A Survey of
Ray Tracing
Acceleration
Techniques

JAMES ARVO AND DAVID KIRK

1 INTRODUCTION

One of the greatest challenges of ray tracing is efficient execution. Despite its
Impressive repertoire, ray tracing is often dismissed as being too comput-
ationally exorbitant to be useful. Efficiency is therefore a critical issue and has
been the focus of much research from the beginning. This has led to creative
approaches involving novel data structures [2, 33, 37,52, 56,], numerical
methods [32, 58,59, 62], computational geometry [13,44], optics [54],
statistical ~ methods [10,15,42,48], and distributed computing
[7,14,22,41,45,60] among many others. A would-be implementer now has
a tremendous assortment of techniques to choose from and many considera-
tions to balance, some of which are listed in Figure 1. Nearly all these
techniques give rise to useful combinations, further increasing the possi-
bilities.

Though this area is still undergoing rapid development, it is a worthwhile
exercise to examine what has been done. As Sutherland ¢t al. [57] demon-
strated in their characterization of ten hidden-surface algorithms, identifying
a taxonomy of current methods can sometimes provide a perspective from
which new approaches become apparent. Since several important themes
have emerged in the area of efficient ray tracing, the time is ripe for such a
taxonomy. Toward this end we attempt to unify some of the terminology and
methods which have evolved independently yet build upon similar concepts.

One shortcoming of this survey is the absence of quantitative comparisons.
The information contained herein is insufficient to make a clear and absolute

204 A Survey of Ray Tracing Acceleration Techniques

exhaustive ray tracing is by far the most intuitive solution, and it continues
to play a role in the processing of subproblems within more complicated
techniques.

3 A BROAD CLASSIFICATION

Faced with the task of accelerating the process of ray tracing, there are three
very distinct strategies to consider: (1) reducing the average cost of intersecting
a ray with the environment, (2) reducing the total number of rays intersected
with the environment, and (3) replacing individual rays with a more general
entity. These appear in Figure 2 as ‘faster intersections,” ‘fewer rays,” and
‘generalized rays, respectively. The category of ‘faster intersections’ further
separates into the subcategories of ‘faster’ and ‘fewer’ ray—object intersec-
tions. The former consists of efficient algorithms for intersecting rays with
specific primitive objects, while the latter addresses the larger problem of
intersecting a ray with an environment using a minimum of ray—object
intersection tests. The distinction between these two subcategories is blurred

Examples: 1 || Examples: 2|1 Examples: 3| | Examples - 4
Object bounding Bounding volume || Adaptive tree- Beam tracing
volumes hierarchies depth control .
Efficient infersectors ivisi Cone fracing

for parametric Space subdivision 5'9"5:."”' opfhm- Pencil tracing
surfaces, fractals, ||Directional ""'z.? |?ns_ or

etc. techniques anti-aliasing

Fig. 2. A broad classification of acceleration techniques.

James Arvo and David Kirk 205

somewhat by algorithms which decompose what is normally thought to be a
single primitive object into many simpler pieces for the sake of efficiency. An
example of this 1s the approach developed by Sweeney ¢ al. for intersecting
B-spline surfaces [58]. By subdividing a single surface into easily handled
fragments and constructing a bounding volume hierarchy, the algorithm
resembles the techniques described in the next section for dealing with
collections of autonomous objects.

Other primitive object intersection algorithms are extremely special-
purpose, often embodying analytic solutions for the point of intersection with
a ray. Though it frequently requires considerable ingenuity to formulate such
closed-form expressions, as with algebraic surfaces [28] and Steiner patches
[53], these algorithms will not be explored in this survey. Nearly all
procedural object approaches have as their basis some technique for efficiently
computing the intersection, making the distinction between object definition
and acceleration vague as well.

The category labeled ‘fewer rays’ consists of techniques which allow us to
reduce the number of rays which need to be intersected with the environment.
This includes first-generation rays as well as those created by reflection,
refraction, and shadowing. The first such technique was adaptive tree-depth
control introduced by Hall et al. [27]. Instead of terminating the ray tree at a
predefined depth or at nonreflective opaque surfaces, Hall’s termination
criterion took into consideration the maximum contribution to the pixel color
which could result by continuing the recursion. Setting a threshold on this
contribution made it possible to eliminate the processing of many rays deep in
the ray tree without altering the result perceptibly. This led to considerable
savings even for environments with many highly reflective surfaces.

Other techniques for reducing the number of rays are applicable when
anti-aliasing through supersampling. By detecting situations in which a
relatively small number of samples produce statistically reliable results over
some region of the image, many first-generation rays (hence entire ray trees)
can be eliminated. Though often thought of as part of the anti-aliasing
algorithms, these statistical techniques are, first and foremost, performance
optimizations.

The last category, labeled ‘generalized rays, consists of a number of
techniques which begin by replacing the familiar concept of a ray with a more
general entity which subsumes rays as a special (degenerate) case. For
instance, cones of both circular [1] and polygonal [30] cross section have been
used successfully. Though the essential concepts of ray tracing remain largely
intact, at the heart of these techniques lies the idea of tracing many rays
simultaneously. As we shall see in Section 9, this presents many interesting
advantages, but limitations as well.

202 A Survey of Ray Tracing Acceleration Techniques

Applicability:

m Does it apply to all rays or just a special class of rays?

Is it applicable in the context of constructive solid geometry?
Does it impose a restriction on the class of primitive objects?
Is it applicable when a temporal dimension is added?

Performance:

Will it be fast enough to meet the application requirements?
How well does it scale to very complex environments?

Does the cost of pre-processing eventually outweigh its benefit?
m How well does it exploit available coherence?

Resources:

m What are the storage limitations of the host machine?

m Can the algorithm make appropriate space/time trade-offs?

m What is the cost of floating point arithmetic relative to integer
arithmetic?

m Does the host machine have multiple processors?

Simplicity:

m How difficult is the algorithm to implement?

How dependent is it on machine architecture?

Can it extend existing code or does it require a complete rewrite?
Does it require a priori selection of unintuitive parameters?

Fig. 1. Some of the considerations which affect the choice of acceleration
technique(s).

decision about which algorithm is best for a given application. This deficiency

is a reflection of the current state of the art, and is due in part to the difficulty

of a priori performance analysis. Though there is a movement toward
quantitative comparisons through standard benchmarks [26], this is not yet

widely practiced. Consequently, we shall concentrate on the underlying
concepts and build a framework which highlights differences and similarities.

We also discuss pitfalls uncovered by experience and identify several unex-

plored possibilities.

We begin with background material in Section 2, and proceed in Section 3
to classify acceleration techniques into four broad categories. The first of these
categories deals with efficient operations on individual geometrical objects.
Sections 4, 5, and 6 cover three families of techniques which fall into the
second and largest category of acceleration techniques, those which reduce the
cost of ‘tracing a ray’ in the context of complex environments. In Section 7 we
discuss coherence, a concept which appears in many guises and is utilized to
some degree by all acceleration techniques. The statistical methods in Section
8 fall into the third category of techniques, those which reduce the total

James Arvo and David Kirk 203

number of rays which need to be processed. Section 9 covers the techniques of
the fourth category, those which generalize the concept of a ray in order to
more efficiently exploit coherence. Sections 10 and 11 describe special
optimizations for CSG (constructive solid geometry) and parallel architectures
respegtively. Finally, in Section 12 we discuss ways in which many of these
techniques can be used in unison. With few exceptions, the techniques of each
section are discussed in the order of their chronological development.

2 BACKGROUND

The generality of ray tracing is due to its almost exclusive dependence upon a
single operation; calculating the point of intersection between a ray in three-
space and an atomic geometrical entity, or primitive object. Examples of
primitive objects include elementary shapes such as polygons, spheres, and
cylinders, as well as more complex shapes such as parametric surfaces [58, 59]
and swept surfaces [62]. The task we are primarily concerned with in this
survey is that of intersecting rays with a large collection of primitive objects
defining an environment. For each ray this ultimately reduces to computing t+ .
point of intersection closest to the ray origin which results from any of e
individual primitive objects in the environment. The cost of this operation
typically overshadows everything else, accounting for the vast bulk of the time
consumed by ray tracing. An often-quoted statistic reported by Whitted [65]
is that better than 95% of the time can be spent performing this operation for
complex environments. Despite dramatic algorithmic improvements, the
demand for ever increasing complexity tends to keep this figure realistic or
even conservative. Therefore, the search for more efficient techniques con-
tinues to be a lively topic of research. .

