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Abstract. The main problem in model checking that prevents it from

being used for veri�cation of large systems is the state explosion problem.

This problem often arises from combining parallel processes together.

Many techniques have been proposed to overcome this di�culty and,

thus, increase the size of the systems that model checkers can handle. We

describe several compositional model checking techniques used in practice

and show a few examples demonstrating their performance.

1 Introduction

Symbolic model checking is a very successful method for verifying complex �nite-

state reactive systems [7]. It models a computer system as a state-transition

graph. E�cient algorithms are used to traverse this graph and determine whether

various properties are satis�ed by the model. By using BDDs [5] it is possible to

verify extremely large systems having as many as 10120 states. Several systems

of industrial complexity have been veri�ed using this technique. These systems

include parts of the Futurebus+ standard [12,19], the PCI local bus [10, 20], a

robotics systems [8] and an aircraft controller [9].

In spite of such success, symbolic model checking has its limitations. In some

cases the BDD representation can be exponential in the size of system descrip-

tion. This behavior is called the state explosion problem. The primary cause of

this problem is parallel composition of interacting processes. The problem occurs

because the number of states in the global model is exponential in the number

of component processes. Explicit state veri�ers su�er from the state explosion

problem more severely than symbolic veri�ers. However, the problem a�icts

symbolic veri�cation systems as well, preventing them from being applied to

larger and more complex examples.

The state explosion can be alleviated using special techniques such as compo-

sitional reasoning. This method veri�es each component of the system in isola-

tion and allows global properties to be inferred about the entire system. E�cient
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algorithms for compositional veri�cation can extend the applicability of formal

veri�cation methods to much larger and more interesting examples. In this paper

we describe several approaches to compositional reasoning. Some are automatic

and are almost completely transparent to the user. Others require more user

intervention but can achieve better results. Each is well suited for some applica-

tions while not so e�cient for others.

For example, partitioned transition relations [6] and lazy parallel composition

[11,27] are automatic and, therefore, preferred in cases where user intervention

is not desired (for example, when the user is not an expert). These techniques

provide a way to compute the set of successors (or predecessors) of a state set

without constructing the transition relation of the global system. Both use the

transition relations of each component separately during traversal of the state

graph. The individual results are combined later to give the set of states in the

global graph that corresponds to the result of the operation being performed.

Another automatic technique is based on the use of interface processes. This

technique attempts to minimize the global state transition graph by focusing on

the communication among the component processes. The method considers the

set of variables used in the interface between two components and minimizes the

system by eliminating events that do not relate to the communication variables.

In this way, properties that refer to the interface variables are preserved, but the

model becomes smaller.

Assume-guarantee reasoning [17] is a manual technique that veri�es each

component separately. The behavior of each component depends on the behavior

of the rest of the system, i.e., its environment. Because of this, the user must

specify properties that the environment has to satisfy in order to guarantee the

correctness of the component. These properties are assumed. If these assumptions

are satis�ed, the component will satisfy other properties, called guarantees. By

combining the set of assume/guarantee properties in an appropriate way, it is

possible to demonstrate the correctness of the entire system without constructing

the global state graph.

All of these methods have been used to verify realistic systems. This shows

that compositional reasoning is an e�ective method for increasing the applica-

bility of model checking tools. Furthermore, it is a necessity for veri�cation of

many complex industrial systems.

The remainder of this paper is organized as follows: Section 2 introduces

the formal model that we use for �nite-state systems and the kinds of parallel

composition we consider. Section 3 describes partitioned transition relations, and

Section 4 discusses lazy parallel composition. Interface processes and assume-

guarantee reasoning are described in Sections 5 and 6, respectively. Finally, the

paper concludes in Section 7 with a summary and some directions for future

research.
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2 The Model

Given the description of the system to be veri�ed, constructing its model involves

two important steps. The �rst is constructing the model for the individual com-

ponents. The second is composing these submodels into a global model. We

start by showing how to represent each component symbolically given its state-

transition graph. Then we describe the parallel composition algorithm used to

create the global model.

2.1 Representing a Single Component

Representing a state-transition graph symbolically involves determining its set

of states and deriving the transition relation of the graph that models the com-

ponent. Consider a system with a set of variables V . For a synchronous circuit,

the set V is typically the outputs of all the registers in the circuit together with

the primary inputs. In the case of an asynchronous circuit, V is usually the

set of all nodes. For a protocol or software system, V is the set of variables in

the program. A state can be described by giving values to all the variables in

V . Since the system is �nite-state we can encode all states by boolean vectors.

Throughout the paper we assume that this encoding has already been done and

that all variables in V are boolean. Therefore, a state can be described by a

valuation assigning either 0 or 1 to each variable. Given a valuation, we can also

write a boolean expression which is true for exactly that valuation. For example,

given V = fv0; v1; v2g and the valuation hv0  1; v1  1; v2 0i, we derive the

boolean formula v0 ^ v1 ^ :v2. This boolean formula can then be represented

using a BDD.

In general, however, a boolean formula may be true for many valuations. If

we adopt the convention that a formula represents the set of all valuations that

make it true, then we can describe sets of states by boolean formulas and, hence,

by BDDs. In practice, BDDs are often much more e�cient than representing sets

of states explicitly. We denote sets of states with the letter S and we denote the

BDD representing the set S by S(V ), where V is the set of variables that the

BDD may depend on. We also use f; g; : : : for arbitrary boolean functions.

