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1 IMAGE SYNTHESIS
1.1 Introduction

Ray tracing is a technique for image synthesis: creating a 2-D picture of a 3-D
world.

In this article we assume you have some familiarity with basic computer
graphics concepts, such as the idea of a frame buffer, a pixel, and an image plane.
We will use the term pixel in this article to describe three different, related
concepts: a small region of a monitor, an addressable location in a frame
buffer, and a small region on the image plane in the 3-D virtual world.
Typically, these three devices (monitor, frame buffer, and image plane) are
closely related, and the region covered by a pixel on one has a direct
correspondence to the others. We will find it convenient to sometimes blur the
distinction between these different devices and refer to the image plane as ‘the

screen.’
Most computer graphics are created for viewing on a flat screen or piece of

paper. A common goal is to give the viewer the impression of looking at a
photograph (or movie) of some three-dimensional scene. Our first step in
simulating such an image will be to understand how a camera records a
physical scene onto film, since this is the action we want to simulate.

After that we’ll look at how the ray tracing algorithm simulates this physical
process in a computer’s virtual world. We’ll then consider the issues that arise
when we actually implement ray tracing on a real computer.

1.2 The Pinhole Camera Model

Perhaps the simplest camera model around is the pinhole camera, illustrated in
Figure 1. A flat piece of photographic film is placed at the back of a light-proof
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L Pinhole

Fig. 1. The pinhole camera model.

box. A pin is used to pierce a single hole in the front of the box, which is then
- covered with a piece of opaque tape. When you wish to take a picture, you

hold the camera steady and remove the tape for a while. Light will enter the
pinhole and strike the film, causing a chemical change in the emulsion. When
you’re done with the exposure you replace the tape over the hole. Despite its
simplicity, this pinhole camera is quite practical for taking real pictures.

The pinhole is a necessary part of the camera. If we removed the box and
the pinhole and simply exposed the entire sheet of film to the scene, light from
all directions would strike all points on the film, saturating the entire surface.
We’d get a blank (white) image when we developed this very overexposed
film. The pinhole eliminates this problem by allowing only a very small -
number of light rays to pass from the scene to the film, as shown in Figure 2. In
particular, each point on the film can receive light only along the line joining
that piece of film and the pinhole. As the pinhole gets bigger, each bit of the
film receives more light rays from the world, and the image gets brighter and
more blurry.

Although more complicated camera models have been used in computer
graphics, the pinhole camera mode] s still popular because of its simplicity
and wide range of application. For convenience in programming and

==

Fig. 2. The pinhole only allows particular rays of light to strike_the film.
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Eye

Image plane, or screen

Viewing frustum

Fig. 3. The modified pinhole camera mode! as commonly used in corhﬁuter
graphics.

modeling, the classic computer graphics version of the pinhole camera moves
the plane of the film out in front of the pinhole, and renames the pinhole as the
eye, as shown in Figure 3. If we built a real camera this way it wouldn’t work
well at all, but it’s fine for a computer simulation. Although we’ve moved
things around, note that each component of the pinhole camera is accounted
for in Figure 3. In particular, the requirement that all light rays pass through
the pinhole is translated into the requirement that all light rays pass through
the eyepoint. For the rest of our discussion we will use this form of the pinhole
camera model.

You may want to think of the model in Figure 3 as a Cyclopean viewer
looking through a rectangular window. The image he sees on the window is
determined by where his eye is placed and in what direction he is looking.

In Figure 3 we’ve drawn lines from the eye to the corners of the screen and
then beyond. You can think of these lines as the edges of walls that include the

“eye and screen. The only objects which the eye can directly see (and thus the
film directly image) are those which lie within all four of the walls formed by
these bounds. We also arbitrarily say that the only objects that can show up on
the image plane are those in front of the image plane, i.e. those on the other
side of the plane than the eye. This makes it easy to avoid the pitfall of having
our whole image obscured by some large, nearby object. The eye also cannot
directly see any objects behind itself.

All these conditions mean that the world that finally appears on the screen
lies within an infinite pyramid with the top cut off (such a point-less pyramid is
called a frustum). The three-dimensional volume that is visible to the eye, and
may thus show up on the screen, is called the viewing frustum. The walls that
form the frustum are called clipping planes. The plane of the screen is called the
image plane. The location of the eye itself is simply referred to as the eye positiqh.
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1.3 . Pixels and Rays

When we generate an image we’re basically determining what color to place
in each pixel. One way to think of this is to imagine each pixel as a small,
independent window onto the scene. If only one color can be chosen to
represent everything visible through this window, what would be the correct
color? Much of the work of 3-D computer graphics is devoted to answering
that question. . '

One way to think about the question is within the context of the pinhole
camera model. If we can associate a region of film with a given pixel, then we
can study what would happen to that region of the film in an actual physical
situation and use that as a guide to determine what should happen to its
corresponding pixel in the computer’s virtual world. If we use the computer
graphics pinhole camera of Figure 3, this correspondence is easy.

In Figure 4, one pixel in particular and its corresponding bit of film have
been isolated. A small distribution of light rays can arrive from the scene, pass
through the pinhole, and strike the film. After the exposure has completed and
the pinhole is covered, that small region of film has absorbed many different

- rays of light. If we wish to describe the entire pixel with a ‘single’ color, a good
first approximation might be to simply average together all the colors of all the
light that struck it.

Fig. 4. Every pixel on the screen in the computer graphics camera model
corresponds directly to a region of film in the pinhole camera. .-
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This ‘averaging’ of the light in a pixel is in fact the way we eventually
determine a single color for the pixel. The mathematics of the averaging may
get somewhat sophisticated (as we’ll see in later chapters), but we’ll always be
looking at lots of light rays and somehow combining their colors.

From this discussion we can see that the eventual goal is to fill in every pixel
with the right color, and the way to find this color is to examine all the light
rays that strike that pixel and average them together somehow. From now on,
when we refer to the ‘pinhole camera model,” or even just ‘the camera,” we’ll
be referring to the computer graphics version of Figure 3.