Following common practice, we shall limit our discussion to this ‘intersec-
tion problem’ and assume that a negligible amount of time is spent in all
remarning tasks, such as shading calculations and common bookkeeping
operations. We note at the outset that the intersection problem has a trivial
but usually impractical solution which is commonly referred to as ‘standard’
(or ‘traditional’) ray tracing. This solution entails intersecting each ray with
the environment by simply testing each and every primitive object and
retaining the nearest point of intersection (if one exists). This has a time
complexity which is linear in the number of objects. We shall refer to this as
exhaustive ray tracing in preference to the word ‘standard,’which tends to imply
widespread application or at least a long history as the method of choice. It is
far more appropriate to reserve the term ‘standard ray tracing’ for the
tllumination model introduced by Whitted [65], which is independent of the
mechanism for computing ray-environment intersections. Nevertheless,

206 A Survey of Ray Tracing Acceleration Techniques

4 BOUNDING VOLUMES AND HIERARCHIES

The most fundamental and ubiquitous tool for ray tracing acceleration is the
bounding volume (also known as an extent or enclosure). This is a volume which
contains a given object and permits a simpler ray intersection check than the
object. Only if a ray intersects the bounding volume does the object itself need
to be checked for intersection. Though this actually increases the computation
for rays which come near enough to an object to pierce its bounding volume,
in a typical environment most rays closely approach only a small fraction of
the objects. The result is a significant net gain in efficiency. Whitted [65]
initially used spheres as bounding volumes, observing that they are the
simplest shapes to test for intersection. '

Used in this way, bounding volumes substitute simple intersection checks
for more costly ones, but do not decrease their number. From a theoretical
standpoint this may reduce the computation by a constant factor, but cannot
improve upon the linear time complexity of exhaustive ray tracing. To
alleviate this problem, Rubin and Whitted [51] introduced the notion of
hierarchical bounding volumes to ray tracing in order to attain a theoretical
time complexity which is logarithmic in the number of objects instead of
linear. By enclosing a number of bounding volumes within a larger bounding
volume it was possible to eliminate many objects from further consideration
with a single intersection check. If a ray did not intersect the parent volume,
there was no need to test it against the bounding volumes or objects contained
within. A hierarchy was formed by repeated application of this principle.

This type of ‘logarithmic search’ was previously employed by Clark [6] to
accelerate clipping during display of hierarchically organized data. If a
bounding volume was entirely outside the viewing frustrum, its contents could
be immediately rejected, whether it enclosed displayable elements or
additional bounding volumes. If a bounding volume was entirely inside the
viewing frustrum, all of its descendants could be rendered with no further
clipping operations. The relationship between this algorithm and that of
Rubin and Whitted is quite close. If we consider a ray to be a degenerate
viewing frustrum possessing no interior, the algorithms are virtually identical
from the standpoint of hierarchy traversal.

The volumes employed by Rubin and Whitted were rectangular parallel-
epipeds, more commonly known as bounding boxes, which are oriented so as to
closely fit their contents and minimize their size. In order to perform the
ray—box intersection tests, each ray was first transformed into the coordinate
space of the bounding box. This made the subsequent test between the
transformed ray and the axis-aligned box very straightforward. The simplicity
of this operation motivated the use of bounding boxes for representing the
geometry at the terminal nodes of the hierarchy as well. For instance, Rubin

James Arvo and David Kirk 207

procedure BVH__Intersect(in ray, node)
begin
if node /s a /eaf then
Intersect(ray, node.object)
else if Intersect__P(ray, node.bounding__volume) then
for each child of node do
BVH__intersect(ray, child);
end

Fig. 3. A procedure for intersecting a ray with a collection of objects organ-
ized in a bounding volume hierarchy. Procedure ‘Intersect’ and function
‘Intersect__P’ hide many of the common low-level details.

and Whitted chose to represent polygons by one or more bounding boxes
which were degenerate along one axis.

Figure 3 is an outline of procedure ‘BVH__Intersect’ which intersects a ray
with a collection of objects organized in a bounding volume hierarchy. The
data structure for this hierarchy is assumed to be a tree (or more generally a
directed acyclic graph, or DAG) with an arbitrary branching factor at each
internal node. Thus, bounding volumes may enclose any number of other
bounding volumes. Each leaf node of the tree is a single primitive object while
each interior node consists of a bounding volume and a list of pointers to other
nodes in the tree. The procedure ‘Intersect’ called from within ‘BVH__In-
tersect’ is responsible for invoking the appropriate ray—object intersection
procedure for the type of primitive object passed to it, and the ‘ray’ parameter
encodes a 3-D origin, a direction vector, and a distance interval. Points of
intersection which fall outside the distance interval (measured along the ray)
are to be ignored. We will assume that ‘Intersect’ observes this rule because
1t simplifies this and subsequent examples. In addition, when a new point of
intersection is found, ‘Intersect’ is assumed to shrink the far end of the
distance interval to that point and save away whatever additional information
will be needed for shading, such as the surface normal. These conventions
hide some of the common mechanisms, such as identifying the closest
intersection among several candidates, and therefore allow us to concentrate
on the more important algorithmic features.

The function ‘Intersect__P’ (where the ‘P’ stands for predicate) is very
similar to ‘Intersect’ except that it returns a boolean value indicating whether
an intersection was found and it does not alter the ray’s distance interval. This
function is used exclusively to determine if a bounding volume is hit by a ray,
whereas the automatic adjustment of the distance interval is only appropriate
for true object intersections.

Given ‘Intersect’ and ‘Intersect__P,’ the task of intersecting a ray with a

208 A Survey of Ray Tracing Acceleration Techniques

given bounding volume hierarchy is quite straightforward. The process begins
with the root node of the tree, representing a bounding volume enclosing the
entire environment, and an ‘unbounded’ ray, that is, one whose distance
interval is zero to ‘infinity.’ Each recursive reference of ‘BVH__Intersect’
descends another level of the hierarchy, and the recprsion terminates with
ray-object intersection tests at the leaves. At each level, the ray is tested
against all the sibling bounding volumes and we only descend into the ones
which are hit by the ray. The others are not processed any further, allowing us
to prune the branches which they enclose.

An additional benefit of adjusting the ray’s distance interval in the way we
have described is that it performs a useful optimization [19, 50]. Once a point
of intersection has been found with some object, and an upper bound placed
on the distance interval, all objects or bounding volumes which intersect the
ray completely beyond this bound can be ignored. This provides a second
mechanism by which branches can be pruned from the hierarchy during the
processing of a ray. An example of this is shown in Figure 4. If bounding
volume Vi is processed before V2, the contents of the latter need not be tested
because the point of intersection with object Oy is closer than any which might
occur within V5. This saves at least one ray-object intersection test and
potentially many in cases where ¥, encloses other bounding volumes. If
sibling bounding volumes are processed in some fixed order (e.g via a static
linked list or array), this technique will take advantage of fortuitous instances
in which a nearby intersection is found early on. In Section 4.4 we describe an
algorithm introduced by Kay and Kajiya [37] which uses a sorting operation
to more consistently benefit from this optimization.

Ray origin 4

Fig. 4. An optimization which results from shrinking the distance interval
associated with a ray whenever an intersection is found. The contents of
volume V; need not be tested against this ray if the intersection with object O+
is found first. :

James Arvo and David Kirk 209

4.1 Heuristics for Bounding Volume Optimization

To further improve the efficiency of bounding volumes, Weghorst et al. [63]
investigated the trade-offs between two competing factors: tightness of fit and
cost of intersection. By selecting a sphere, box, or cylinder depending on the
characteristics of each object (or cluster of objects) to be enclosed, they were
able to increase the efficiency of individual and hierarchically organized
bounding volumes. The criterion for this selection began with the observation
that the total computational cost associated with an object and its bounding
volume is given by

Cost=n*B+m=*1I (1)

where n is the number of rays tested against the bounding volume, B is the
cost of each test, m is the number of rays which actually hit the bounding
volume, and [/ is the cost of intersecting the object within. Assuming both n
and [are fixed, we would like to select a bounding volume which is both
Inexpensive, making B small, and as tight fitting as possible, minimizing m.
One must usually settle for a compromise, however, and making the right
trade-off requires estimating both cost and fit. Weghorst et al. used the
enclosed volume as a measure of fit, observing that it is related to the projected
voud area with respect to any direction; that is, to the difference in the projected
areas of the bounding volume and the enclosed object. This difference in area
indicates how likely a ray is to hit the bounding volume without hitting the
enclosed object. A large void area, resulting from a loose fit, can increase m
and cause many unnecessary object intersection checks. Reducing m even at
the expense of an increase in B is sometimes warranted. Weghorst et al.
introduced a simple heuristic to determine when such a trade-off is likely to be
advantageous. First, each type of bounding volume was assigned a relative
complexity factor to rank the computational cost of the ray intersection tests.
In their implementation, spheres were given the lowest complexity rating and
cylinders the highest. Then, each volume was ‘tried’ in turn as a potential
bound, and the one producing the smallest product of volume and complexity
factor was selected. This applies equally well to the bounding volumes of the
internal nodes of a hierarchy. Because this heuristic did not take the
complexity of the enclosed object into account, however, an interactive
program was used to occasionally override the algorithmically selected
bounding volume.

Figure 5 shows a number of possible bounding volumes for a complex
object, perhaps a surface of revolution. The shaded region represents the
projected void area. In most instances this void area is dependent upon the
direction along which we form the two-dimensional projection. Assuming for

210 A Survey of Ray Tracing Acceleration Techniques

{b)

Fig. 5. A comparison of three different types of bounding volumes for the
same primitive object. Each presents a different cost/fit ratio. (a) Bounding
sphere. (b) Axis-aligned bounding box. (c) Oriented bounding box.

simplicity that the rays which we are tracing through the environment are
effectively randomized by multiple reflections and refractions, the average
projected void area (over all directions) becomes the relevant measure of fit.
As we shall see in the following section, the surface area of the bounding
volume is closely related to this average.

Volumes (b) and (c) in Figure 5 are axis-aligned and transformed (oriented)
bounding boxes, respectively. The latter clearly produces a better fit in this
case but carries with it the extra cost of a ray transformation for every
ray-bounding volume intersection check. Hence, these are effectively different
types of bounding volumes because they present different cost/fit trade-offs. In
the case of a complex object, however, the relatively small additional cost of
the ray transformation in the bounding volume intersection test may be paid
back many times over through a significant reduction in number of ray—ob-
ject intersection tests. This type of transformation can also be applied to other
types of bounding volume; to orient cylinders for example, or to deform
spheres into ellipsoids.