In addition to representing sets of states of a system, we must be able to

represent the transitions that the system can make. To do this, we extend the

idea used above. Instead of just representing a set of states using a BDD, we

represent a set of ordered pairs of states. We cannot do this using just a single

copy of the state variables, so we create a second set of variables V 0. We think of

the variables in V as current state variables and the variables in V 0 as next state

variables. Each variable v in V has a corresponding next state variable in V 0,

which we denote by v0. A valuation for the variables in V and V 0 can be viewed

as an ordered pair of states, and we represent sets of these valuations using

BDDs as above. We write a formula that is true i� there is a transition from the

state represented by V to the state represented by V 0. For example, if there is a

transition from state hv0  1; v1  1; v2 0i to state hv0  1; v1  0; v2 1i

we write the formula v0 ^ v1 ^ :v2 ^ v
0
0 ^ :v

0
1 ^ v

0
2. The disjunction of all such
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transitions is the transition relation of the model. If N is a transition relation,

then we write N (V; V 0) to denote the BDD that represents it.

2.2 Parallel Composition

The technique above shows how to construct the graph that models one compo-

nent of the system. But usually systems are described by a set of components

that execute concurrently. For synchronous or asynchronous circuits the com-

ponents are the smaller circuits that are connected together to construct the

bigger circuit. For protocols or programs the components are the processes that

execute in parallel.

There are two major ways of composing processes or systems: synchronously

and asynchronously. In synchronous composition all processes execute at the

same time, one step in one process corresponds to exactly one step in all the other

processes. In asynchronous composition, on the other hand, only one process

executes at any point in time. When one process steps all the others remain

unchanged. The choice of which process steps at any time is nondeterministic.

There are di�erent algorithms for composing synchronous and asynchronous

systems.

v2

v1

v0

Fig. 1. A modulo 8 counter

Synchronous Systems The method for deriving the transition relation of

a synchronous system can be illustrated using a small example. Consider the

circuit of a modulo 8 counter on Fig. 1. Let V = fv0; v1; v2g be the set of state

variables for this circuit, and let V 0 = fv00; v
0
1; v

0
2g be another copy of the state

variables. The transitions of the modulo 8 counter are given by
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v00 = :v0

v01 = v0 � v1

v02 = (v0 ^ v1) � v2

The above equations can be used to de�ne the relations

N0(V; V
0) = (v00 , :v0)

N1(V; V
0) = (v01 , v0 � v1)

N2(V; V
0) = (v02 , (v0 ^ v1)� v2)

which describe the constraints each v0
i
must satisfy in a legal transition. Each

constraint can be seen as a separate component, and their composition generates

the counter. These constraints can be combined by taking their conjunction to

form the transition relation:

N (V; V 0) = N0(V; V
0) ^N1(V; V

0) ^N2(V; V
0):

In the general case of a synchronous system with n components, we let

fN0; � � � ; Nn�1g be the set of transition relations for each component. Each tran-

sition relation Ni determines the values of a subset of variables in V in the next

state. Analogous to the modulo 8 counter, the conjunction of these relations

forms the transition relation

N (V; V 0) = N0(V; V
0) ^ � � � ^Nn�1(V; V

0):

Thus, the transition relation for a synchronous system can be expressed as a

conjunction of relations.

Given a BDD for each transition relation Ni, it is possible to compute the

BDD that represents N . We say that such a transition relation is monolithic

because it is represented by a single BDD. Monolithic transition relations are

the primary bottleneck for veri�cation, because their size can be exponential in

the number of equations used to de�ne it.

Asynchronous Systems As with synchronous systems, the transition relation

for an asynchronous system can be expressed as a conjunction of relations. Al-

ternatively, it can be expressed as a disjunction. To simplify the description of

how such transition relations are obtained, we assume that all the components of

the system have exactly one output and have no internal state variables. In this

case, it is possible to describe completely each component by a function fi(V ).

Given values for the present state variables v, the component drives its output to

the value speci�ed by fi(V ). For some components, such as C-elements and 
ip-


ops, the function fi(V ) may depend on the current value of the output of the

component, as well as the inputs. Extending the method to handle components

with multiple outputs is straightforward.
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In speed-independent asynchronous systems, there can be an arbitrary de-

lay between when a transition is enabled and when it actually occurs. We can

model this by allowing each component to choose nondeterministically whether

to transition or not. This results in a conjunction of n parts, all of the form

Ti(V; V
0) =

�
v0
i
, fi(V )

�
_ (v0

i
, vi):

This model is similar to the synchronous case discussed above, and allows more

than one variable to transition concurrently.