2 TRACING RAYS
2.1 Forward Ray Tracing

We saw in the last section that one critical issue in image synthesis is the
determination of the correct color for each pixel, and that one way to find that
color is to average together the colors of the light rays that strike that pixel in
the pinhole camera model. But how do we find those rays, and what colors are
they? Indeed, just what do we mean by the ‘color’ of a light ray?

The color of a ray is not hard to define. We can think of a light ray as the
straight path followed by a light particle (called a photon) as it travels through
space. In the physical world, a photon carries energy, and when a photon
enters our eye that energy is transferred from the photon itself to the receptor
cells on our retina. The color we perceive from that photon is related to its
energy. Different colors are thus carried to our retina by photons of different
energies.

One way to talk of a photon’s energy is as energy of vibration. Although
photons don’t actually ‘vibrate’ in any physical sense, vibration makes a
useful mathematical and intuitive model for describing a photon’s energy. In a
vibrating photon model, different speeds of vibration are related to different
energies, and thus different colors. For this reason we often speak of a given
color as having a certain frequency. Another way to describe the rate of
vibration is with the closely related concept of wavelength. For example, we can
speak of frequency and say that our eyes respond to light between about 360
and 830 terahertz (abbreviated THz; 1 THz = 10 12 cycles per second).
Alternatively, we can speak of wavelength and describe the same range as
360-830 nanometers (1 nm =1 billionth of a meter). In mathematical
formulae, it is typical to use the symbol f to represent the frequency of a
photon, and X\ to represent its wavelength.

Generally speaking, each unique frequency has an associated energy, and
thus will cause us to see an associated color. But colors can add both on film
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and in the eye; for example, if a red photon and a green photon both arrive at
our eye simultaneously, we will perceive the sum of the colors: yellow.

Consider a particular pixel in the image plane. Which of the photons in a
three-dimensional scene actually contribute to that pixel?

Figure 5 shows a living room, consisting of a couch, a mirror, a lamp, and a
table. There’s also a camera, showing the position of the eye and the screen.

Photons must begin at a light source. After all, exposing a piece of film in a
completely dark room doesn’t cause anything to happen to the film; no light
hits it. If the lamp in the living room is off, then the room is completely dark
and our picture will be all black. So imagine that the light is on. The lamp
contains a single, everyday white light bulb. The job of the bulb is to create
photons at all the visible frequencies and send them out in all directions. In
order to get a feel for how the photons eventually contribute to the
photograph, let’s follow a few photons in particular.

We will not consider all the subtleties and complexities that actually occur
when light bounces around in a three-dimensional scene; that discussion could
fill several books! Instead, we’ll stick to the most important concepts.

Let’s say photon A is colored blue (that is, if the photon struck our eye we
would say that we were looking at blue light). It leaves the light source in the
direction of the wall, and then strikes the wall. Some complicated things can
happen when the photon hits the wall’s surface, which we’ll talk about later in

_— ’ 7

Fig. 5. Some light rays (like A and E) never reach the image plane at all. Others
follow simple or complicated routes.
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the Surface Physics section. For now, we’ll say that the light hits the wall, and
is mostly absorbed. So photon A stops here, and doesn’t contribute to the
picture. -

Photon C is also blue. It leaves the light and strikes the couch. At the couch,
the photon is somewhat absorbed before being reflected. Nevertheless, a
(somewhat weaker) blue photon leaves the couch and eventually passes
through the screen and into our eye. So that’s why we get to actually see the
couch: light from the light source strikes the couch and gets reflected to our
eye through the screen.

The reflection can get more complex. Photon B is reflected off the mirror
before it hits the couch; its path is light, mirror, couch, film. Alternatively,
photon D leaves the light source, strikes the couch, and then strikes the mirror
to be reflected onto the film. Photon E follows a very similar path, but it never
strikes the film at all. Other photons may follow much more complicated paths
during their travels.

So in general, photons leave the light source and bounce around the scene.
Usually, the light gets a little dimmer on each bounce, so after a couple of
bounces the light is so dim you can’t seen it anymore. Only photons that
eventually hit the screen and then pass into our eye (when they’re still bright)
actually contribute to the image. You might want to look around yourself
right now, identify some light source, and imagine the paths of some photons
as they leave that light, bounce around the objects near you, and eventually
reach your eye. Notice that if you’re looking into a mirror, you can probably
see some objects in the mirror that you can’t see directly. The photons are
leaving the light source, hitting those objects, then hitting the mirror, and
eventually finding your eyes.

We’ve just been ray tracing. We followed (or traced) the path of a photon (or
ray of light) as it bounced around the scene. More specifically, we’ve been
forward ray tracing; that is, we followed photons from their origin at the light
and into the scene, tracing their path in a forward direction, just as the
photons themselves would have travelled it.

2.2 Forward Ray Tracing and Backward Ray Tracing

The technique of forward ray tracing described above is a first approximation
to how the real world works. You might think that simulating this process
directly would be a good way to make pictures, and you would be pretty much
correct. But there is a problem with such a direct simulation, and that’s the
amount of time it would take to produce an image. Consider that each light
source in a scene is generating possibly millions of photons every second,
where each photon is vibrating at a slightly different frequency, going in a
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slightly different direction. Many of these photons hit objects that you would
never see at all, even indirectly. Other just pass right out of the scene, for
example by flying out through & window. If we were to try to create a picture
by actually following photons-from their source, we would find a depressingly
small number of them ever hit the screen with any appreciable intensity. It
might take years just to make one dim picture!

The essential problem is not that forward ray tracing is no good, but rather
that many of the photons from the light source play no role in a given image.
Computationally, it’s just too expensive to follow useless photons.