Another strategy for achieving a better fit is to use multiple bounding
volumes for a single object. For instance, we can enclose the object within the .

{a) {c)

Fig. 6. The intersection and union of multiple bounding volumes can be used
to obtain a better fit. Each approach requires a different ray-intersection
algorithm for best performance. (a) Intersection of box and sphere. {b) Union of
box and sphere. (c) Intersection of slabs.

James Arvo and David Kirk 211

intersection of two or more bounding volumes, as in Figure 6(a). A ray must
then intersect all the volumes before the enclosed object needs to be tested.
The cost of this composite bounding volume is the sum of the individual
volume costs in the case of a ray which hits them all, but is only the cost of the
‘first’ volume in the case of a distant miss. Alternatively, the object may be
covered by the union of two or more bounding volumes, as in Figure 6(b).
Here the object must be tested if any of the bounding volumes are hit, making
the cost of a complete miss more expensive in this case. Finally, Figure 6(c)
shows a bounding volume created by the intersection of infinite slabs. This
type of bounding volume will be discussed in Section 4.3.

4.2 Predicting the Effectiveness of a Hierarchy

In order to better predict the effectiveness of a bounding volume we need to
have information about the distribution of rays which will be tested against it.
If every ray were to hit the enclosed object, no bounding volume would be
beneficial. That is, every type of bounding volume, no matter how simple,
would only increase the average cost of the intersection tests. On the other
hand, if no ray even approaches the enclosed object, any bounding volume
which is less expensive to test than the object is an advantage. In such a case
the cheapest bounding volume is the best, independent of any other factor. In
most situations the collection of rays tested against a given bounding volume
falls somewhere between these two extremes, and in this mid-ground fit
becomes a relevant factor as well as cost.

One way to extract useful information about ray distributions is to consider
the effect of one bounding volume upon another instead of examining them in
isolation. In particular, we will examine how one bounding volume affects the
distribution of rays seen by one or more bounding volumes nested completely
within it. This leads to a very natural way of predicting the performance of an
entire bounding volume hierarchy. Following the approach of Goldsmith and
Salmon [23] we consider the conditional probability of a ray hitting an inner
volume, B, given that it has hit a surrounding volume, A. See Figure 7(a). The
standard notation for this conditional probability is Pr(r hits B|r hits 4),
where 7 is a ‘random’ ray. For simplicity we assume that all rays which hit 4
are ‘equally likely’ (i.e. uniformly distributed). Even though the distribution
of rays is usually far from uniform in practice, this scenario nevertheless gives
a more realistic picture with respect to B than if we had considered it in
isolation. The conditional probability expresses the important fact that 4
‘filters out’ most of the rays which would not have hit B.

Under this randomness assumption, a simple calculation shows that Pr(r
hits B| r hits 4) is equal to the ratio of the average projected area of B to the
average projected area of A. This is quite convenient because the average

212 A Survey of Ray Tracing Acceleration Techniques

(a) (b)
Ry - o
___ V), ..)
./ 7 el ey
— _ D / /// .
—_—— ////// ————— /////// %/
//////////////1 <,

Fig. 7. (a) We wish to compute the conditional probability of a ray hitting B
given that it has hit A. This can be used in cases like (b) to compute the average
cost of intersecting a ray with the arbitrary contents of a bounding volume.

projected area of a convex body is equal to one quarter of its surface area
[61, p. 110]. Therefore, if both A and B are convex. (as most bounding
volumes are), we have that

< P(B,d)> _ S(B)

Pr(r hits B| 7 hits 4) = — P(4,d)> S(4)

(2)

where P(V,d) is the projected area of V along direction d, <> means the
average taken over all directions d, and S(V) is the surface area of volume V.
This relationship will be the key to analyzing the expected cost of hier-
archically arranged bounding volumes.

There are two relevant costs associated with a bounding volume within a
hierarchy: (1) the fixed cost of a ray intersection test with the volume itself,
and (2) the average cost of a ray intersection test with its contents given that
that ray has hit the volume (Figure 7(b)). We shall call these the external cost and
the internal cost, denoted EC and IC, respectively. These correspond to the
constant B and a generalization of the constant I in equation (1). Given
equation (2) for conditional probability we can compute the (average) internal
cost of a bounding volume, 4. There are two components to this cost, and
they can be expressed in terms of the costs of the enclosed items. First, there is
the fixed cost of testing a ray against all of A’s immediate children. This must
be done for every ray which hits A. There is also the cost of testing the
contents of the children which are actually hit by a given ray (neglecting the
distance interval optimization). The former are external costs of the children
and the latter are internal costs of the children weighted by the conditional
probability that they are hit. This is expressed by equation (3) for a bounding
volume, A4, enclosing child volumes By, B, ... Bp.

IC(4) = 2, {EC(B,) Y S IC(BI)}. (3)

i=1

James Arvo and David Kirk 213

By definition the internal cost of a primitive object is zero, and this implies
that we needn’t know its surface area. Recursive application of equation (3)
results in an average cost of intersecting a ray with a given bounding volume
hierarchy expressed in terms of surface areas and external costs. This is valid
regardless of the types of primitive objects or bounding volumes used,
provided we have a measure of their surface areas and costs of intersection
(i.e. their external costs).

We hasten to point out that equation (3), though based on important
geometric relationships among bounding volumes, is still a heuristic and not
an infallible measure of cost. Many simplifying assumptions have been made
in order to arrive at this convenient equation. In addition to the proper
nesting, convexity, and randomness assumptions noted earlier, an implicit
assumption has been that the external cost of a bounding volume is constant
for all rays and independent of whether or not the volume is hit by the ray. We
have also neglected the effects of objects occluding one another. For example,
in Figure 7(b) any of the rays shown which hit an object within By need not be
tested against the contents of Bz due to the distance interval optimization.
Occlusion such as this serves to increase efficiency slightly above that which is
predicted by equation (3). However, nonuniformity in the distribution of rays
can be far more significant and can drastically change the actual cost in either
direction from the predicted value.

4.3 Constructing a Hierarchy

Constructing a bounding volume hierarchy involves two types of decisions:
which clusters of objects (or bounding volumes) to enclose and what type of
bounding volume to enclose them with. In Section 4.1 we described one
heuristic for selecting the volume type, and in Section 4.2 we derived an
expression for predicting the effectiveness of a given hierarchy. We now turn
to the problem of selecting the clusters of objects or bounding volumes when
constructing the hierarchy initially. This is a challenging problem because the
number of possible hierarchical groupings of objects grows exponentially with
the number of objects, making exhaustive search totally impractical. Rubin
and Whitted [51] first attacked this problem through the use of a structure
editor, an interactive program for constructing successive levels of a hierarchy
beginning with the unstructured collection of primitive objects. It allowed the
user to look for object coherence in the form of closely clustered objects and to
select tight-fitting bounding boxes to enclose them. A means of performing
this operation automatically was also suggested in [51]. By viewing the
environment as a 3-D histogram and identifying the largest peaks, it should be
possible to automate what the human operator was attempting to do by visual
inspection.

214 A Survey of Ray Tracing Acceleration Techniques

Weghorst etal. [63] suggested that modeling hierarchies used in the
construction of an environment are often adequate for the task of ray tracing.
The model builder typically groups objects which are in close proximity to one
another, and this practice tends to reduce the average projected void area of
the resulting bounding volume. Goldsmith and Salmon [23] noted, however,
that such hierarchies tend to have large branching factors, thereby reducing
the benefits of tree pruning during ray intersection testing. To avoid this
problem, they developed a method of automatic generation of bounding
volume hierarchies which is closely tied to equation (3), and therefore more
appropriate for ray tracing. In their approach, the hierarchy is constructed
incrementally, inserting the primitive objects into the growing structure one at
a time while striving to minimize the resulting increases in the bounding
volume surface areas. Each object is inserted by beginning at the root of the
tree and selecting the subtree which would incur the smallest increase in
surface area if the new object were to become a child of it. This selection
process continues until a leaf of the tree is reached. In the case of a tie at any
level, all minimal subtrees are searched, and the one which ultimately
produces the smallest increase in the estimated cost of the tree is used.

Goldsmith and Salmon observed that the order in which the objects are
inserted into the hierarchy is very important because it can greatly influence
the eventual form of the tree. The order imposed by the modeler can be used,
but other alternatives include sorting along a line and randomizing. Sorting
usually proved to be detrimental, ‘while the best trees were discovered by
trying a number of different random shuffles. Since the cost of tree generation
is very small compared to the time for ray tracing we can afford to examine
many alternatives in the search for an efficient hierarchical organization.

4.4 Approximate Convex Hulls

Convexity is a geometrical property which can often be used to great
advantage. It is a particularly desirable property for bounding volumes, for
example, because it guarantees that any ray will interesect the volume at most
twice, and this is virtually a prerequisite for a simple intersection test. The
convex hull of an object is a uniquely defined convex volume. It is the
intersection of all convex volumes which contain the object, and is therefore
the smallest such volume. Together, these facts suggest that convex hulls may
be exemplary bounding volumes. However, computing and representing the
exact convex hull of an object or collection of objects can be difficult. If we
elect to use an approximation of the true convex hull, we can eliminate these
problems and, moreover, ensure that the resulting volume will be extremely
easy to test for intersection.

The best example of this is a method introduced by Kay and Kajiya [37].