Normally, we will use an interleaving model for asynchronous composition,

in which only one variable is allowed to transition at a time. First, we apply the

distributive law to the conjunction of the Ti's, giving a disjunction of 2n terms:

n^
i=1

Ti �
_

b1;:::bn

 
n^
i=1

v0
i
, gbi

i
(V )

!
;

where all bi's are indices over f0; 1g and

gb
i
(V ) =

�
fi(V ); if b = 1

vi; if b = 0:

Each of these terms
nV
i=1

v0
i
, gbi

i
(V ) corresponds to the simultaneous transi-

tioning of some subset of the n variables in the model for which bi = 1. Second,

we keep only those terms that correspond to exactly one variable being allowed

to transition (that is, only those disjuncts for which the vector b1; : : : ; bn contains

exactly one 1). This results in a disjunction of the form

N (V; V 0) = N0(V; V
0) _ � � � _Nn�1(V; V

0);

where

Ni(V; V
0) =

�
v0
i
, fi(V )

�
^
^

j 6=i

(v0
j
, vj):

Notice, that using this method asynchronous systems are composed by dis-

juncting their components, while synchronous systems are composed by con-

juncting their components.

3 Partitioned Transition Relations

Computing the image or pre-image of a set of states S under a transition relation

N is the most important operation in model checking. A state t is a successor of

s under N , if there is a transition from s to t or, in other words, N (s; t) holds.

The image of a set of states S is the set of all successors of S. If the set S and

the transition relation N are given by boolean formulas, then the image of S is

given by the following formula

9V
�
S(V ) ^N (V; V 0)

�
;
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where 9V denotes existential quanti�cation over all variables in V . This formula

de�nes the set of successors in terms of free variables V 0. Similarly, a state s is

a predecessor of a state t under N i� N (s; t) is true. The set of predecessors of

a state set S is described by the formula

9V 0
�
S(V 0) ^N (V; V 0)

�
:

Formulas of this type are called relational products.

While it is possible to implement the relational product with one conjunction

and a series of existential quanti�cations, in practice this would be fairly slow. In

addition, the OBDD for S(V 0) ^N (V; V 0) is often much larger than the OBDD

for the �nal result, and we would like to avoid constructing it if possible. For

these reasons, we use a special algorithm to compute the OBDD for the relational

product in one step from the OBDDs for S and N . Figure 2 gives this algorithm

for two arbitrary OBDDs f and g.

function RelProd(f; g : OBDD ; E : set of variables) : OBDD

if f = 0 _ g = 0

return 0

else if f = 1 ^ g = 1

return 1

else if (f; g; E; r) is in the result cache

return r

else

let x be the top variable of f

let y be the top variable of g

let z be the topmost of x and y

r0 := RelProd(f jz 0; gjz 0; E)

r1 := RelProd(f jz 1; gjz 1; E)

if z 2 E

r := Or (r0; r1)

/� OBDD for r0 _ r1 �/

else

r := BDDnode(z; r1; r0)

/� OBDD for (z ^ r1) _ (:z ^ r0) �/

endif

insert (f; g; E; r) in the result cache

return r

endif

Fig. 2. Relational product algorithm

Like manyOBDD algorithms,RelProd uses a result cache. In this case, entries

in the cache are of the form (f; g; E; r), where E is a set of variables that are

quanti�ed out and f , g and r are OBDDs. If such an entry is in the cache, it

means that a previous call to RelProd(f; g; E) returned r as its result.
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Although the above algorithmworks well in practice, it has exponential com-

plexity in the worst case. Most of the situations where this complexity is observed

are cases in which the OBDD for the result is exponentially larger than the

OBDDs for the arguments f(�v) and g(�v). In such situations, any method of

computing the relational product must have exponential complexity.

In the previous section we have described how to construct the global tran-

sition relation N from the individual transition relations Ni of the component

processes. However, the size of N can be signi�cantly larger than the sum of the

sizes of all Nis. Our goal is to be able to compute relational products without

constructing the global transition relation explicitly.

3.1 Disjunctive Partitioning

The global transition relation of an asynchronous system may be written as

the disjunction of the transition relations for the individual components of the

system. In this case, a relational product will have the form

9V 0
�
S(V 0) ^ (N0(V; V

0) _ � � � _Nn�1(V; V
0))
�
:

In practice computing the value of a large formula with many quanti�ers is usu-

ally very expensive. Since the existential quanti�er distributes over disjunction

we can shrink the scope of the quanti�er to the individual components:

9V 0
�
S(V 0) ^N0(V; V

0)
�
_ � � �_

9V 0
�
S(V 0) ^Nn�1(V; V

0)
�

When this technique is used it is possible to compute relational products for

much larger asynchronous systems.

3.2 Conjunctive Partitioning

For synchronous systems, a relational product will have the form

9V 0
�
S(V 0) ^ (N0(V; V

0) ^ � � � ^Nn�1(V; V
0))
�
:

Unfortunately, existential quanti�cation does not distribute over conjunction, so

we can not directly apply the same transformation as in the asynchronous case.

A simple counterexample is

9a[(a _ b) ^ (:a _ c)] 6� 9a[a _ b]^ 9a[:a_ c]

since it reduces to:

[b _ c] 6� true:

Nevertheless, we still can apply partitioning because systems often exhibit

locality: most Nis depend only on a small number of variables in V and V 0.
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Subformulas can be moved outside of the scope of existential quanti�cation if

they do not depend on any of the variables being quanti�ed:

9a
�
(a _ b) ^ (b _ c)

�
� 9a

�
a _ b

�
^ (b _ c)

We can optimize the computation of a relational product by using early variable

elimination for variables in each Ni. First, pick an order � for considering the

partitions in the relational product. Then de�ne Di to be the set of variables

process Pi depends on, and Ei to be a subset of Di consisting of variables that

no process later in the ordering depends on, i.e.,

E�(i) = D�(i) �

n�1[

k=i+1

D�(k):

We will illustrate this with our example of the modulo 8 counter.

