later in Section 6.

Intuitively, the margin represents a trade-off between @anand computational complexity and
completeness: Fon. = n — 1 = |U| — 1, the algorithm returns a Markov boundary in unrestricted



Algorithm 2 The RGS(™*)(X) algorithm, a randomized anytime version of #8™ algorithm,
utilizing & random subsets for the growing phase.

1.S—o

2: * Growing phase?/

3: repeat

4:  Schanged — false
5. Y < subsetot/ — S — {X} of sizel <|Y| < m of maximum dependence out brandom subsets
6:
7
8

if (XJLY |S)then
S—SuUY
: Schanged «— true
9: until Schanged = false
10: /* Shrinking phase*/
11: forall Y € Sdo
12; if (XY |S—{Y})then

13: S—S-—{Y}
14: gotoline 11 /* Restart loop*/
15: return S

(arbitrary) domains. Fot < m < n — 1, astm may recover the correct boundary depending
on characteristics of the domain. For example, it will rezrothe correct boundary in domains
containing embedded parity functions such that the numberidables involved in every-bit
parity function ism + 1 or less i.e., ift < m + 1 (parity functions are corner cases in the space
of probability distributions that are known to be hard tortefl7]). The proof ofm-correctness of
GS™ is included in Appendix B. Note that it is based on Theoremd e universal axioms of
Egs. (1) only i.e., Intersection is not needed, and thuswidely applicable (to any domain).

A Practical Randomized Anytime Version

While GS(™ is provably correct even in difficult domains such as thoaétbntain parity functions,
it may be impractical with a large number of features as ijgrgtotic complexity isO(n™). We

therefore also we here provide a more practical randomieesion calledRGS ™) (Randomized

GS™), shown in Algorithm 2. Th&GS™*) algorithm has an additional parametethat limits its
computational requirements: instead of exhaustively éxiag all possible subsets @ —S—{X})

(asGS™ does), it instead sampléssubsets from the set of all possible subset@6f S — {X}),
wherek is user-specified. It is therefore a randomized algorithat tiecomes equivalent @S ™
given a large enough. Many possibilities for the method of random selection &f slubsets exist;

in our experiments we select a subdt= {Y;} (1 < Y| < m) with probability proportional

to Z'izll(l/p(X,Yi | S)), wherep(X,Y; | S) is the p-value of the corresponding (univariate) test
betweenX andY; givenS, which has a low computational cost.

The RGS™*) algorithm is useful in situations where the amount of timgtoduce an answer
may be limited and/or the limit unknown beforehand: it isyetisshow that the growing phase of
GS™) produces an an upper-bound of theboundary ofX. Therefore, th&RGS™*) algorithm,

if interrupted, will return an approximation of this uppesund. Moreover, if there exists time
for the shrinking phase to be executed (which conducts a pumibtests linear im and is thus
fast), extraneous variables will be removed and a minimahkeét (boundary) approximation will
be returned. These features make itagaytimealgorithm, which is a more appropriate choice for
situations where critical events may occur that requirdriterruption of computation, e.g., during
the planning phase of a robot, which may be interrupted atiargydue to an urgent external event
that requires a decision to be made based on the presers &atere values.

6 Experiments

We evaluated the3S(™) and theRGS™*) algorithms on synthetic as well as real-world and
benchmark data sets. We first systematically examined therpence on the task of recov-
ering near-parity functions, which are known to be hard trie[17]. We compared:S™
and RGS(™®) with respect to accuracy of recovery of the original bougdas well as com-
putational cost. We generated domains of sizes ranging ftbnio 100 variables, of which
4 variables X; to X,) were related through a near-parity relation with bit ptaby 0.60
and various degrees of noise. The remaining independergbles (X5 to X,) act as “dis-
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Figure 2: Left: F; measure of3S(™), RGS™* and RELIEVED under increasing amounts of
noise.Middle: Probabilistic isolation performance comparison betw@&f®) and RELIEVED on
real-world and benchmark data seRight: Same forGS®) andRGS®+1000)

tractors” and had randomly assigned probabilities i.ee d¢brrect boundary ofX; is B; =
{X2, X3,X4}. In such domains, learning the boundary X%f is difficult because of the large
number of distractors and because eaGhe B; is independent ofX; given any proper subset
of B; — {X,} (they only become dependent when including all of them indtreditioning set).
To measure an algorithm'’s feature selection performaree, a