James Arvo and David Kirk 215

The bounding volumes in their approach are many-sided parallelepipeds
which can be made to conform arbitrarily closely to the actual convex hulls of
the enclosed objects. The algorithm uses the concept of plane-sets which are
families of parallel planes. Each plane-set is defined by a single unit vector
called the plane-set normal, and each plane within a family is uniquely
determined by its signed distance from the origin (equal to the inner product
of the plane-set normal and any point on the plane). Given a plane-set normal
and an arbitrary (bounded) object, there are two unique planes of the family
which most closely bracket the object. The infinite region between these
planes is called a slab, and is conveniently represented by a min-max interval
associated with the plane-set normal as shown in Figure 8(a). For polyhedral
objects, these values can be computed by forming the dot product of the
plane-set normal with each of the object’s vertices (in world coordinates), then
finding the minimum and maximum of these values. For implicit surfaces
such as quadrics the values defining the slab can be computed using the
method of Lagrange multipliers [37].

The intersection of several different slabs can define a bounded region
enclosing the object, as shown in Figure 8(b). In three-space this requires three
slabs whose plane-set normals are linearly independent (two suffice in
two-space), but we are by no means limited to three. The greater the number
of slabs, the more closely we can approximate the actual convex hull of the
object. To intersect a ray with such a volume we first compute the interval
along the ray, measured from its origin, which lies within each of the slabs.
This amounts to computing two ray—plane intersections for each slab. If the
intersection of these intervals is empty, the ray misses the volume. Otherwise,
the ray hits the volume and the maximum of the minimum interval values is
the distance to the point of intersection.

(a) Max (b)
7/

Min

Plane-set
normal

Fig. 8. A plane-set normal defines a family of parallel planes orthogonal to it.
Two values associated with a plane-set normal select two of these planes and
define a slab. The intersection of several such slabs forms a parallelepiped
bounding volume. (a) A single slab bracketing an object. (b) Three slabs
defining a bounding volume.

216 A Survey of Ray Tracing Acceleration Techniques

The shape of this type of bounding volume is unaffected by object
translation which merely changes the min-max plane constants. Object
rotation, on the other hand, affects the quality of approximation. For
example, a fairly tight-fitting volume is defined by the three slabs shown in
Figure 6(c), but considerably more void area is intgoduced by a slight rotation
of the object relative to the plane-set normals.This suggests that we should
select the number and orientation of the plane sets for each individual object
in order to obtain very tight-fitting volumes. However, there are tremendous
computational advantages to using the same collection of plane-set normals
for all the objects of the environment, despite their individual orienta-
tions. The most significant advantage is that the task of intersecting a ray with
a number of bounding volumes can be greatly accelerated. Common expres-
sions in the ray—plane intersection calculations can be ‘factored out’ and done
once per ray instead of once per bounding volume. When this is done, the
calculation requires only two subtracts, two multiplies and a comparison for
each slab of a bounding volume [37].

As with other bounding volume techniques, introducing hierarchical
nesting is a critical step for efficient execution. To construct a parallelopiped
which tightly bounds two or more parallelopipeds (with respect to the same
plane-set normals),we compute the new plane constants by finding the
minimum and the maximum of all the plane constants associated with each of
the plane-set normals. This is directly analogous to constructing nested

procedure Hull__Sort__Intersect(in ray, root)
begin
pre-compute constants for efficient slab intersection;
initialize heap to contain root bounding volume;
while heap is not empty do begin
remove candidate from top of heap;
if candidate.key > ray.interval.max then return;
if candidate /s a /eaf then
Intersect(ray, candidate.object)
else for each child of candidate do
if Intersect__P(ray, child.approx__hull) then
add child to heap with key = “estimated distance”,
endwhile
end

Fig. 9. A procedure for intersecting a ray with a collection of objects organ-
ized in the hierarchical structure proposed by Kay and Kajiya. In this example
‘Intersect__P’ makes use of the precomputed constants and also computes the
‘estimated distance.’

James Arvo and David Kirk 217

axis-aligned bounding boxes. In fact, bounding boxes are a special case which
results from using the three coordinate axes as the plane-set normals.

Another aspect of the algorithm described in [37] is an efficient method of
traversing a bounding volume hierarchy which fully exploits the distance
interval optimization described in Section 4. This requires a sorting operation
with respect to each ray based on the distances to the points of intersection
with the bounding volumes. Kay and Kajiya call these the estimated distances
because they roughly approximate the distances to the enclosed objects. Using
the estimated distance as a key to sort on results in a priority queue for the
objects relative to the ray and insures that they are processed in approximately
the order that they are encountered by the ray. Figure 9 is an outline of a
procedure which applies this technique to a hierarchy of parallelepipeds
formed by intersecting slabs. Here, a candidate is any parallelopiped which is
intersected by the ray, and each candidate encloses either a single object or a
collection of other parallelopipeds. The sorting of the candidates is performed
using a heap because, as Kay and Kajiya point out, the efficiency of this
operation is quite critical to the performance of the algorithm.

5 3-D SPATIAL SUBDIVISION

The further an object is from the path of a ray, the less work we can afford to
do in eliminating it from consideration. As we have seen, bounding volume
hierarchies provide a means of recursively narrowing the focus of the search to
more promising candidates for intersection. This is a natural divide-and-
conquer approach for examining a collection of objects, seeking the member
producing the closest intersection. Spatial subdivision begins with a different
philosophy. Here we also rely upon simple volumes to identify objects which
are good candidates for intersection, but these volumes are constructed by
applying a divide-and-conquer technique to the space surrounding the objects
instead of considering the objects themselves. Rather than constructing the
volumes in a bottom-up fashion by successively enveloping larger collections
of objects, we proceed top-down, partitioning a volume bounding the
environment into smaller pieces. The smaller volumes thus formed are then
assigned collections of objects which are totally or partially contained within
them. Therefore a fundamental difference between bounding volume hier-
archies and spatial subdivision techniques is that the former selects volumes based
on given sets of objects, whereas the latter selects sets of objects based on given volumes.
This leads to a very different approach which places the emphasis on space
instead of the objects.

A concept common to all the current techniques of this family is the voxel.
This is a ‘cuboid,” or axis-aligned rectangular prism, and it is the fundamental

218 A Survey of Ray Tracing Acceleration Techniques

compartment created by a process of partitioning space. The term itself
connotes the extension of 2-D ‘picture elements,” or pixels, to 3-D ‘volume
elements.” A pre-processing step is responsible for constructing nonoverlapp-
ing voxels which, taken together, constitute a volume containing the environ-
ment. Within these constraints there are different methqds of defining the
voxels, and these differences lead to the most significant variations within this
family. The ramifications of uniform versus nonuniform size are particularly
important. Once defined, however, the voxels play the same role in all cases.
They are the means of restricting attention to only those objects which are
close to the path of a ray. ' ,

It the point of intersection between a ray and an object lies within a voxel,
both the ray and the object clearly must intersect that voxel. Because the
voxels contain the entire environment, every possible point of intersection
must lie within some voxel. Therefore, the only objects which we must test for
intersection are those which intersect the voxels pierced by the ray. For any
given ray, this can potentially eliminate the vast majority of the objects in the
environment from consideration. An equally important observation is that
a ray imposes a strict ordering on the pierced voxels based on the distance to
the point at which the ray first enters each voxel. Because the voxels are
nonoverlapping, this ordering guarantees that all intersections occurring
within one voxel are closer to the ray origin than those in all subsequent
voxels. Consequently, if we process the voxels in the order in which they are
encountered along the ray, we needn’t consider the contents of any further
voxels once we have found a point of intersection (see caveats discussed in
Section 5.3). This feature is closely related to the distance interval optimiza-
tion used in processing bounding volume hierarchies. It can drastically reduce
the number of objects which need to be tested and is one of the most attractive
features of these techniques.

Spatial subdivision techniques offer an efficient means of identifying the
objects which are near the path of a ray while at the same time performing a
virtual ‘bucket sort’ on those objects. In programming terminology, this latter
property means that we have moved a portion of the sorting problem from the
‘inner loop’ of the ray tracing algorithm (as in Figure 9) into a pre-processing
stage [36]. Naturally, this relies upon the ability to efficiently access the voxels
in the order defined by the path of the ray. As we shall see, this operation plays
a prominent role in each technique of this family.

5.1 Nonuniform Spatial Subdivision

Nonuniform spatial subdivision techniques are those which discretize space
into regions of varying size in order to conform to features of the environ-
ment. This variation in size allows more subdivision to be performed in

James Arvo and David Kirk 219

densely populated regions of space and, conversely, it allows large voxels to
cover regions which are sparsely populated or entirely void. An octree is one
possible data structure for creating and organizing such a collection of voxels.
Octrees are hierarchical data structures used for efficiently indexing data
associated with points in three-space and have been applied to problems such
as hidden surface elimination and computation of 3-D digital convex hulls (see
[69] and included references). They are constructed by recursively subdivid-
ing rectangular volumes into eight subordinate octants until the resulting leaf
volumes, or voxels, meet some criterion for simplicity. In most applications
the voxels are examined to determine how much of their volume lies within
some three-dimensional solid and marked as ‘empty,’ ‘full, or ‘mixed’
accordingly. '

Glassner [20] introduced an octree variation for use in ray tracing. In this
approach each voxel is assigned a list of objects whose surfaces penetrate that
volume (Figure 10), and these are the intersection candidates for every ray
which pierces the voxel. The candidate objects of a given voxel are identified
by testing their surfaces against the six faces of the voxel. If a surface intersects
one of the faces, the object is immediately added to a candidate list associated
with the voxel. For those which do not intersect any of the faces, an additional
test for proper containment within this voxel is performed by considering a
single point on the object’s surface. If the point is inside the voxel, the entire
object must be as well (assuming its surface is a connected set), and it is added
to the candidate list.