N0 = (v00 , :v0) depends on D0 = fv0g

N1 = (v01 , v0 � v1) depends on D1 = fv0; v1g

N2 = (v02 , (v0 ^ v1) � v2) depends on D2 = fv0; v1; v2g

If we choose the ordering � = 2; 1; 0, then E2 = fv2g; E1 = fv1g and E0 =

fv0g. We now can transform the relational product to:

S1(V; V
0) = 9v2E�(0)

�
S(V ) ^N�(0)(V; V

0)
�

S2(V; V
0) = 9v2E�(1)

�
S1(V; V

0) ^N�(1)(V; V
0)
�

...

Sn(V
0) = 9v2E�(n�1)

�
Sn�1(V; V

0) ^N�(n�1)(V; V
0)
�
:

Or putting it all together,

9V�(n�1)
�
: : :9V�(1)

�
9V�(0)

�
S(V ) ^N�(0)(V; V

0)
�

| {z }
S1

^N�(1)(V; V
0)
�

| {z }
S2

^ � � � ^N�(n�1)(V; V
0)
�

...| {z }
Sn

The ordering � has a signi�cant impact on how early in the computation state

variables can be quanti�ed out. This a�ects the size of the BDDs constructed

and the e�ciency of the veri�cation procedure. Thus, it is important to choose

� carefully, just as with the BDD variable ordering. For example, a badly chosen

ordering � = 0; 1; 2 for the same modulo 8 counter yields E0 = fg; E1 = fg and

E2 = fv0; v1; v2g, which results in no optimization at all.

In practice, we have found it fairly easy to come up with orderings which

give good results. We search for a good ordering � by using a greedy algorithm
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to �nd a good ordering on the variables vi to be eliminated. For each ordering

on the variables, there is an obvious ordering on the relations Ni such that when

this relation ordering is used, the variables can be eliminated in the order given

by the greedy algorithm.

The algorithm on �g. 3 gives our basic greedy technique. We start with the

set of variables V to be eliminated and a collection C of sets where every Di 2 C

is the set of variables on which Ni depends. We then eliminate the variables one

at a time by always choosing the variable with the least cost and then updating

V and C appropriately.

while (V 6= �) do

begin

For each v 2 V compute the cost of eliminating v;

Eliminate variable with lowest cost by updating C and V ;

end;

Fig. 3. Algorithm for variable elimination.

All that remains is to determine the cost metric to use. We will consider

three di�erent cost measures. To simplify our discussion, we will use Nv to refer

to the relation created when eliminating variable v by taking the conjunction of

all the Ni that depend on v and then quantifying out v. We will use Dv to refer

to the set of variables on which this Nv depends.

minimum size The cost of eliminating a variable v is simply jDvj. With this

cost function, we always try to insure that the new relation we create depends

on the fewest number of variables.
minimum increase The cost of eliminating variable v is

jDvj � max
A2C;v2A

jAj+ 1

which is the di�erence between the size of Dv and the size of the largest Di

containing v. The idea is that if we have a lot of small relations that all share

one variable, then we do not want to eliminate that variable, since this may

result in a big Nv. But this is what the previous heuristic would suggest.

Instead, the minimum increase cost will favor eliminating variables that are

shared by a small number of relations, thus, keeping the resulting relation

smaller. In other words, we prefer to make a small increase in the size of an

already large relation than to create a new large relation.
minimum sum The cost of eliminating variable v isX

A2C;v2A

jAj

which is simply the sum of the sizes of all the Di containing v. Since the cost

of conjunction depends on the sizes of the arguments, we approximate this

cost by the number of variables on which each of the argument Ni depends.
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The overall goal is to minimize the size of the largest BDD created during

the elimination process. In our abstraction, this translates to �nding an ordering

that minimizes the size of the largest set Dv created during the process. Always

making a locally optimal choice does not guarantee an optimal solution and there

are counterexamples for each of the three cost functions. In fact, the problem

of �nding an optimal ordering can be shown to be NP-complete. However, the

minimum sum cost function seems to provide the best approximation of the cost

of the actual BDD operations and in practice has the best performance on most

examples.

4 Lazy Parallel Composition

Lazy parallel composition is an alternative method for compositional reasoning

that can be related to partitioned transition relations. As in the case of the par-

titioned transition relations, the global transition relation is never constructed.

However, in contrast to the previous method, a restricted transition relation for

all processes is created. The restricted transition relation agrees with the global

transition relation for `important' states, but it may behave in a di�erent way

for other states. The advantage comes from the fact that in many cases it is

possible to construct a restricted transition relation that is signi�cantly smaller

than the global transition relation.

There are many possible ways of constructing a restricted transition relation

that would produce correct results. Given an original global transition relation

N and a state set S, the computation of the set of successors of S can use any

restricted transition relation N 0 that satis�es the following condition:

N 0jS = N jS

The formula above means that N and N 0 agree on transitions that start from

states in S. It is possible to represent N 0 with signi�cantly fewer nodes than

N in some cases by using the constrain operator from [14,27]. For two boolean

formulas f and g, f 0 = constrain(f; g) is a formula that has the same truth value

as f for variable assignments that satisfy g. If the variable assignment does not

satisfy g, the value of f 0 can be arbitrary. In other words:

f 0(x) =

�
f(x) if g(x)

don't care otherwise

In many cases the size of f 0 is signi�cantly smaller than the size of f .