The key insight for computational efficiency is to reverse the problem, by
following the photons backwards instead of forwards. We start by asking
ourselves, “Which photons certainly contribute to the image?” The answer is
those photons that actually strike the image plane and then pass into the eye.
Each of those photons travelled along some path before it hit the screen; some
may have come directly from a light source, but most probably bounced
around first. v

‘Let’s consider a particular point on the image plane. We can easily find the
path followed by a photon that hit that point on the screen and then our eye:
it’s the line joining our eye and that point on the film, as shown in Figure 6.
We know that the path of the photon is a line bounded at one end (where it
strikes our eye), but the photon could have started anywhere along the line.
The formal term for a line that has one endpoint fixed is a ray.

So if some photon actually did contribute to our view of the image at that
point, it came along the ray joining our eye and that point on the film. But
what object did that photon comeé from? If we extend the ray into the world,
we can look for the nearest object along the path of the ray. The photon must
have come from this object.

Consider the ray in Figure 7, which shows a light ray joining a sphere and
the eye, passing through the image plane. It is the possible path of a photon; we
don’t know if any photon actually took that path. But if any photon hit that
piece of the screen and then our eye, it had to come along that line from the
sphere to our eye. So our new plan will be to ask if any photons actually did
come along that path.

-
-
-
-~

Wi,
S set
Image plane - g
Fig. 6. A photon bringing light to the eye (at E) arrives by passing through
point P on the image plane. The photon’s path is along the straight line joining E
and P. '
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Fig. 7. A photon leaving the sphere could fly through a pixel and into the eye.

In this approach we’re following rays not forward, from the light source to
objects to the eye, but backward, from the eye to objects to the light source.
This is a critical observation because it allows us to restrict our attention to
rays that we know will be useful to our image—the ones that enter our eye!

Now that we’ve found the object a photon may have left to strike our eye,
we must find out if any photon really did travel that path, and if so what its
color is. We will address those topics below.

Because forward ray tracing is so expensive, the term ‘ray tracing’ in
computer graphics has come to mean almost exclusively backward ray
tracing. Unfortunately, some of the notions of backward ray tracing have led
to some possibly confusing notation. Recall that we follow a ray backwards to
find out where it may have begun. Nevertheless, we often carry out that
search in a program by following the path of the light ray backwards,
imagining ourselves to be riding along a path taken by a photon, looking for
the first object along our path; this is the object from which the ray began. So
we sometimes speak of looking for the “first object hit by the ray,” or the “first
object on the ray’s path”. What we’re actually referring to is the object that
may have radiated the photon that eventually travelled along this ray. This
backwards point of view is prevalent in ray tracing literature and algorithms,
so it may be best to think things through now and not get confused later. In
summary, the “first object hit by a ray” means “the object which might have
emitted that ray.”

2.3 Ray Combination

When we want to find the color of a light ray, we need to find all the different
light that originally contributed to it. For example, if a red light ray and a
green light ray find themselves on exactly the same path at the same time, we
might as well say that together they form a single yellow ray (red light and
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green light arriving at your eye simultaneously give the impression of yellow).
So in Figure 7, where the light at a given pixel came from a sphere, we need to
find a complete description of all the light leaving that point of the sphere in
the direction of our eye. We’ll see that we can rig our examination of the point
so that we’re only studying the light that will actually contribute to the pixel.

To aid in our discussion, we’ll conceptually divide light rays into four
classes: pixel rays or eye rays which carry light directly to the eye through a pixel
on the screen, illumination rays or shadow rays which carry light from a light
source directly to an object surface, reflection rays which carry light reflected by
an object, and transparency rays which carry light passing through an object.
Mathematically, these are all just rays, but it’s computationally convenient to
deal with these classes.

The pixel rays are the ones we’ve just studied; they’re the rays that carry
photons that end at the eye after passing through the screen (or in backwards
ray tracmg, they’re rays that start at the eye and pass through the screen).
Let’s look at the other three types of rays individually.

The whole idea is to find out what light is arriving at a particular point on a
surface, and then proceedmg onward to our eye. Our discussion may be
broken into two pieces: the illumination at a point on the object (which
describes the incoming light), and the radiation of light from that point in a
particular direction. We can determine the radiated light at a point by first
finding the 1llum1nat10n at that point, and then considering how that surface
passes that hght on in a given direction (of course, if the object is a light source
it could add some additional light of its own).

Knowing the illumination and surface physics at a point on a surface, we
can determine the properties of the light leaving that point. We broke up rays
into the three classes of shadow, reflection, and transparency because they’re
the three principle ways that light arrives at (and then leaves from) a surface.
Some hght comes directly from the light source and is then re-radiated away;
the properties of this mcommg light are determined by the shadows rays.
Some hght may strike the object and then be reflected; the reflection rays
model this light. Lastly, some light comes from behind the object and may
pass through this light is modeled by the transparency rays.

2.4 Shadow and lllumination Rays

Imagine yourself on the surface of an object, such as point P in Figure 8. Is any
light coming to you from the light sources? One way to answer that question is
to simply look at each light. If you can see the light source, then there’s a clear
path between you and the light, and at least some photons will certainly travel
along this path If any opaque objects are in your way, then no light is coming
directly from the light into your eye, and you are in shadow with respect to
that light.
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Fig. 8. To determine the illumination at a point P, we ask if photons could
possibly travel from each light source to P. We answer this by sending shadow
ray La towards light source A. It arrives at A, so P L, is actually an illumination
ray from P to A. But ray L is blocked from light source B by sphere S, so no
light arrives at P from B. :

We can simulate this operation of standing on the object and looking
towards the light source with a light ray called a shadow ray. In practice, a
shadow ray is like any other ray, except that we use it to ‘feel around’ for
shadows; thus this kind of ray is sometimes also called a shadow feeler. Basically
we start a ray at the object and send it to the light source (remember, we’re
following the paths of photons backwards). If this backwards ray reaches the
light source without hitting any object along the way, then certainly some
photons will come forwards along this ray from the light to illuminate the
object. But if any opaque objects are in our way, then the light can’t get
through the intervening object to us; we would then be in shadow relative to
that light source. Figure 8 shows two shadow rays leaving a surface, ray La
going to light source A, and ray Lp going to light source B. Ray La gets to its
light source without interruption, but ray Lp hits an opaque object along the
way. Thus we deduce that light can (and will!) arrive from light A, but not
from light B.