The creation of these candidate lists guides the top-down construction of the
octree. A box containing the environment is recursively subdivided until each

Fig. 10. A 2-D analogy of a sphere and the octree voxels penetrated by its
surface. The sphere must be added to the candidate list associated with each
of the shaded voxels.

220 A Survey of Ray Tracing Acceleration Techniques

procedure Octree__Intersect(in ray)
begin
Q = ray.origin;
repeat { walk through the voxels }
locate the voxel which contains Q;
for each object associated with voxel do
Intersect(ray, object);
if no intersection has been found then
Q = a point in the next voxel pierced by ray;
until an intersection is found or Q is outside
the bounding box of the environment
end

Fig. 11. A procedure for intersecting a ray with a collection of objects
organized in an octree. These essential features are present in both Glassner’s
[20] and Kaplan's [35] approach.

voxel contains fewer than some threshold number of intersection candidates
or until a storage limitation is reached. Once the octree is constructed, the
algorithm outlined in Figure 11 is used to perform- fast ray-environment
intersections. Accessing the voxels which are pierced by a ray is accomplished
by two fundamental operations within the main loop of this algorithm:
(1) ‘locating’ a voxel which contains a given point in three-space, and
(2) constructing a point which is guaranteed to be in the ‘next’ voxel. The first
of these is intimately related to the particular representation of the octree.
In Glassner’s approach, nodes of the octree are linked and accessed by
uniquely defined names rather than storing explicit pointers to descendent
nodes. To construct these names a convention of labeling the eight children
with the digits 1...8 is adopted. When a node is subdivided the children
derive their names by appending their single digit to the name of the parent.
Thus, each node of the tree receives a unique integer name consisting of digits
which encode the path to that node from the root (which is named ‘1’). Given
the name of a node, the name of any child is obtained by multiplying by 10
and adding the appropriate digit. To access data associated with a node name,
such as the candidate list in the case of leaf nodes, the name is used to retrieve
a pointer from a hash table. Glassner observed that simply computing the
name modulo the size of the hash table serves as a good hashing function. This
mechanism is used to retrieve the candidate list associated with a leaf node
(voxel) containing a given point. Beginning at the root node we determine
which of the eight octants the point lies within, construct the name of the child
corresponding to that octant, and consult the hash table to determine the
status of that child. The process is repeated until we reach a leaf node or
produce the name of a non-existent node, indicating an empty candidate list.

James Arvo and David Kirk 221

If a ray hits nothing within a voxel we must proceed to the next voxel
pierced by that ray. In Glassner’s algorithm, this is accomplished by finding a
point within the next voxel and performing the look-up described above. To
find such a point we first compute where the ray exits the current voxel using a
standard ray—box intersection calculation, then move a small distance into the
interior of the neighboring voxel, taking care not to step too far. This can be
done using the length of the shortest voxel edge in the entire octree; call it
‘minlen.’ If the exit point is interior to a face of the current voxel, we move the
exit point directly away from this face by a distance of minlen/2. If the ray
exits through an edge or a vertex of the current voxel we need to make a
similar adjustment for each face containing the exit point. The result is a point
which lies within the desired voxel.

Kaplan [35] introduced a very similar approach based on binary space
partitioning trees (BSP trees), an alternative method for subdividing space
into voxels. A BSP tree partitions space into two pieces at each level by means
of a separating place. Though Fuchs’s hidden surface algorithm [16]) employs
BSP trees with arbitrarily oriented partitioning planes, Kaplan’s approach
restricts these to be axis-orthogonal planes and consequently performs nearly
the same voxel subdivision as the octree method. One difference between this
and Glassner’s approach is that the nodes of the BSP tree are constructed with
explicit pointers to their two children.This obviates the need for voxel names
and hashing at the expense of a potential increase in storage; a typical
spaceftime trade-off.

Jansen [31] introduced a spatial subdivision algorithm based on BSP trees
which differs fundamentally from both of the previous methods in the way it
identifies the voxels pierced by the ray. Instead of finding the next voxel by
creating a point guaranteed to fall within it and traversing the hierarchical
structure from the root, we recursively descend all the branches of the BSP
tree which terminate at pierced voxels, making use of each partition node only
once per ray. Jansen calls the previous method sequential traversal and the new
method recursive traversal. The recursive traversal algorithm is outlined in
Figure 12. As the BSP structure is traversed, a ray is recursively ‘clipped’ by
each partitioning plane it pierces. That is, the ray’s distance interval is divided
into two intervals which correspond to segments of the ray on either side of the
plane. The segment closest to the ray origin continues the recursive partition-
ing process first. If this ‘near’ segment of the ray is found to intersect an
object, the ‘far’ segment is discarded. Otherwise, the far segment of the ray is
also recursively partitioned. Frequently the entire ray interval will be entirely
to one side of a partitioning plane. When this happens, one of the segments of
the ray (‘near’ or ‘far’ in Figure 12) will be empty, causing the corresponding
recursive call to ‘BSP__Intersect’ to terminate immediately, pruning one of
the branches of the BSP tree.

222 A Survey of Ray Tracing Acceleration Techniques

procedure BSP__Intersect(in ray, node)
begin
if ray.interval /s empty or node /s nil then return;
if node is a leaf then { this is a “voxel” node)
for each object associated with the node do
Intersect(ray, object);
else begin { this is a “partition” node }
near = ray clipped to near side of node.partition;
BSP__Intersect(near, pointer to near half-space);
if no intersection has been found then begin
far = ray clipped to far side of node.partition;
BSP__Intersect(far, pointer to far half-space);
endif
endelse
end

Fig. 12. A ‘recursive traversal” procedure for intersecting a ray with a
coliection of objects organized in a BSP tree. Rays are ‘clipped’ using the
distance interval. :

Figure 13 shows a 2-D analogy of an environment and the voxels defined by
octree subdivision. For simplicity only spheres are depicted here, though the
principle is independent of the types of primitive objects used. The sub-
division heuristics used to construct this octree were (1) subdivide any voxel
with two or more intersection candidates, but (2) subdivide no more than
three levels deep. These heuristics are typical of octree approaches, though the
values used in this example may not be realistic. Limits placed on the depth

|

\

% Processed voxels

Tested objects

N
N

O

Fig. 13. Non-uniform spatial subdivision via an octree. The ray shown here
causes five of the voxels to be examined and three of the eight objects to be
tested for intersection. Finer subdivision can decrease the number of ray—ob-
ject tests at the expense of additional voxel processing overhead.

e e R R SRR 5 L N B TR P S St S v

James Arvo and David Kirk 223

are usually needed to guard against situations in which the recursion would
not terminate based on other criteria. This can occur, for example, when
several objects overlap, making them impossible to separate by further
subdivision. The processed voxels and tested objects are shaded in this figure
for a particular ray. These are independent of the type of traversal algorithm
used: sequential or recursive. The ray shown here is a rather bad case, passing
through the environment without hitting anything. Nevertheless, only three
of the eight objects are tested, and this ratio tends to become more favorable as
the complexity of the environment increases. If the ray happens to hit
something in a voxel close to the ray origin, fewer voxels need be processed
and consequently fewer objects are tested.

5.2 Uniform Spatial Subdivision

Fujimoto et al. [17] introduced a different approach to spatial subdivision in
which voxels of uniform size are organized in a regular 3-D grid (or lattice).
This organization was given the acronym SEADS, for Spatially Enumerated
Auxiliary Data Structure. The overall strategy is quite similar to the
nonuniform subdivision techniques. Lists of candidate objects are retrieved
from voxels which are pierced by a ray and these voxels are processed in the
order they are pierced. However, there are two distinguishing features of this
approach which are direct consequences of the voxel regularity: (1) the
subdivision is totally independent of the structure of the environment, and (2)
the voxels pierced by a ray can be accessed very efficiently by incremental
calculation. The first is a disadvantage which must be weighed against the
obvious benefits of the second. The test cases in [17] are examples where the

procedure Grid__Intersect(in ray, node)
begin
compute i, j, k for the voxel containing ray.origin;
set up 3DDDA based on ray.direction and ray.origin;
repeat {walk through the voxels)
for each object associated with voxelli,j,k] do
 Intersect(ray, object);
if no intersection has been found then
use S3DDDA to compute new i, j, k;
until an intersection is found or i, j, k is outside
the limits of the voxel array:
end

Fig. 14. A procedure for intersecting a ray with a collection of objects
organized in a uniform grid. The 3DDDA is similar to a line rasterization routine.

224 A Survey of Ray Tracing Acceleration Technigues

speed of voxel access proves to be the dominant factor, indicating that the
SEADS approach can sometimes offer significant gains In performance over
nonuniform subdivision techniques.

The key to efficient voxel access is that finding the voxels along the path of a
ray in a regular lattice is the 3-D analogy of representing a line on a regular
array of pixels. To exploit this, Fujimoto et al. developed a three-dimensional
digital difference analyzer, or SDDDA, to incrementally compute successive voxel
indices in the same way that efficient line rasterization algorithms incre-
mentally compute pixel coordinates. One minor difference is that the SDDDA
must step through each voxel which is pierced by the given ray (Figure 15),
whereas line rasterization algorithms identify pixels which are merely close to
a line in some sense. This requires a departure from the common property of
line rasterization algorithms which forces a step to be taken along the
dominant axis unconditionally with every iteration. Nevertheless, incremental
error terms can still be used to signal discrete steps along the coordinate axes
Just as in line rasterization. These error terms require careful initialization to
correctly handle rays which do not originate from the exact center of a voxel.
This is analogous to sub-pixel positioning in line rasterization.