The lazy composition algorithm uses the constrain operator to simplify the

transition relation of each process before generating the global restricted transi-

tion relation. When computing the set of successors of a state set S (represented

by a boolean formula) the algorithm computes

N 0 =
^

i=0::n

constrain(Ni; S):
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Each transition N 0
i
= constrain(Ni; S) agrees with Ni on transitions that

start in S by the de�nition of the constrain operator. As a consequence, the

transition relation N 0 agrees with the global transition relation N on transitions

that start in S as well. Therefore, computing the set of successors of S using N 0

produces the same result as using N . The same method can be applied when

computing the set of predecessors of a state set S. Only in this case the constrain

operator has to maintain those transitions in N that end in S.

4.1 Partitioning vs. Lazy Composition

Lazy parallel composition is less sensitive to the order in which variables are

eliminated than partitioned transition relations. This is because step i in the

partitioned transition relation depends on step i� 1, as shown below

9v1
�
9v0
�
S(V 0) ^N0(V; V

0)
�

| {z }
step1

^N1(V; V
0)
�
:

| {z }
step2

As a consequence, the �nal degree of partitioning heavily depends on the order

in which we quantify the variables out. We have already seen an example of such

dependency in section 3.2.

The lazy parallel composition, on the other hand, processes each component

independently, and thus, does not depend on the order in which the constrain

operators are applied:

9V 0
�
S(V 0) ^ (N1(V; V

0) jS| {z }
step1

^N2(V; V
0) jS| {z }

step2

)
�
:

We have implemented the lazy composition algorithm and obtained signif-

icant gains in both space and time. The veri�cation of one example took 18

seconds and 1 MB of memory when lazy composition was used. The same ex-

ample took about the same amount of time but twice as much memory when

partitioned transition relations were used. If neither method was used, veri�ca-

tion required more than 40 seconds and 12 MB. A signi�cant part of the savings

in both methods results from not constructing the global transition relation.

However, lazy parallel composition often requires much less memory. The reason

seems to be that partitioned transition relations are heavily in
uenced by the

order in which partitions are processed, because this order determines which

variables can or cannot be quanti�ed out early. In lazy parallel composition this

does not happen, since all of the variables are quanti�ed out at the same time.

This makes it less susceptible to the order in which partitions are processed, and

more suitable to be used in the cases in which determining the processing order

can be di�cult. It also makes the new technique easier to automate.
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5 Interface Processes

An important observation leads to another approach to compositional veri�-

cation. The state explosion problem is usually most severe for loosely coupled

processes which communicate using a small number of shared variables.

5.1 Cone of In
uence Reduction

Suppose we are given a set of variables � that we are interested in with respect

to the process P . We can simplify the process P using the cone of in
uence

reduction. Assume that the system is speci�ed by a set of equations:

v0
i
= fi(V ):

De�ne the cone of in
uence Ci of vi for each variable vi as the minimal set of

variables such that

{ vi 2 Ci,

{ if for some vl 2 Ci its fl depends on vj, then vj 2 Ci.

Construct a new (reduced) process P 0 from P by removing all the equations

whose left hand side variables do not appear in any of the Ci's for vi 2 �. It can

be easily shown that P j= ' i� P 0 j= ', whenever ' contains only variables from

�.

Again, consider our example of the modulo 8 counter (�g. 1). Its set of

equations is

v00 = :v0
v01 = v0 � v1
v02 = (v0 ^ v1)� v2

Clearly, C0 = fv0g, since f0 does not depend on any variable other than v0.

We have C1 = fv0; v1g, since f1 depends on both of the variables, but v2 62 C1

because no variable in C1 depends on v2. And C2 is the set of all the variables.

P1 P2

P1 and P2
communicate
using these
variables

Assume two processes P1 and P2 communicate using a set of variables �.

Then P1 can only observe the behavior of P2 through �. It means that we can

replace P2 by any equivalent process A2 which is indistinguishable from P2 with

respect to � and this will completely preserve the behavior of P1. The idea is to

�nd a smaller process A2 that hides all events irrelevant to �.
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P1 P2

A2

The following interface rule guarantees the correctness of the abstraction A2

with respect to P1. Let P j� be the restriction of P to the cone of in
uence of

variables in �, and L(�) be the set of all CTL formulas with free variables from

�. The interface rule states that if the following conditions are satis�ed:

{ P2j� � A2,
{ P1jjA2 j= ',
{ ' is a CTL formula such that ' 2 L(�),

then ' is also true in P1jjP2. In fact, it is su�cient for ' to be in L(�P1
) for

this rule to be sound, where �P1
is the set of variables of P1.

In the remainder of this section we describe how this strategy can be made

precise and show how it can be used to reduce the state explosion problem for

loosely coupled processes.