Fy-measure of GS™) and RGS™ ¥) vs. domain size
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[18]. In Fig. 1 (top) we report 95% confidence intervals for —om por emea e i e
theF; measure and execution time @8(™ (marginsm = _ ™1 _ & —
1to 3) andRGS™*) (margins 1 to 3 andt = 1000 random ¢ **|LE= ol

subsets), using 20 data sets containing 10 to 100 variables, * Bg/;;zg&)f

with the target variabl&’; was perturbed (inverted) by noise : e
with 10% probability. As can be seen, tRGS ™% and T -

GS™) using the same value for margin perform comparably **'% % R
with respect td;, up to their 95% confidence intervals. With__ _ (m”)”“'°“’°ma‘"””ab‘e(sm7k)
respect to execution time howeve:S(™*) exhibits much Figure 1:G5™ andRGS per
greater scalability (Fig. 1 bottom, log scale); for examjtle formance with respect to domain

: . ) ize (number of variablesYop: F;
executes in about 10 seconds on average in domains contafiz !
9 easure, reflecting accuracyot-

ing 100 variables, whil€&S™) executes in 1,000 seconds Ofbm: Execution time in seconds (log
average for this domain size. scale).

Execul

We also compared}S(m) andRGS™*) to RELIEF [5], a well-known algorithm for feature selec-
tion that is known to be able to recover parity functions irt@i@ cases [5]. RELIEF learns a weight
for each variable and compares it to a threshadid decide on its inclusion in the set of relevant vari-
ables. As it has been reported [9] that RELIEF can exhibifdarariance due to randomization that
is necessary only for very large data sets, we instead usettentinistic variant called RELIEVED
[9], whose behavior corresponds to RELIEF at the limit ofriité execution time. We calculated
theF; measure fo3S), RGS(™*) and RELIEVED in the presence of varying amounts of noise,
with noise probability ranging from 0 (no noise) to 0.4. Wedslomains containing 50 variables, as
GS™ becomes computationally demanding in larger domains. garéi 2 (left) we show the per-
formance ofGS(™ andRGS™*) for m equal to 1 and 3 = 1000 and RELIEVED for thresholds

7 = 0.01 and 0.03 for various amounts of noise on the target variggain, each experiment was
repeated 20 times to generate 95% confidence intervals. Weltserve that even though = 1
(equivalent to the GS algorithm) performs poorly, incragghe marginn makes it more likely to
recover the correct Markov boundary, a68® (m = 3) recovers the exact blanket even with few
(1,000) data points. RELIEVED does comparablm(3) for little noise and for a large threshold,



but appears to deteriorate for more noisy domains. As weeait s difficult to choose the “right”
threshold for RELIEVED—better performing at low noise can become worse in noisy environ-
ments; in particular, smait tend to include irrelevant variables while larggend to miss actual
members.

We also evaluatedS(™), RGS™*) and RELIEVED on benchmark and real-world data sets from
the UCI Machine Learning repository. As the true Markov baany for these is impossible to know,
we used as performance measure a measypeobibilistic isolationby the Markov boundary re-
turned of subsets outside the boundary. For each domagtblai , we measured the independence
of subsetsY of size 1, 2 and 3 given the blank&tof X returned byGS®® and RELIEVED for

7 = 0.03 (as this value seemed to do better in the previous set of iexpets), as measured by
the average p-value of the® test betweer’X andY givenS (with p-values of 0 and 1 indicating
ideal dependence and independence, respectively). Dhe targe number of subsets outside the
boundary when the boundary is small, we limited the estiomadif isolation performance to 2,000
subsets per variable. We plot the results in Figure 2 (middteright). Each point represents a vari-
able in the corresponding data set. Points under the didguadieate better probabilistic isolation
performance for that variable f@#S® compared to RELIEVED (middle plot) or tRGS(3:1000)
(right plot). To obtain a statistically significant compsn, we used the non-parametric Wilcoxon
paired signed-rank test, which indicated th® RGS*19°%) are statistically equivalent to each
other, while both outperformed RELIEVED at the 99.99% digaince level ¢ < 10~7).