Usually just one of the three indices, 7, j, and %, are incremented (or
decremented) by the 3DDDA in each iteration of the loop. Exceptions occur
when a ray goes through an edge or a corner of a voxel. Because a 3DDDA
generates integer coordinate triples, data associated with the voxels is most
conveniently stored as a three-dimensional array. In procedure ‘Grid__Inter-
sect’ (Figure 14) this array is named ‘voxel’ and it is assumed to provide
access to the intersection candidates, perhaps by storing a pointer to the head
of the list. Given the coordinates of any point interior to a voxel, this

W Processed voxels

Tested objects

NN

(N
(NEZAN

=
By
(HD]1Van

N_l"

™

)

Fig. 156. A 2-D analogy of uniform spatial subdivision. The ray shown here
pierces 14 voxels and results in one object being tested for intersection. The
uniformity of the grid makes the process of voxel walking similar to represent-
ing a line on a rectangular array of pixels.

James Arvo and David Kirk 225

arrangement allows quick access to its associated data through direct calcula-
tion of the voxel indices. This can make the initial construction of the
candidate lists quite efficient and is another benefit of uniform subdivision.

The advantages of this approach cannot always compensate for the lack of
adaptivity, however. Though the voxels which ‘digitize’ a ray can be made to
approximate the ray with arbitrary precision by increasing the resolution of
the grid, two limitations begin to emerge as we do so. First, it becomes more
costly to pass rays through empty regions of space, and second, the storage for
the corresponding three-dimensional array quickly becomes unmanageable.
Of course the storage problem can be alleviated by only storing the voxels
which have non-empty candidate lists as Glassner did with octrees [20]. This
could be accomplished through a voxel look-up scheme similar to that used by
Wyvill et al. [67] to construct polygonal approximations of implicitly defined
surfaces. This is another space[time trade-off because of the overhead which
the hash table look-up adds to the voxel walking process.

Fujimoto et al. [17] also made use of the 3DDDA in accessing octree voxels.
Because the 3DDDA is applicable only to uniform subdivision, this restricts
its use to walking ‘horizontally’ among sibling voxels of the octree. Each
group of eight siblings can be viewed as a small uniform grid and, as such, the
3DDDA provides an efficient means of passing a ray through them. After
stepping through at most four voxels, ‘vertical’ traversal must be performed
again in order to locate the next block of eight siblings.

5.3 Two Caveats

There are a number of potential pitfalls which one must be careful to avoid
when implementing spatial subdivision techniques. Two in particular stem
from the fact that a single object may intersect several voxels, and these
pertain to both uniform and nonuniform subdivision techniques. The first is
the problem of repeated ray-object intersection tests between the same ray
and object. Multiple tests can result from situations such as that depicted in
Figure 16. As the ray passes through voxels 1 and 2, it finds object A in the
candidate list of each. To avoid testing it twice we can employ a mailbox as
described by Arnaldi et al. [2]. A mailbox, in this context, is a means of
storing intersection results with individual objects. Each object is assigned a
mailbox and each distinct ray is tagged with a unique number. When an
object is tested for intersection, the results of the test and the ray tag are stored
in the object’s mailbox. Before testing every object, the tag stored in its
mailbox is compared against that of the current ray. If they match, the object
has been previously tested against this ray and the results can be retrieved
without being recalculated.

The second caveat is more serious because it can cause erroneous results. A

226 A Survey of Ray Tracing Acceleration Techniques

Fig. 16. We can avoid testing object A in voxel 2 after having tested it in voxel
1 by using a mailbox. We must be careful to terminate the voxel walking
process only when the point of intersection is contained within the current
voxel. Otherwise, object C could be missed in the situation shown here.

situation in which this problem arises is also depicted in Figure 16. Notice that
object B will be in the candidate list of voxel 3, and this object is indeed
intersected by the ray shown. If this affirmative test causes the voxel walking
to terminate at voxel 3, the closer intersection with object C will not be found.
This can cause disappearing objects. To remedy this we require that the point
of intersection be within the ‘current’ voxel before .terminating the search.
That is, we only terminate the voxel walking process if the point of
intersection is known to be the closest resulting from any object associated
with a voxel up to and including the one which contains that point. By using
mailboxes we can save the intersection results computed on behalf of an
earlier voxel until it is reached by the voxel walking process.

5.4 A Comparison through Graphs

Thus far we have discussed three fundamentally different methods for
~organizing data in order to accelerate ray intersection calculations: bounding
volume hierarchies, uniform spatial subdivision, and nonuniform spatial
subdivision. Each involves a relationship between objects and volumes, and
each requires a special algorithm for accessing objects based on which volumes
are intersected by a given ray. The differences are easy to see if we depict the
object—volume organizations required by these algorithms as graphs, as in
Figure 17. Here, circles represent bounding volumes, squares represent
primitive objects, thick lines represent ray intersection tests, and thin lines
represent point containment tests (such as used in descending an octree).
Figure 17(a) is the graph resulting from a bounding volume hierarchy.
Because there is exactly one path to each of the leaf nodes, the graph is a tree.
The children of a node are processed only if the node is intersected by a ray.
Different types of bounding volumes and different orders of testing give rise
to some of the variations within this family of algorithms. Figure 17(b) 1s the

James Arvo and David Kirk 227

(O Volume | intersection
[] Primitive | Contoinment

(c)

Fig. 17. A bounding volume hierarchy results in (a) a tree, nonuniform spatial
subdivision results in (b) a directed acyclic graph, or DAG, and uniform spatial
subdivision results in (c) a bipartite graph.

graph resulting from nonuniform spatial subdivision. The subgraph con-
nected by the thin lines is a tree because there is exactly one path to reach any
given leaf volume (voxels in this case). These leaf volumes can be associated
with any number of objects, and some objects may belong to more than one
leaf volume. This makes the overall graph a DAG (directed acyclic graph).
Finally, Figure 17(c) is the graph resulting from uniform spatial subdivision.
Each object belongs to one or more volumes, and each volume contains zero
or more objects. There are no explicit edges connecting the volumes because
they are accessed by direct index calculation, not by paths through other
volumes. Because each edge has one vertex in the set of objects and the other
in the set of volumes, the graph is bipartite.

These graphs clearly do not convey all of the features of the corresponding
algorithms, but they do serve to highlight the more fundamental differences.
Given this representation it is natural to ask which other graphs represent
useful algorithms. As a partial answer to this we refer to Section 12 in which
combinations of various acceleration techniques are discussed. The corres-
ponding graphs of these hybrid algorithms contain any or all of the ones
shown here as subgraphs.

6 DIRECTIONAL TECHNIQUES

The most recent category to emerge is that of directional techniques. Though
every ray tracing approach must take ray direction into account, the
directional techniques are those which exploit this information at a level above
that of individual rays. To see how this differs from other approaches,
consider the use of ray direction within a typical 3-D spatial subdivision
scheme. Here the direction is used in selecting the subset of voxels pierced by
the ray. This eliminates most of the voxels from consideration and defines an

228 A Survey of Ray Tracing Acceleration Techniques

efficient order for processing those which remain. However, this selection and
ordering of voxels must be performed on a ray-by-ray basis because direction
is not taken into account during the construction of the voxels. In contrast,
directional techniques explicitly incorporate directional information into data
structures which allow more of the overhead to be moved from the ‘inner loop’
into a less costly stage. Operations such as backface culling and candidate
sorting can be done on behalf of many rays instead of individual rays. A
common penalty which accompanies these advantages is a very large storage
requirement.

There are currently three members in the family of directional techniques:
the ‘Light Buffer’ [25], the ‘Ray Coherence’ algorithm [47], and ‘Ray
Classification’ [3]. An important mechanism employed by all the members of
this family is direction subdivision. Before describing how this is used in each
of the algorithms, we introduce some useful terminology and machinery.

6.1 The Direction Cube

A concept which has appeared independently in all three of the algorithms
discussed in this section is something which we shall call the direction cube. A
direction cube plays a similar role to that of the ‘hemi-cube’ used in the
radiosity method [8]. It is a means of discretizing directions into a finite
number of square or rectangular direction cells and is analogous to spatial
subdivision methods which discretize bounded regions of space into a finite
number of voxels. More precisely, a direction cube is an axis-aligned cube
centered at the world coordinate origin. The six faces of this cube correspond
to six dominant axes which we label +X, -X, +Y, - Y, +Z and - Z (see
Figure 18(a)). Each of these faces subtends a solid angle of 273 steradians
from a vantage point of the coordinate origin.

The direction cube allows us to translate 3-D directions into the language of
2-D rectangular coordinates. To account for 4 steradians (i.e. all possible
directions) we define these 2-D rectangular coordinates, designated u and v,
on six independent squares corresponding to the faces of the direction cube.
For any given ray, we can then construct an alternative representation for its
direction by imagining it translated to the coordinate origin, determining
which face of the direction cube it intersects (i.e. finding the dominant axis of
the ray) and then computing the u—v coordinates of the point of intersection
(Figure 18(a)). Scaling the U and V axes so that the cube edges are of length
two guarantees that all points of intersection will have coordinates between
- 1 and 1. This convention makes calculations particularly efficient. Figure 19
shows a procedure for performing this mapping by defining U and V axes on
each face as synonyms for two of the world coordinate axes, X, Y, or Z. The
exact correspondence chosen in each case is immaterial, so this procedure

James Arvo and David Kirk 229

(c)

Fig. 18. The direction cube is used to translate 3-D directions 2-D rectangular
coordinates. This provides a means of applying subdivision techniques in the
context of directions. (a) Three of the dominant axes associated with a
direction cube. (b) Uniform subdivision. (c) Adaptive subdivision.

simply selects U and V to be the two axes, in lexicographic order, which are
parallel to the face.