5.2 Soundness of the interface rule

In order for the interface rule to be sound we need to specify some properties

that the process equivalence `�' has to satisfy. For a process P let �P be the set

of atomic propositions (or state variables) in P , and let L(�) be the language of

temporal formulas over the alphabet �. For any two processes P1 and P2 with

sets of variables �P1
and �P2

, the following axioms have to be satis�ed:

1. P1 � P2 implies 8' 2 L(�P1
)[P1 j= '$ P2 j= ']

2. If P1 � P2 then P1jjQ � P2jjQ and QjjP1 � QjjP2

3. (P1jjP2)j�P1
� P1jj(P2j�P1

) and (P1jjP2)j�P2
� (P1j�P2

)jjP2

4. If ' 2 L(�') and �' � �P , then P j= ' i� P j�'
j= '

Theorem 1 (Soundness). The Interface Rule is sound.

To remind the reader, the interface rule states that

{ P2j�P1
� A2,

{ P1jjA2 j= ',
{ ' is a CTL formula such that ' 2 L(�P1

),

imply P1jjP2 j= '. Notice, that restricting P2 to �P1
produces the same result

as P2j�, where � = �P1
\�P2

.

Proof. Since P2j�P1
� A2, then by 2 P1kA2 � P1k(P2j�P1

). By 3, P1k(P2j�P1
) �

(P1kP2)j�P1
, hence we also have P1jjA2 � (P1jjP2)j�P1

. And since P1kA2 j= '

and ' 2 L(�P1
), by 1 we derive (P1kP2)j�P1

j= ', and from 4 we immediately

get P1jjP2 j= ' as required.
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5.3 Equivalence of Processes

We de�ne concrete equivalence relations over the processes that ful�l our require-

ments and are the most suitable in our framework. We use bisimulation equiva-

lence and stuttering equivalence with synchronous parallel composition. We also

give an \e�cient" polynomial algorithm to determine bisimulation equivalence

between processes and a sketch of the algorithm for stuttering equivalence.

De�nition 1. A model is a triple M = (S;N;L), where S is a set of states,

N � S � S is a transition relation and L is a labeling function mapping each

state into a set of atomic propositions that are true in that state.

Bisimulation Equivalence. Consider two models M = (S;N;L) and M 0 =

(S0; N 0; L0) with the same set of atomic propositions.

De�nition 2. A binary relation E � S � S0 is called a bisimulation relation if

for any s 2 S and s0 2 S0, E(s; s0) implies L(s) = L0(s0) and

(i) 8r 2 S:N (s; r)) 9r0 2 S0 : N 0(s0; r0) ^E(r; r0)

(ii) 8r0 2 S0:N 0(s0; r0)) 9r 2 S : N (s; r) ^E(r; r0):

De�nition 3. A bisimulation equivalence is the maximum bisimulation relation

in the subset inclusion preorder.

Notice that the de�nition of a bisimulation relation can be viewed as a �x-

point equation. Hence, the bisimulation equivalence is just the greatest �xpoint

of that equation. This gives rise to a simple polynomial algorithm for computing

the bisimulation equivalence using the well known iterative procedure. We com-

pute a (decreasing) sequence of relations E0; E1; : : : until this sequence converges

to a �xpoint at the n-th step. This convergence is guaranteed in �nite-state case,

since the subset inclusion preorder is well-founded in both directions. Choosing

an appropriate E0 guarantees that this �xpoint is the greatest �xpoint, therefore

En is the required bisimulation equivalence. The sequence of relations is de�ned

inductively as follows:

1. sE0s
0 i� L(s) = L0(s0),

2. sEn+1s
0 i� L(s) = L0(s0) and

{ 8s1[N (s; s1) implies 9s01[N
0(s0; s01) ^ s1Ens

0
1]]

{ 8s01[N
0(s0; s01) implies 9s1[N (s; s1) ^ s1Ens

0
1]]

The complexity of this algorithm is O(m2), where m in the sum of the sizes

of the transition relations. There are more e�cient algorithms for computing

bisimulation equivalence, for example the Paige-Tarjan algorithm [24]. It's com-

plexity is O(m logn) in time and O(m + n) in space, where n is the sum of the

numbers of states in both models, and m in the sum of the sizes of the transition

relations. However, it is unclear if this algorithm can employ BDDs as well.
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Fig. 4. A CPU controller.

Stuttering Equivalence. Unlike bisimulation, the stuttering equivalence [4,

16] is usually de�ned over the computation paths of the models. Intuitively, two

paths � and �0 are considered stuttering equivalent if they can be partitioned

into �nite blocks of repeated, or stuttered states, and corresponding blocks are

equivalent in the two paths relative to the labeling functions L and L0 of the

models. Thus, we do not distinguish between two executions that di�er only in

the number of idle cycles between transitions. The stuttering equivalence also

has a de�nition in terms of the greatest �xpoint.

De�nition 4. A binary relation E � S�S0 is called a stuttering relation if for

any s 2 S and s0 2 S0, s E s0 implies L(s) = L0(s0) and

(i) 8r: N (s; r)) 9s00; : : : ; s
0
n
(n � 0): s00 = s0 and r E s0

n
and

80 � i < n: N 0(s0
i
; s0

i+1) and s E s0
i
;

(ii) 8r0: N 0(s0; r0)) 9s0; : : : ; sm (m � 0): s0 = s and sm E r0 and

80 � i < m: N (si; si+1) and si E s0.