When a shadow ray is able to reach a light source without interruption, we
stop thinking of it as a ‘shadow feeler’ and turn it around, thinking of it as an
tllumination ray, which carries light to us from the light source.

In summary, the first class of illumination rays that contribute to the color
of the light leaving an object are the light rays coming directly from the light
source, illuminating the object. We determine whether there actually are any
photons coming from a given light by sending out a shadow ray to each light
source. If the ray doesn’t encounter any opaque objects along the way to the
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light, that’s our signal that photons will arrive from that light to the object. If
instead there is an opaque object in the way, then no photons arrive and the
object is in shadow relative to that light source.

Throughout this discussion we’ve only discussed what happens when the
shadow ray hits a matte, opaque object. When it hits a reflective or
transparent object the situation is much more complicated. For many years,
people used a variety of ad hoc tricks to handle situations where shadow rays
hit reflective or transparent surfaces. We now know some better ways to
handle this situation; these will be discussed later in the book when we cover
stochastic ray tracing.

2.5 Propagated Light

Recall that our overall goal is to find the color of the light leaving a particular
point of a surface in a particular direction. We said that the first step was to
find out which light was striking the object; some of that light would perhaps
continue on in our direction of interest.

In the spirit of backward ray tracing, we’ll look only for the incoming light
that will make a difference to the radiated light in the direction we care about.
After all, if some light strikes the surface but then proceeds away in a direction
we don’t care about, there’s no need to really know much about that incoming
light. :

We will use the term propagated light to describe the illuminating light about

~which we care. Of all light that is striking a surface, which light is propagated
Just in our direction of interest? In ray tracing, we assume that most light
interaction can be accounted for with four mechanisms of light transport
(more about this in the Surface Physics chapter). For now, we’ll concentrate
exclusively on the two mechanisms called specular reflection and specular:
transmission—and since they’re our only topics at the- moment, well often
leave off the adjective ‘specular’ in this section.

The general idea is that any illumination that falls on a surface and then is
sent into our direction of interest either bounced off the surface like a
basketball bouncing off a hardwood floor (reflection), or passed through the
surface after arriving on the other side like a car driving through a tunnel
(transmission). In the case of perfect (specular) reflection and transmission for
a perfectly flat, shiny surface, there is exactly one direction from which light
can arrive in order to be (specularly) reflected or transmitted into our eye.

When we are trying to determine the illumination at a point, recall that we
originally found that point by following a ray to the object. Since we followed
that ray backwards to the object, it is called the incident ray. Thus, our goal is
to find the color of the light leaving the object in the direction opposite to the
incident ray.
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2.6 Reflection Rays

If we look at a perfectly flat, shiny table, we will see reflections of other objects
in the tabletop. We see those reflections because light is arriving at the
tabletop from the other objects, bouncing off of the tabletop, and then arriving
in our eye. For a fixed eyepoint, each position on the table has exactly one
direction from which light can come that will be bounced back into our eye.

For example, Figure 9 shows a photon of light bouncing around a scene,
ending up finally passing through the screen and into the eye. On its last
bounce, the photon hit point P and then went into the eye. Photon B also hit
point P, but it was bounced (or reflected) into a direction that didn’t end up
going into our eye. So for that eyepoint and that object, only a photon
travelling along the path marked A could have been reflected into our
direction of interest.

When we wish to find what light is reflected from a particular point into the
direction of the incident ray, we find the reflected ray (or reflection ray) for that
point and direction; this is the ray that can carry light to the surface that will
be perfectly reflected into the direction of the incident ray. To find the color of
the reflected ray, we follow it backwards to find from which object it began.
The color of the light leaving that object along the line of the reflected ray is
the color of that reflected ray. When we know the reflected ray’s color, we can
contribute it to any other light leaving the original surface struck by the
incident ray.

Note the peculiar terminology of backward ray tracing: light arrives along
the reflected ray and departs along the incident ray.

Image plane

Once
reflected

Twice
reflected

Reflected
B

Fig. 9. The color of perfectly reflected light is dependent on the color of the
object and the color of the incoming light that bounces off in the direction we
care about. For example, at point P we want to know the color of the light
coming in on ray A, since that light is then bounced into the eye. -
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Once we know the color of the light coming to the surface from the light
sources, the reflected ray, and the transparency ray, we combine them
according to the properties of the surface, and thus determine the total color
leaving the surface in the direction of the incident ray.

We will see later in the book that more subtle effects can be accounted for if
we use more than one transparency or reflected ray, sending them in a variety
of (carefully chosen) directions and then weighting their results.

The subject of determining the way light behaves at a surface is called
surface physics. This topic covers the geometry of light rays at a surface as well
as what color changes happen to the light itself. We’ll have an entire section of
the course devoted to surface physics later on.

2.7 Transparenby Rays

Just as there was a single direction from which light can be perfectly reflected
into the direction of the incident ray, so is there a single direction from which
light can be transmitted into the direction of the incident ray. The ray we
create to determine the color of this light is called the transmitted ray or
transmutted ray. Figure 10 shows a possible path of a transmitted ray. Notice the
bending, or refraction, of the light as it passes from one medium to another.

We follow the transmitted ray backwards to find which object might have
radiated it, and then determine the color radiated by that object in the
direction of the transmitted ray. When we know that color, we know the color
of the transmitted ray, which (by construction) will be perfectly bent into the
direction of the incident ray.

3 RECURSIVE VISIBILITY

The previous sections have discussed finding the color of light leaving a
surface as a combination of different kinds of light arriving at the surface. In
essence, the color of the radiated light is a function of the combined light from
the light sources, light the object reflects, and light the object transmits. We
found the colors of the reflected and transmitted light by finding the objects
from which they started. But what was the color leaving this previous object?
It was a combination of the light reaching it, which can be found with the
same analysis. ”

This observation suggests a recursive algorithm, and indeed the whole ray
tracing technique fits into that view very nicely.