This translation to 2-D rectangular coordinates allows us to easily and
efficiently apply subdivision techniques in the context of directions. Just as
in spatial subdivision, we can choose to subdivide the squares uniformly or
nonuniformly, and in the latter case, standard techniques such as BSP trees or
quadtrees are applicable. Examples of uniform and nonuniform direction
subdivision are depicted in Figures 18(b) and 18(c), respectively. Each
direction cell resulting from subdivision defines an infinite skewed pyramid
with its apex at the coordinate origin and its edges through the cell corners.
We shall refer to these as direction pyramids. A direction pyramid is the volume
of space accessible to rays which begin at the coordinate origin and pass
through the given direction cell. Notice that even in the case of uniform
subdivision the direction cells do not all subtend equal solid angles. This poses
no problem, however, because it is the efficiency of the translation from
directions to 2-D coordinates which is important to the algorithms in the
following sections, not the exact shapes of the direction pyramids.

230 A Survey of Ray Tracing Acceleration Techniques

procedure Direction__to__UV(in direction; out axis, u, v)
begin

ax = | direction.x |

ay = | direction.y |

az = | direction.z |

if ax > ay and ax > az then begin { X /s dominant }
if direction.x > O then axis = pos_X else axis = neg_X.
u = direction.y [ax
v = direction.z [ax
endif

else if ay > az then begin { Y /s dominant }
if direction.y > O then axis = pos__Y else axis = neg__Y
u = direction.x [ay
v = direction.z [ay
endif

else begin { Z is dominant }
if direction.z > O then axis = pos__Z else axis =neg__Z
u = direction.x [az '
v = direction.y [az
endelse

end

Fig. 19. A procedure for mapping 3-D direction vectors into points in one of
six 2-D rectangular coordinate systems indexed by the six dominant axes.

Given a subdivided direction cube, it is a simple matter to determine which
direction cell is pierced by any ray. We begin by determining the ray’s
dominant axis and x—v coordinates, as discussed above. Then, in the case
of uniform subdivision, the row and column indices of the direction cell
containing this 2-D point are found by direct calculation. In the case of
nonuniform subdivision more work is required, such as traversing a hier-
archical partitioning structure for that face. These cases are the exact analogs
of problems encountered in uniform and nonuniform spatial subdivision
techniques. Furthermore, the role played by the direction cells is similar to
that of voxels. Both are used to access lists of candidate objects, indexed by
direction neighborhoods in one case and by spatial neighborhoods in the
other. In both cases the purpose of locating the appropriate neighborhood is to
retrieve the associated candidate list.

We now turn to applications of this directional information. The key to
understanding the connection between the three algorithms in this section is to
observe that they each begin by associating direction cubes with specific
collections of rays. The most straightforward application is to consider only

James Arvo and David Kirk 231

rays which originate from a finite number of isolated points. Special points
which are particularly appropriate are point light sources (which we can think
of as emitting the rays used in shadow testing) and the eye point. The ‘Light
Buffer’ algorithm [25] was developed to take advantage of the former case.
Other collections of rays which can be associated with direction cubes are
those which originate from the surfaces of individual objects. The ‘Ray
Coherence’ algorithm [47] takes this approach. Finally, we can associate
direction cubes with collections of rays which originate from 3-D voxels. The
‘Ray Classification’ [3] algorithm is closely related to this concept, although
as we shall see it partially removes the distinction between direction cells and
voxels.

6.2 The Light Buffer

The Light Buffer, introduced by Haines and Greenberg [25], is a directional
technique which accelerates the calculation of shadows with respect to point
light sources. One of the facts exploited by this algorithm is that points can be
determined to be in shadow without finding the closest occluding object. Since
any opaque occluding object will suffice, shadowing operations are inherently
easier that normal ray—environment intersections. Furthermore, constraining
light sources to be single points allows a particularly effective application of
the direction cube to these operations.

The search for an occluding object can be narrowed to a small set of objects
by making use of the direction from the light source to the point in question.
The light buffer algorithm accomplishes this by associating a uniformly
subdivided direction cube with each light source, and a complete list of
candidate objects with each of the direction cells. That is, each candidate list
contains every object which can be ‘seen’ through the corresponding direction
cell. These candidate lists are retrieved by finding the direction cell pierced by
each light ray which is (conceptually) cast from the light source. The objects in
this list are the only ones which can block the ray and thereby cast a shadow.

The light buffers are constructed as a pre-processing step, before ray tracing
begins. The candidate lists are created by projecting each object of the
environment onto the six faces of each direction cube, adding them to the
candidate lists of those direction cells which are partially or totally covered by
the projection. For polygonal objects this is performed efficiently by applying
a modified scan-line algorithm to the projected edges. Nonpolygonal objects
can be enclosed in polyhedral hulls for the purpose of creating the candidate
lists, although the actual shadow intersection testing must use the object itself.
Once all the lists are created, they are sorted into ascending order according to
depth.

There are several observations which can lead to simplified candidate lists.

232 A Survey of Ray Tracing Acceleration Techniques

First, all polygons which face away from the light and are part of opaque solids
may be. culled. Also, any list which consists of exactly one polygon can be
deleted, because a polygon cannot occlude itself unless it is facing away from
the light. Finally, if the projection of an object completely covers a direction
cell, the candidate list can be terminated by a full-occlusion record at the object
depth, and all candidates at a greater depth can be eliminated. The direction
pyramid from this depth onward is completely in shadow with respect to that
light source. In order to exploit this optimization for objects with curved
surfaces, we can detect totally covered direction cells by using enclosed
polygonal meshes instead of bounding hulls.

To determine if a point on a given surface is in shadow, we first check the
orientation of the surface with respect to the light source. If it is facing away,
the polygon is known to be in shadow. Otherwise, we retrieve the list of
potential occluding objects from the light buffer using the direction of the light
ray. The objects in the list are then tested for intersection, in order of
increasing depth, until an occlusion is found or until we reach an object whose
depth is beyond the point we are testing. In the former case the point is in
shadow, and in the latter case it is illuminated. If the list is marked with a full
occlusion record and the point we are testing is at a greater depth, we can
immediately conclude that the point is in shadow without performing any
intersection tests. Note that this optimization is one of the benefits of the
special treatment of light rays. It is irrelevant whether the object causing full
occlusion is the first one hit by the light ray.

6.3 The Ray Coherence Algorithm

In this and the following section we describe algorithms which extend the use
of directional information to the acceleration of general intersection calcula-
tions. Ohta and Maekawa [47] achieved this through application of what they
have termed the ‘ray coherence theorem.’ This is a mathematical tool for
placing a bound on the directions of rays which originate at one object and
then hit another, making it possible to broaden the application of direction
cubes from single points to bounded objects. In its simplest form, the ray
coherence theorem applies to objects which are bounded by nonintersecting
spheres, as in Figure 20.

Any ray which originates within sphere §; and terminates within sphere S;
defines an acute angle, 0, with the line through the sphere centers. Inequality
(4) 1s a bound on this angle in terms of the sphere radii and the distance

James Arvo and David Kirk 233

re

Fig. 20. A bound on the angle between lines 0,0, and PQ can be computed
in terms of the distance between the centers of the two bounding spheres and
their radii. This can be used to bound the directions of the rays which originate
at one object and intersect the other.

Ohta and Maekawa also used a version of this theorem which is applicable
when the objects are bounded by convex polyhedra instead of spheres. The
resulting direction bound is phrased in terms of a 2-D convex hull on the
surface of a sphere. In either case, approximations of these direction bounds
are stored by means of uniformly subdivided direction cubes associated with
each entity in the environment from which rays can originate. This includes
the eye point, light sources, and reflective or refractive objects. Each of these
direction cubes is constructed and used in nearly the same manner as a light
buffer. A pre-processing operation creates depth-sorted lists of intersection
candidates for each direction cell of each direction cube. These candidate lists
determine the objects which need to be tested for intersection with any ray
based on its direction and the entity whence it originated. The direction cube
therefore accelerates the process of finding the ‘next’ object hit, providing an
efficient way of progressing from object to object as the path of a ray is traced.
This essentially reduces to a light buffer in the case of shadow tests with
respect to point light sources.

Departures from the light buffer algorithm occur in both the construction
and intersection testing of the candidate lists. During candidate list construc-
tion, objects are associated with individual direction cells by means of a
relationship such as (4) rather than by projecting the objects (or their
bounding volumes) on to a single point. This is equivalent to sweeping the
center of projection over the object from which the rays originate and
identifying all the direction cells which are touched by the projections. The
difference in testing a candidate list for intersection is that nonshadowing rays
require that the closest point of intersection be found. Objects in the list are
tested iz order until the list is exhausted or the minimum distance, given by 4 in

234 A Survey of Ray Tracing Acceleration Technigues

for each entity, A, from which rays can originate do begin
for each object B do begin
d =lower bound on distance between A and B:;
S = direction bound for rays from A which hit B;
for each direction cell of A which intersects S do begin
insert B into the cell’s sorted candidate list
according to the distance d;
endfor
endfor
endfor

Fig. 21. The pre-processing algorithm of the ‘ray coherence’ algorithm. The
sorting operation can be performed by insertion, as shown here, or after all the
candidate lists have been formed.