De�nition 5. A stuttering equivalence is the maximum stuttering relation in

the subset inclusion preorder.

Stuttering equivalence preserves the truth of CTL� formulas that do not in-

volve the next time operator X [4]. As in the case of bisimulation, we de�ne

inductively a sequence of relations E0; E1; : : : (that also converges in �nite state

case) and the stuttering equivalence is the intersection of all the Ei's. However,

instead of computing the direct pre-image at each iteration as we did for bisimu-

lation, we compute the set of states fromwhich there is a path to the current state

along which the current labeling L(s) changes exactly once. This involves com-

puting another least �xpoint. The details of the algorithm are described in [3].

A more e�cient algorithm based on the Paige-Tarjan algorithm was found by

Groote and Vaandrager [16] that runs in O(mn) time. It is unknown, however,

if this algorithm can use BDDs as well.

5.4 Interface Processes Example

As a simple example, we consider a model of the CPU controller [13] (�g. 4).

The model comprises two parallel processes Pa and Pe called the access unit
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and the execution unit. The access unit Pa fetches instructions and stores them

in an instruction queue and maintains a cache of the top location of the CPU

stack in a special register. The execution unit Pe pops out the instructions from

the queue and interprets them. A major part of the temporal logic speci�cation

for CPU's controller de�nes correct behavior for the access unit and consists of

formulas on the set of signals which are inputs or outputs of the unit. These

signals constitute �Pa
. An example of such a formula is the following

AGAF fetch

This formula is a liveness property which states that instructions are fetched

from the access unit to the execution unit in�nitely often. Fetch is actually

a propositional formula de�ned in terms of request and acknowledge signals

between the two units.

The parallel composition of the access unit and the execution unit in our

design has approximately 1100 reachable states. However, by restricting the out-

puts of the execution unit to those in �Pa
, and then minimizing it, we obtain

an interface process APe
such that PakAPe

has only 196 reachable states. The

reason for this reduction is that, while the execution unit interprets many di�er-

ent instructions, the memory accesses of these instructions fall into a few basic

patterns.

6 Assume/Guarantee Reasoning

Assume-guarantee reasoning is a semi-automatic method that veri�es each com-

ponent separately. Ideally, compositional reasoning exploits the natural decom-

position of a complex system into simpler components, handling one component

at a time. In practice, however, when a component is veri�ed it may be neces-

sary to assume that the environment behaves in a certain manner. If the other

components in the system guarantee this behavior, then we can conclude that

the veri�ed properties are true of the entire system. These properties can be

used to deduce additional global properties of the system.

The assume-guarantee paradigm [17,21, 23, 25] uses this method. Typically,

a formula is a triple hgiM hfi where g and f are temporal formulas and M is a

program. The formula is true if whenever M is part of a system satisfying g, the

system must also satisfy f . A typical proof shows that hgiM hfi and htrueiM 0hgi

hold and concludes that htrueiM k M 0hfi is true. This proof strategy can also

be expressed as an inference rule:

htrueiM 0hgi hgiM hfi

htrueiM kM 0hfi

The soundness of this simple assume-guarantee rule is straightforward.

In order to automate this approach, a model checker must be able to check

that a property is true of all systems which can be built using a given component.

More generally, it must be able to restrict to a given class of environments when
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doing this check. An elegant way to obtain a system with this property is to

provide a preorder � on the �nite state models that captures the notion of \more

behaviors" and to use a logic whose semantics is consistent with the preorder.

The order relation should preserve satisfaction of formulas of the logic, i.e. if a

formula is true for a model, it should also be true for any model which is smaller

in the preorder. Additionally, composition should preserve the preorder, and a

system should be smaller in the preorder than its individual components. Finally,

satisfaction of a formula should correspond to being smaller than a particular

model (a tableau for the formula) in the preorder.

Following Grumberg and Long [17], we use synchronous process composition,

the simulation preorder , and the temporal logic ACTL (a subset of CTL without

existential path quanti�ers). This choice is motivated by the expressiveness of

ACTL and the existence of a very e�cient model checking algorithm for this

logic. The simulation preorder is also a natural choice, since it is simple and

intuitive as well as easily automated. We employ tableau construction methods

for converting formulas into processes. Informally, a tableau for a formula ' is

the greatest process A' (in the preorder) such that A' j= '. In the remainder

of this section we will not distinguish formulas and processes and will write, for

example,M � ' to meanM � A'.

It can be easily shown that our choice of formalisms meets all the require-

ments [17]. In particular, for allM andM 0 we haveMkM 0 �M , and ifM 0 � A

thenMkM 0 � MkA, because synchronous composition can only restrict possible

behaviors. Since M is greater than any system containing M , we can focus on

proving properties of M in isolation. This insures that the same properties hold

for an arbitrary system containing M .

Using the tableau construction we can verify M j= ' by checking the rela-

tion M � '. In practice, however, we use classical model checking for verifying

M j= ' for a single component M if ' is given by a formula, and the simula-

tion preorder if ' is an automaton, to increase the e�ciency. Assumptions on

the model correspond to composition. That is, a model M has the same set of

behaviors under assumptions  as the model Mk without any assumptions.

Thus, our triple h'iM h i corresponds to 'kM �  . In other words, discharging

assumptions corresponds to checking the preorder. Finally, the rule M �MkM

allows multiple levels of assume-guarantee reasoning.