The ray tracing process begins with a ray that starts at the eye; this is an eye
ray or pixel ray. Figure 11 shows one viewing set-up and a particular eye ray,
labelled E.



Andrew S. Glassner 15

Fig. 10. Transmitted light arrives from behind a surface and passes through.

3.1 Surface Physics

We’ve mentioned above for reflection and transparency rays that we first find
the direction they might have come from, and then look backwards along that
path for a possible object at their source. The technique of determining these
directions may be as simple or complicated as you like; we’re approximating
physical reality here, and physical reality is often complex in its details. The
more accuracy you want from your model, the more detailed it will have to be.
Happily, even fairly simple models seem to work very well for today’s typical
images.

The next step is the one that we’ll repeat over and over again. We simply
ask, “which object does this ray hit?” Remember that we’re doing backwards
ray tracing, so this question is really a confused form of the question, “given
that a photon travelled along this ray to the eye, from which object did it
start?”

In Figure 11, the eye ray hits plane 3, which we’ll say is both somewhat
transparent and reflective. We have two light sources, so we’ll begin by
sending out a shadow ray from plane 3 to each light: we’ll call these rays S,
and S;. Since ray S reaches light A without interruption, we know that plane
3 is receiving light from light A. But ray S; hits sphere 4 before it hits light B,
<o no illumination comes in along this path. Because plane 3 is both
transparent and reflective, we also have to find the colors of the light it
transmits and reflects; such light arrived along rays Ty and Ry.

Following ray Ti, we see that it hits sphere 6, which we’ll say is a bit
reflective. We send out two shadow rays S3 and Sa4 to determine the light
hitting sphere 6, and create reflection ray Rz to see what color is reflected.
Both S3 and S4 reach their respective light sources. Ray Rz leaves the scene
entirely, so we’ll say that it hits the surrounding world, which is some constant
background color. That completes ray Ty from our original intersection with
the primary ray E.

Let’s now go back and follow reflected ray Ri. It strikes plane 9, which is a
bit reflective and transparent. So we’ll send out two shadow rays as always (Ss
and Se), and reflected and transmitted rays T2 and Rs. We’ll then follow each
of T> and Rj in turn, generating new shadow and secondary rays at each
intersection.
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. Fig. 11.  An eye ray E propagated through a scene. Many of the intersections
spawn reflected, transmitted, and shadow rays.

Figure 12 shows this whole process in a schematic form, called a ray tree.
What ever causes the ray tree to stop? Like the non-opaque shadow ray
question, the answers to this question are not easy. One ad hoc technique that
usually works pretty well is to stop following rays either when they leave the
scene, or their contribution gets too small. The former condition is handled by
saying that if a ray leaves our world, then it Just takes on the color of the
surrounding background. The second condition is a bit harder.

How much contribution does ray E make to our picture? If it’s the only ray
at that pixel, then we’ll use 100% of E; if the color E brings back is pure red,
then that pixel will be pure red. But how about rays T; and R;? Their
contributions must be less than that of E since E is formed by adding them
together. Let’s arbitrarily say that plane 3 passes 40% of its transmitted light,
and 20% of its reflected light (i.e. plane 3 is 40% transparent and 20%
reflective).

Now recall that T\ is composed of the light radiated by sphere 6, given by
S3, S4, and R,. Let’s again be arbitrary, and say that object 6 is 30%
transparent; thus R, contributes 30% to T;. Since T contributes 40% to E,
and Rz contributes 30% to T;, then R, contributes only 12% to the final color
of E. The farther down the ray tree we go, the less each ray will contribute to
the color we really care about, the color of E.

So we can see that as we proceed down the ray tree, the contribution of
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Fig. 12. The ray tree in'schematic form.

individual rays to the final image becomes less and less. As a practical matter,
we usually set a threshold of some kind to stop the process of following rays. It
1s interesting to note that although this technique, called adaptive tree-depth
control, sounds plausible, and in fact works pretty well in practice, there are
theoretical arguments that show that it can be arbitrarily wrong.

4 ALIASING

Synthesizing an image with a digital computer is very different from exposing
a piece of film to a real scene. The differences are endless, although much of
computer graphics research is directed to making the differences as small as
possible. But there’s a fundamental problem that we’re stuck with: the
modern digital computer cannot represent a continuous signal.

Consider using a standard tape recorder to record a trumpet. Playing the
trumpet causes the air to vibrate. The vibrating air enters a microphone,
where it is changed into a continually changing electrical signal. This signal is
applied to the tape head, which creates a continually changing magnetic field.
This field is recorded onto a piece of magnetic tape that is passing over the
head.

Now let’s consider the same situation on a digital computer. The music
enters the microphone, and is changed into a continuous electrical signal. But
the computer cannot record that signal directly; it must first turn it into a
series of numbers. In formal terms, it samples the signal so that it can store it



18 An Overview of Ray Tracing

digitally. So our continuous musical tone has been replaced with a sequence of
numbers. If we take enough samples, and they are of sufficiently high
precision, then when we turn those numbers back into sound it will sound like
the original music..

It turns out that these notions of ‘enough samples’ and ‘sufficiently high
precision’ are critically important. They have been studied in detail in a
branch of engineering mathematics called signal processing, from which
computer graphics has borrowed many important results.

Let’s look at a typical sampling problem by analogy. Imagine that you’re at
a county fair, standing by the carousel. This carousel has six horses,
numbered 1 to 6, and it’s spinning so that the horses appear to be galloping to
the right. Now let’s say that someone tells you that the carousel is making one
complete rotation every 60 seconds, so a new horse passes by every 10
seconds. You decide to confirm this claimed speed of revolution.