7 Conclusion

In this paper we presented algorithms for the problem olufeaselection in unrestricted (arbitrary
distribution) domains that may contain complex interatsiohat only appear when the values of
multiple features are considered together. We introduegdaigorithms: an exact, provably cor-
rect one as well a more practical randomized anytime versiod evaluated them on on artificial,
benchmark and real-world data, demonstrating that thefpamwvell, even in the presence of noise.
We also introduced the Markov Boundary Theorem that pricidgaracterizes the properties of a
boundary, and used it to prove-correctness of the exact family of algorithms presented .nvade
minimal assumptions that consist of only a general set adragithat hold for every probability
distribution, giving our algorithms universal applicatyil

Appendix A: Proof sketch of the Markov Boundary Theorem

Proof sketch.(= direction) We need to prove that B is a Markov boundary o then (a) for
everysetl CU —S—{X}, (XL T|S-T),and (b) for every seT’ Z U — S that does not
containX, (XU T’ | S — T’). Case (a) is immediate from the definition of the boundarythed
Decomposition theorem. Case (b) can be proven by contradicAssuming the independence of
T’ that contains a non-empty pdF, in S and a parfT, in i/ — S, we get (from Decomposition)
(X1 T} | S— T}). We can then use Contraction to show that theSset T’ satisfies the inde-
pendence property of a Markov boundary, i.e., {atlL ¢/ — (S — T}) — {X} | S — T}), which
contradicts the assumption tHais a boundary (and thus minimal).

(<= direction) We need to prove that if Eq. (2) holds, thBris a minimal Markov blanket. The
proof thatS is a blanket is immediate. We can prove minimality by corittioh: AssumeS =
S; U S, with S; a blanket and8, # & i.e.,S; is a blanket strictly smaller tha®. Then(X 1L S, |
Si1) = (X1L.S2 | S —S3). However, sincéS, Z U — S, from Eq. (2) we getX L. S, | S — S3),
which is a contradiction. O

Appendix B: Proof of m-Correctness ofGS™

Let the value of the se&8 at the end of the growing phase 8g, its value at the end of the shrinking
phaseSg, and their differenc& A = S — Sg. The following two observations are immediate.

Observation 1. For everyY C U — S — {X} such thatl <|Y| <m, (X1 Y |S¢g).
Observation 2. For everyY € Sg, (X LY | Ss —{Y}).

Lemma 2. Consider variabled7,Y5,...,Y; forsomet > 1 and letY = {Yj}z-zl. Assuming that

Contraction holds, { X 1L Y; | S — {Y;}i_;) foralli =1,...,¢, then(X ILY | S - Y).

Proof. By induction onY}, j = 1,2,...,¢, using Contraction to decrease the conditioningSset
down toS — {Y;}i_, foralli = 1,2,...,t. SinceY = {Y;},_,, we immediately obtain the
desired relatiof X LY | S —Y). O



Lemma 2 can be used to show that the variables found indiljduadependent ofX during
the shrinking phase are actuallgintly independent ofX, given the final seSg. Let SA =
{Y1,Y>,...,Y:} be the set of variables removed (in that order) frS8m to form the final seS¢
i.e.,Sa =S¢ — Sg. Using the above lemma, the following is immediate.
Corollary 3. Assuming that the Contraction axiom hol@X, Ll S | Ss).
Lemma 4. If the Contraction, Decomposition and Weak Union axiomgihthen for every set
TCU—-Sg—{X}suchthat X 1L T | S¢),

o (XL TU(Sg —Ss) | Ss). _ _ 3)
FurthermoreSs is minimal i.e., there does not exist a subse® gffor which Eq. (3) is true.
Proof. From Corollary 3,(X 1L Sa | Sg). Also, by the hypothesigX Il T | S¢) = (XL T |
Ss USa), whereSy = Sg — Sg as usual. From these two relations and Contraction we obtain
(XJJ_TUSA | Ss)