Earlier we mentioned that the logic must preserve the preorder relation. Now

we formalize and state the properties explicitly.

1. For all M , M 0 and ', if M � M 0 and M 0 j= ', then M j= ' (removing

behaviors cannot change a formula from true to false). Since MkM 0 � M ,

it is enough to check M j= ' to know that any system containing M also

satis�es '.
2. For every ', there is a structure T' such that M j= ' if and only ifM � T'.

This allows us to use ' as an assumption by composingM with T'.
3. Every model of ' is also a model of  if T' j=  

These lemmas are proved rigorously in [17] for synchronous composition of pro-

cesses, the simulation preorder and the logic ACTL.
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6.1 Implementation of Assume Guarantee Reasoning

Suppose we want to show that MkM 0 j=  . That is, in terms of triples, we

need to prove htrueiMkM 0h i. We verify that M satis�es some property # by

model checking. Next, using # as an assumption, we show that M 0 satis�es

some other auxiliary property '. Finally, we show that M satis�es the required

property  under the assumption '. Since this extends to any system containing

M , we are done. If the intermediate formulas (or processes) ' and # are much

smaller than M and M 0 respectively, then all the transition relations that must

be constructed are signi�cantly smaller than the one for MkM 0. This strategy

for proving MkM 0 j=  can be summarized in the following assume-guarantee

rule:

htrueiM h#i h#iM 0h'i h'iM h i

htrueiMkM 0h i

In our framework, this corresponds to

M � # #kM 0 � ' 'kM �  

MkM 0 �  

It is straightforward to show that this rule is sound by using the properties

of preorder relation stated earlier.

Theorem 2. The assume-guarantee rule is sound.

Proof. Since M � #, then MkM 0 � #kM 0. Since #kM 0 � ', by transitivity

MkM 0 � '. Composing both sides with M we get MkM 0kM � 'kM . Since

parallel composition is commutative and associative, we can group the left hand

side as MkMkM 0. Then using M � MkM and composing both sides with M 0

we obtain MkM 0 � 'kM . Finally, from the last assumption 'kM �  and

transitivity we draw the conclusion of the rule MkM 0 �  .

So far, we have not discussed fairness. Both the preorder and the semantics

of the logic should include some type of fairness. This is essential for model-

ing systems (hardware or communication protocols) at the appropriate level of

abstraction. Moreover, fairness is necessary for the ACTL tableau construction.

Unfortunately, no e�cient technique exists to check or compute fair pre-

order between models. In [17], Grumberg and Long suggest how to check the

fair preorder only for a few trivial cases. Kupferman and Vardi showed that the

general case is PSPACE-hard to compute [22]. Henzinger, Kupferman, and Ra-

jamani [18] have proposed a new type of fair preorder that can be computed in

polynomial time. However, it is not clear that this preorder is appropriate for

compositional reasoning.

Example: The Futurebus+ Protocol. David Long has used this type of

reasoning to verify safety and liveness properties for the Futurebus+ standard

of cache coherence protocol [12, 19]. The whole design is divided into parallel
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components that represent single modules like cache, memory, bus, etc. This

example requires several levels of assumptions and guarantees.

The �rst stage of the veri�cation was to check safety properties, since they

can be veri�ed using only forward reachability analysis and checking at each

iteration that the current set of reachable states satis�es the property. Once a

violation is found, the search is terminated immediately and an error trace is

generated. The ability to terminate the search early was important since the

BDD representing the set of reached states tended to become very large once an

erroneous transition had occurred. As soon as all of the basic safety properties

were satis�ed, more complex formulas were checked in the state space restricted

to the set of reachable states. Such a restriction also helped greatly in keeping

the BDD from blowing up in size.

Using this technique he found speci�cations that were satis�ed by a single

bus con�guration but not by multiple bus con�gurations. The details of the

veri�cation can be found in [12].

7 Conclusions

We describe several methods of dealing with the state explosion problem, which

arises frequently due to parallel composition of processes. It is clear that compo-

sitional reasoning is critical in formal veri�cation. Such techniques dramatically

reduce the complexity of model checking and permit the veri�cation of signi�-

cantly larger systems. We have used compositional methods extensively to verify

large complex systems such as the Futurebus+ [12] and the PCI bus [10, 20] pro-

tocols.

This paper does not cover all of compositional proof techniques. There are a

number of other compositional techniques that can also be successfully used. For

example, partial model checking [1] encodes one of the processes into the formula,

which is being checked, and simpli�es the resulting formula. Similar method is

described in [2]. Theorem proving techniques are also used to decompose and

prove (manually) the property for each of the component [15,26].

In general, all of the compositional model checking techniques have their

limitations and much work remains to be done. The most important problem is

the trade-o� between e�ciency and automation. More powerful methods that

can handle enormous complexity usually require an expert user and signi�cant

manual e�ort. These techniques usually rely on a powerful theorem prover under

human guidance or careful choice of model checking parameters. On the other

hand, completely automatic techniques frequently cannot handle extremely com-

plex systems. The problem with automatic techniques is that they rely heavily

on heuristics which may or may not work on di�erent types of examples, and

most of the intellectual work still has to be done by the user.
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