Now just as you're watching horse 3 pass in front of you, someone calls
your name. You turn and look for the caller, but you can’t find anyone. It

 took you 10 seconds to look around. When you turn back to the carousel, you
see that now horse 4 is in front of you. You might sensibly assume that the
carousel has spun one horse to the right during your absence.

Say this happens again and again; you look away for 10 seconds, and then

return. Each time you turn back you see the next-numbered horse directly in
front of you. You could conclude that the carousel is spinning 1/6 of the way
around every 10 seconds, so it takes 60 seconds to complete a revolution. Thus
the claim appears true. ‘
* Now let’s say that a friend comes back the next day to double-check your
observations. As soon as she reaches the carousel (looking at horse 3) she hears
someone calling her name. She looks around, but although you looked only
for 10 seconds, your friend searches the crowd for 70 seconds. When she turns
back to the carousel, she sees exactly what you saw yesterday; horse 4 is in
front of her. If this happened again and again, she could conclude that the
carousel is spinning 1/6 of the way around every 70 seconds. Thus she could
reasonably state that the claim is false.

We know from your observations that it is certainly going faster than that,
but there’s n6 way for your friend to know that she’s wrong if she only takes
one look every 70 seconds. ‘

In fact someone’s measurements in such a situation can be arbitrarily
wrong. Because as long as you regularly look at the carousel, look away, and
look back, you have no idea what went on when you were looking away: I can
always claim that it went around any number of full turns when you weren’t
looking! '

The computer is prone to exactly the same problem. If it samples some
signal too infrequently, the information that gets recorded can be wrong, just
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as our determination of the carousel’s speed was wrong. The problem is that
one signal (1/6 revolution every 10 seconds) is masquerading as another signal
(1/6 revolution every 70 seconds); they’re different signals, but after sampling
we can’t tell them apart. This problem is given the general term aliasing, to
remind us that one signal is looking like another.

The problem of aliasing thoroughly permeates computer graphics. It shows
up in countless ways, and almost always looks noticeably bad. The problem is
that, if one is not careful, aliasing will almost always occur somewhere, simply
due to the nature of digital computers and the nature of the ray tracing
algorithm itself. Luckily, there are techniques to avoid aliasing, known
collectively as anti-aliasing techniques. They are the weapons we employ to
solve or reduce the aliasing problem.

We’ll first look at some of the symptoms of aliasing, and then look briefly at
some of the ways to avoid these problems.

4.1 Spatial Aliasing
When we get aliasing because of the uniform nature of the pixel grid, we often

call that spatial aliasing. Figure 13 shows a quadrilateral displayed at a variety
of screen resolutions. Notice the chunky edges; this effect is colloquially called

Original quadrilateral 3x3 4x 4

I
6x6 12x12

Fig. 13. A quadrilateral shown on grids of four different resolutions. Note that
the smooth edges turn into stairsteps—commonly called ‘jaggies.” No matter
how high we increase the resolution, the jaggies will not disappear; they will
only get smaller. Thus the strategy ‘use more pixels’ will never cure the jaggies!



20 An Overview of Ray Tracing

-—
ey

-

Fig. 14. No matter how closely the rays are packed, they can always miss a
small object or a large object far enough away.

the jaggies, to draw attention to the jagged edge that should be smooth. Notice
that the jaggies seem to become less noticeable at higher resolution. You
might think that with enough pixels you could eliminate the jaggies alto-
gether, but that won’t work. Suppose you find that on your monitor can’t see
the jaggies at a resolution of 512 by 512. If you then take your 512-by-512
image to a movie theater and display it on a giant silver screen, each pixel
would be huge, and the tiny jaggies would then be very obvious. This is one of
those situations where you can’t win; you can only suppress the problem to a
certain extent.

Another aspect of the same problem is shown in Figure 14. Here a small
object is falling between rays. Again, using more rays or pixels may diminish
the problem, but it can never be cured that way. No matter how many rays
you use, or how closely you space them together, I can always create an object
that you’ll miss entirely. You might think that if an object is that small, then it
doesn’t matter if it makes it into the image or not. Unfortunately, that’s not
true, and some good examples come from looking at temporal (or time)
aliasing.

4.2 Temporal Aliasing

We often use computer graphics to make animated sequences. Of course, an
animation is nothing more than many still frames shown one after another.
It’s tempting to imagine that if each still frame was very good, the animation
would be very good as well. This is true to some extent, but it turns out that
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Fig. 15. A wheel with one black spoke.

when a frame is part of an animation (as opposed to just a single still, such as a
slide), the notion of ‘very good’ changes. Indeed, new problems occur exactly
because the stills are shown in an animated sequence: these problems fall
under the class of temporal aliasing (temporal comes from the Latin tempus,
meaning time). o

Our example of the rotating carousel above was an example of this type of
aliasing. Another, classical example of temporal aliasing is a spinning wheel.
You may have noticed on television or in the movies that as a wagon wheel
accelerates it seems to go faster and faster, and then it seems to slow down and
start going backwards! When the wheel is going slowly, the camera can
faithfully record its samples of the image on film (usually about 24 or 30
samples per second). ‘

Figure 15 shows a wheel, with one spoke painted black. We’re going to
sample this clockwise-spinning wheel at 6 frames per second.

Figure 16(a) shows our samples when the wheel is spinning at 1 revolution
per second; no problem, watching this film we would perceive a wheel slowly
spinning clockwise. Figure 16(b) shows the same wheel at 3 revolutions per
second: now we can’t tell at all which way the thing is spinning. Finally, Figure
16(c) shows the same wheel at 5 revolutions per second; watching this film, we
would believe that the wheel was spinning slowly backwards. This ‘slowly
backwards motion’ is aliasing for the proper, forwards motion of the wheel.

The critical notion here is that things are happening too fast for us to record
accurately.

Another problem occurs with the small objects mentioned in the previous
section. As a very small object moves across the screen, it will sometimes be
hit by a ray (and will thus appear in the picture), and sometimes it won’t be hit
by any rays. Thus, as the object moves across the screen it will blink on and
off, or pop. Even for very small objects this can be extremely distracting,
especially if they happen to contrast strongly with the background (like white
stars in black space).