To prove minimality, let us assume theg # @ (if S = @ then it is already minimal). We prove
by contradiction: Assume that there exists a$et Sg such thaf X 1L TU (S¢ — S’) | §'). Let
W = Sg — S’ # @. Note thatW andS’ are disjoint. We have that
S CSsgUSA, — SS—S’QSSUSA—S’QTU(SSUSA—S’)
= WgTU(SsUSA—S/)ZTU(Sg—S/)

e Since(X1L TU(Sg—S')|S)andW C TU (SsUSa — S'), from Decomposition we
get(X 1L W | 9).

e From (X1 W | §’) and Weak Union we have that for evefy ¢ W, (X 1LY | S’ U
(W —{Y}).

e SinceS’ and W are disjoint and sinc& € W, Y ¢ S’. Applying the set equality
(A—B)UC=(AUB)-(A-C)toS"U(W—{Y})weobtainS" UW — ({Y}-S') =
Ss —{Y}.

e ThereforeVY e W, (X 1LY | Sg —{Y}).

However, at the end of the shrinking phase, all variables Sg (and therefore ifW, asW C Sg)
have been evaluated for independence and found dependeseri@tion 2). Thus, sinc&v # o,
there exists at least onésuch thatf X L Y | Sg — {Y'}), producing a contradiction. O
Theorem 5. Assuming that the Contraction, Decomposition, and WealotJakioms hold, Algo-
rithm 1 ism-correct with respect tox .

Proof. We use the Markov Boundary Theorem. We first prove that
VT C U — {X} such tha{T| < m,{T CU-Sg = (XLT|Sg —T)}
or, equivalentlyy T C U — Sg — {X} such thafT| < m, (X1 T | Sg).

Sinceld —Sg—{X} =SAaU (U —Sc—{X}),Sa andid — S — { X } are disjoint, there are three
kinds of sets of sizen or less to consider: (i) all seff C Sa, (i) all setsT C U — S — {X},
and (iii) all sets (ifany)T = T/ U T”, T N T” = @, that have a non-empty palit C Sh and a
non-empty part” C U — S¢ — {X}.

(i) From Corollary 3,(X 1L Sa | Sg). Therefore, from Decomposition, for any SBtC Sa,
(XL T|Sg).
(if) By Observation 1, for every séf C i/ — Sg — {X} such thaiT| < m, (X 1L T | Sg).
By Lemma 4 we ge{X 1L T U SA | Sg), from which we obtain X 1L T | Sg) by
Decomposition.
(i) Since|T| < m, we have thatT”| < m. SinceT” C U — S — {X}, by Observation 1,
(X1 T" | Sg). Therefore, by Lemma 4,X 1L T” U Sa | Sg). SinceT' C Sa =
T UT' C T” USa, by Decomposition to obtaiX 1L T” UT' | Sg) = (X 1L T | Sg).
To complete the proof we need to prove that
VT C U — {X} such tha{T| < m,{T ZU-Ss = (XUT|Ss —T)}.
LetT = T; U Ty, with T; C SgandT; CU — Sg. SinceT £ U — Sg, T4 contains at least one
variableY € Sg. From Observation X L Y | Ss — {Y'}). From this and (the contrapositive of)
Weak Union, we getX L {Y}U(T1—{Y}) |Ss—{Y}—(T1—{YV})) = (XL Ty | Ss—T1).
From (the contrapositive of) Decomposition we g&f X T; UTy | Sg — T;) = (XL T |
Sg — T1), whichisequaltd XL T | Ss —T; — T3) = (XL T | Ss —T) asSs andT;, are
disjoint. O
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