Another bad problem is what happens to some edges. Figure 17 shows a
horizontal edge moving slowly up the screen. Every few frames, it rises from
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Fig. 16. A spinning wheel sampled at a constant 6 samples per second. In
row (a) the wheel is spinning at 1 revolution per second and is correctly
sampled. In row (b) the wheel is spinning at 3 revolutions per second; after
sampling, we cannot tell in which direction the wheel is spinning! In row (c) the
wheel is spinning at 5 revolutions per second, but appears to be spinning
backwards at 1 revolution per second. Thus the very fast speed is aliasing as a
slower speed after sampling.
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one row of pixels to the next. This is another aspect of popping: the smoothly
moving edge appears to jump from one line to the next in a.very distracting
manner.

Techniques that solve temporal aliasing problems usually create still frames
that look blurry where things are moving fast. It’s easy to see that this is Jjust
what happens when we use a camera to take a picture of quickly moving
objects. Imagine taking a picture of a speeding race car as it whizzes past.
Even though the shutter is open for a very brief moment, the car still moves
fast enough to leave a streak, or blur, behind it on the film. Because of this
characteristic of the frames, solutions to the problem of temporal aliasing are
sometimes referred to as techniques for including motion blur.

4.3 Anti-aliasing

Aliasing effects can always be tracked down to the fundamental natures of
digital computers and the point-sampling nature of ray tracing. The essential
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Fig. 17. A moving edge suddenly ‘pops’ when a new row of pixels is covered.

problem is that we’re trying to represent continuous phenomena with discrete
samples. Other aliasing effects abound in computer graphics; for example,
frequency aliasing is very common but rarely handled correctly.

We will now consider several of the popular approaches to anti-aliasing.
We’ll focus on the problems of spatial aliasing, since they’re easier to show on
the written page than temporal aliasing. Nevertheless, many of these tech-
niques apply to solving aliasing problems throughout computer graphics, and
can be applied to advanced topics related to aliasing such as motion blur,
correct texture filtering, and diffuse inter-reflections.

4.4 Supersampling

The easiest way to alleviate the effects of spatial aliasing is to use lots of rays to
generate our image, and then find the color at each individual pixel by
averaging the colors of all the rays within that pixel. This technique is called
supersampling. For example, we might send nine rays through every pixel, and
let each ray contribute one-ninth to the final color of the pixel.
Supersampling can help reduce the effects of aliasing, because it’s a means
for getting a better idea of what’s seen by a pixel. If we send out nine rays in a
given pixel, and six of the rays hit a green ball, and the other three hit a blue
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ball, the composite color in that pixel will be two-thirds green and one-third
blue: a more ‘accurate’ color than either pure green or pure blue.

As we mentioned above, this technique cannot really solve aliasing prob-
lems, it just reduces them. Another problem with supersampling is that it’s
very expensive; our example will take nine times longer to create a picture
than if we used just a single ray per pixel. But supersampling is a good starting
point for better techniques.

4.5 Adaptive Supersampling

Rather than blindly firing off some arbitrary, fixed number of rays per pixel,
let’s try to concentrate extra rays where they’ll do the most good. One way to
go is to start by using five rays per pixel, one through each corner and one
through the center, as in Figure 18. If each of the five rays is about the same
color, we’ll assume that they all probably hit the same object, and we’ll just
use their average color for this pixel.

If the rays have sufficiently different colors, then we’ll subdivide the pixel
into smaller regions. Then we’ll treat each smaller region just as we did the
whole pixel: we’ll find the rays through the corners and center, and look at the
resulting colors. If any given set of five rays are about the same color, then
we’ll average them together and use that as the color of the region; if the colors
are sufficiently different, we’ll subdivide again. The idea is that we’ll send
more rays through the pixel where there’s interesting stuff happening, and in
the boring regions where we just see flat fields of color we’ll do no more
additional work. Because this technique subdivides where the colors change, it

Fig. 18. Adaptive supersampling begins at each pixel by tracing the four
corner rays and the center ray.
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adapts to the image in a pixel, and is thus called adaptive supersampling. A
detailed example of the process is shown in Figure 19.

This approach is easy, not too slow, and often works fairly well. But its
fundamental assumption is weak. It’s just not fair to assume that if some fixed
number of rays are about the same color, that we have then sampled the pixel
well enough. One problem that persists is the issue of small objects: little
objects can slip through the initial five rays, and we’ll still get popping as they
travel across the screen in an animated sequence.

The central problems of adaptive supersampling are that it uses a fixed,
arbitrary number of rays per pixel when starting off, and that it still uses a
fixed, regular grid for sampling (although that grid gets smaller and smaller as
we subdivide). Often this technique is fine when you need to quickly crank out
a picture that just needs to look okay, but it can leave a variety of aliasing
artifacts in your pictures. Happily, there are other approaches that solve
aliasing problems better.

4.6 Stochastic Ray Tracing

As we saw above, adaptive supersampling still ends up sending out rays on a
regular grid, even though this grid is somewhat more finely subdivided in
some places than in others. Thus, we can still get popping edges, jaggies, and
all the other aliasing problems that regular grids give us, although they will
usually be somewhat reduced. Let’s get rid of the fixed grid, but continue to
say that each pixel will initially be sampled by a fixed number of rays—we’ll
use nine. The difference will be that we’ll scatter these rays evenly across the
pixel. Figure 20(a) shows a pixel with nine rays plunked down more or less at
random, except that they cover the pixel pretty evenly.

If each pixel gets covered with its nine rays in a different pattern, then
we’ve successfully eliminated any regular grid. Figure 20(b) shows a small
chunk of pixels, each sampled by nine rays, each of which is indicated by a
dot. Now that we’ve gotten rid of the regular sampling grid, we’ve also gotten
rid of the regular aliasing artifacts the grid gave us. Because we’re randomly
(or stochastically) distributing the rays across the space we want to sample,
this technique is called stochastic ray tracing. The particular distribution that we
use is important, so sometimes this technique is called distributed ray tracing.

Let’s consider another problem with the ray tracing algorithms described in
preceding sections. Consider an incident ray which will carry light away from
a somewhat bumpy surface. We’ll see later in the course that when we
consider diffuse reflection, there are many incoming rays that will send some
of their energy away from the surface along the direction of the incident ray.
There’s no one ‘correct’ ray; they all contribute. One might ask which of these
incoming rays should be followed? The answer that stochastic ray tracing
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When we start a pixel, we trace rays through the four
corners and the center. We then compare the colors of
rays AE ,BE,CE,and DE. Suppose A and E are similar
and soare D and E, but both BEand CE are toodifferent.
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We'll start by looking more closely at the region
bounded by B and E. We fire new rays F,G,H to
find all four corners and the center of this region.
We now compare FG,BG,HG, andEG. Suppose each
pair is very similar, except G and E . So we look
more closely at the region bounded by G and E.
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they're all sufficiently similar.
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Now we return to the pair CE which we
identified earlier.Since we already have H, we
trace the new rays Mand N . We compare the
colors between EM,HM,CM , and NM. Suppose
they are all similar except CM.
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So now we fill in the square region bounded by BE
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To complete the region we trace the new rays P,Q, and R.
We compare MQ,PQ ,CQ, and RQ. At this point we'll
assume they're all sufficiently similar. These are no pairs

H
M@\P of colors left to examine, so we're now done.
Q ) .
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So now its time to determine
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on the right. Basically,for each E H
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Fig. 19. Adaptive supersampling.

provides is that there is no single best incoming ray direction. Instead, choose
a random ray direction. The next time you hit a surface and need to spawn
new rays, choose a new random direction. The trick is to bias your random
number selection in such a way that you send lots of rays in directions where
it’s likely a lot of light is arriving, and relatively few rays in directions where
the incoming light is sparse.

We can describe this problem mathematically as an integration problem,
where we want to find the total light arriving at a given point. But because we
can’t solve the integration equation directly, we sample it randomly and hope
that after enough random samples we’ll start getting an idea of the answer. In

(b) o... e & o]0 o ©®
(a)

Fig. 20. We can use stochastic sample points within each pixel to help reduce
spatial aliasing.
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fact, our random selections can be carefully guided to help us obtain a good
answer with a small number of samples.

The techniques of stochastic ray tracing lead to a variety of new effects that
the deterministic ray tracing algorithms described above don’t handle well or
at all. For example, stochastic ray tracing helps us get motion blur, depth of field,
and soft edges on our shadows (known as the penumbra region).

But although stochastic ray tracing solves many of the problems of regular
ray tracing, we’ve picked up something new: noise. Since we’re getting a
better average with this technique, every pixel comes out more or less correct,
but it’s usually not quite right. This error isn’t correlated to a regular grid like
many of the other aliasing problems we’ve discussed, but instead it spreads
out over the picture like static in a bad TV signal. It turns out that the human
visual system is much more forgiving of this form of random noise than
regular aliasing problems like the jaggies, so in this way stochastic ray tracing
is a good solution to aliasing problems.

But we’re still using all those rays for every pixel, even where we don’t need
them. Sometimes we do need them: consider a pixel that’s looking out on a
patchwork quilt, where one pixel sees just one red square. Then just one or
two rays certainly give us the correct color in this pixel. On the other hand,
consider a pixel that can see 16 differently colored squares of material. We’ll
need at least 16 rays, just to get one of each color. It’s not clear from the above
discussion how to detect when we need more samples, nor how to go about
getting them.

4.7 Statistical Supersampling

One way to try getting just the right number of rays per pixel is to watch the
rays as they come in. Imagine a pixel which has had four rays sent through it,
distributed uniformly across the pixel. We can stop sampling if those four rays
are a ‘good enough’ estimate of what’s really out there.

We can draw upon the vast body of statistical analysis to measure the
quality of our estimate and see whether some set of samples are ‘good
enough.” We’ll look at the colors of the rays we’ve sent through the pixel so
far, and perform some statistical tests on them. The results of these tests are a
measure of how likely it is that these rays give us a good estimate of the actual
color that pixel can see. If the statistics say that the estimate is probably poor,
we’ll send in more rays and run the statistics again. As soon as the color
estimate is ‘good enough,’ then we’ll accept that color for that pixel and move
on. This is called statistical supersampling.

The important thing here is to determine how good is ‘good enough.’ In
general, you can specify just how confident you’d like to be about each pixel.
For example, you might tell your program to continue sending rays through
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pixels until the statistics say that it’s 90% likely that the color you have so far
is the ‘true,’ or correct, color. If you want the picture to finish faster, you
might drop that requirement to 40%, but the quality will probably degrade.

4.8 The Rendering Equation

We can express how light bounces around in a scene mathematically, with a
formula called the rendering equation. A solution to the rendering equation tells
us just how light is falling on each of the objects in our scene. If one of those
objects is an image plane, then the solution to the rendering equation is also a
solution to the problem of computer graphics: what light is falling on that
image plane?

The rendering equation is useful for several reasons. In one respect, it acts .
as a scaffolding upon which we can hang most of what we know about how
light behaves when it bounces off a surface. In another respect, it tells us how
light ‘settles down’ when a light source has been turned on in a scene and left
on for a while. In this sense the rendering equation can help us use the power
of radiosity techniques to model diffuse inter-reflections. The rendering
equation also provides a nice synopsis of most of what we know about the
behavior of light for image synthesis, and may provide for some new effects,
such as caustics.

We mention the rendering equation here because one powerful way to solve
it is by ray tracing. Specifically, an enhanced version of stochastic ray tracing
(using techniques called importance sampling and path tracing) can help us find
solutions to the rendering equation.
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