Figure 21, is greater than the distance to a known point of intersection. This is
the distance interval optimization yet again.

An outline of the pre-processing algorithm which creates the candidate lists
1s shown in Figure 21. It is assumed that bounding volumes are all spheres or
all convex polyhedra. The direction bound, §, will be a unit vector and an
angle (or cosine) defining a cone in the case of bounding spheres and a
spherical convex hull in the case of bounding polyhedra.

6.4 Ray Classification

The ray classification algorithm, described by Arvo and Kirk [3], does not use
explicit direction cubes except in the special case of first-generation rays. The
data structure used to accelerate the intersection process for other rays is.
closely tied to the concept of a direction cube, however. Ray classification is
based upon the observation that rays in three-space have five degrees of
freedom and correspond to the points of R? x S?, where $? is the unit sphere
in three-space. The algorithm proceeds by partitioning the five-dimensional
space of rays into small neighborhoods, encoded as 5-D hypercubes, and
associating a complete list of candidate objects with each. A hypercube
represents a collection of rays with similar origins and similar directions, and
its associated candidate list contains all objects which are hit by any of these
rays (neglecting occlusion). To intersect a ray with the environment, we locate
the hypercube which contains the 5-D equivalent of the ray and test only the
objects in the associated candidate list.

Rays with a given dominant direction can be conveniently encoded as
5-tuples, (x, », z, u, v), where the first three elements specify the origin of the
ray, and the last two are the UV direction coordinates obtained from a face of
the direction cube. Any ray in three-space can be specified by such a 5-tuple

James Arvo and David Kirk 235

and an element of the set { +X, - X, +Y, =Y, +Z, - Z}. If Bis a 3-D box
which contains the environment, then a set containing all rays which are
relevant to this environment can be represented by six ‘copies’ of the space
Bx [-1,1] x [-1,1). These bounding hypercubes, corresponding to the six
dominant axes, are a basis for combined spatial and directional subdivision
using a hyper-octree, a 5-D analog of an octree. The 5-D hypercubes at the
leaves of the hyper-octree are assigned lists of candidate objects in direct
analogy with the voxels of a 3-D spatial subdivision scheme. We find the
candidate list for a given ray by converting the ray into a 5-tuple and,
beginning at the root of the hyper-octree corresponding to the ray’s dominant
axis, traversing the tree until we find the leaf node containing that 5-tuple.
The most recently accessed hypercubes can be cached in order to avoid this
hierarchy traversal in most cases.

To construct the candidate lists, we observe that a 5-D hypercube
represents a collection of rays which originate from a 3-D voxel and possess
directions given by a single direction cell. This collection of rays sweeps out
an unbounded 3-D polyhedral volume called a beam. See Figure 22. The
candidate list of a hypercube must contain all objects which intersect this
beam. As the nodes of the hyper-octree are subdivided, a child’s candidate list
can be obtained from the parent list by removing those objects which fall
outside of its narrower beam. By bounding objects with convex polyhedra, the
operation of comparing objects with a beam reduces to detecting polyhedral

Directions Origins Beam

(b)

Directions Origins Beam

Fig. 22. Beams in (a) 2-space and in (b) 3-space. A beam can be defined as
the set sum of the direction pyramid and the voxel. That is, every point of the
beam can be expressed as the vector sum of a point within the pyramid volume
and a point within the voxel.

236 A Survey of Ray Tracing Acceleration Techniques

intersections. This can be solved by linear programming, for example,
however Arvo and Kirk found this to be too costly. An effective alternative is
to bound objects by spheres and beams by cones. The cone-sphere intersec-
tion test is only a rough approximation, but it is very fast. It is also possible to
use object hierarchies for efficient creation of candidate lists. The techniques
described by Dadoun and Kirkpatrick [13] for the acceleration of ‘beam
tracing’ may be useful here.

As with the other directional techniques, the candidate lists are sorted by
depth in order to most effectively apply the distance interval optimization. A
difference in the ray classification approach is that only the candidate lists
associated with the original bounding hypercubes need be sorted. These lists
contain all the objects in the environment and the sorting is with respect to
minimum object extents along the six dominant directions. All subsequent
lists are derived from these by deleting entries, so the sorted order can be
passed down with no additional work.

Because the hyper-octrees and associated candidate lists can potentially
become very large, there are a number of important space-saving measures
which can be applied. By far the most critical of these is restricting subdivision
to occur only in regions of 5-space which are actually populated by rays of
interest. The best way of achieving this is to subdivide only on demand, as
rays are being traced. Building the entire data structure by lazy evaluation
saves a vast amount of storage because the rays which are actually used
occupy a very sparse subset of the rays represented by the bounding
hypercubes.

Another means of saving space is to store only partial candidate lists. We
can truncate a candidate list at a given distance from the beam origin and
discard all of the objects which lie entirely beyond this distance. In order to
complete the tracing of a ray which is not intercepted by any of the remaining
objects, we ‘push’ the ray origin up to the truncation plane and begin anew
with this ray. Carried to an extreme, this discarding of information makes the
ray classification algorithm resemble non-uniform 3-D spatial subdivision
with sequential traversal (see Section 5.1).

Figure 23 shows the organization of the ray classification algorithm. The
notation C(H) means the candidate list associated with hypercube H, and
C(H) N Beam(H) means the subset of this candidate list which intersects the
beam defined by H. Another aspect of lazy evaluation is that we do not form
the candidate list of any hypercube until it is actually needed. When we
subdivide a hypercube into 32 children (by splitting along each of 5 axes), only
one of the children receives a newly created candidate list. The others simply
inherit (a pointer to) the parent’s list. Only when these other children are
visited by a ray will their candidate lists be intersected with their beams.

James Arvo and David Kirk 237

procedure RC__Intersect{(ray)
begin

p = the 5-tuple corresponding to ray;

classification axis = dominant axis of ray;

of the ray H = the leaf hypercube of hyper-octree| axis] containing p;
(" if C(H) is “inherited” then C(H) = C(H) N Beam(H);
while C(H) /s too large and H is not too small do begin

partition H along each of the 5 axes;

Let all the new children "inherit” C(H);

H = the child hypercube which contains p;

C(H) = C(H) N Beam(H); { reclassify candidates }
. endwhile;
(for each candidate in C(H) do begin { stepping in
ascending order }
d = projection of ray.interval.max onto axis;

lazy
subdivision
& candidate
list creation

candidate
processing if d < candidate.min then return; { past distance interval)
Intersect(ray, candidate);
endfor
end

Fig. 23. An outline of the ray classification algorithm. The construction of the
5-D hierarchy is an integral part of the algorithm because it occurs as a side
effect of tracing rays. Subdivision continues until the candidate list is suffi-
ciently small, or H becomes too smali.

6.5 Comparing the Directional Techniques

Figure 24 shows a number of important similarities and differences among the
directional techniques. Only features in which there is some variation are
shown. Most of the differences are a direct result of nonuniform versus
uniform direction subdivision. For instance, nonuniform subdivision leads
naturally toward lazy evaluation and also requires more parameters and
heuristics to control it. Conversely, uniform subdivision requires few param-
eters and leads to very efficient look-up, but also encourages construction as a
pre-processing step. Note that these are not necessarily immutable properties
but merely a reflection of the initial descriptions of these algorithms.
Improvements and generalizations are no doubt possible in each case.

238 A Survey of Ray Tracing Acceleration Techniques

Light buffer ' Ray coherence Ray classification

ections : Points o Objects Space
ssed with (representing light sources) (including light sources) (bounding environment)

plies to shadowing rays all rays ‘all rays
When data ' v lazily during
structure is preprocessing preprocessing ray tracing
built ' : ' : : '
Construction modified scan-line ‘coherence theorem’ object classification
of candidate algorithm . applied to pairs of " using hierarchy of
list ‘ h objects beams
Direction :
subdivision : uniform uniform nonuniform

directi‘onbcube direction cube max tree depth,

Parameters ‘ “resolution resolution max candidates,

truncation size, etc.

Candidate list - direct calculation direct calculation traversal of 2-D or
look-up . given ray direction given ray direction 5-D hierarchy and
and light source and object of origin caching

- Fig. 24." Comparisons within the family of directional tef:hriiques.

7 EXPLOITING COHERENCE

Why is it that we can expect to design algorithms which perform better than
exhaustive ray tracing? The answer lies in properties of the environment
which are often tacitly assumed. These are properties which insure that the
environment. is well behaved in some, sense, and are usually expressed in
terms of some. form of coherence. :
Sutherland et al. [57] identified many types of coherence which can be
| exploited by hidden surface algorithms. There are four types which are
‘ commonly exploited in the context of ray tracing. Of these, object coherence is
the most fundamental. It expresses the fact that objects tend to consist of
pieces which are connected, smooth, and bounded, and that distinct objects
tend to be largely disjoint in space. Objects are not typically intermingled
clouds of randomly scattered fragments. Image (or scene) coherence is the
view-dependent version of object coherence. It expresses the fact that object
coherence carries over to 2-D projections of the environment. That is, we

James Arvo and David Kirk 239

have at least the same degree of connectedness, smoothness, etc. in the image
plane as existed among the original 3-D objects. Ray coherence means that
similar rays are likely to intersect the same object in the environment. Thus,
two rays which have nearly the same origin and nearly the same direction are
likely to trace out similar paths through the environment, hitting the same
objects in nearly the same places. This is clearly related to connectedness and
smoothness properties of the objects, and is therefore another manifestation of
object coherence. Frame coherence is essentially image coherence with an added
temporal dimension. It means that the projection of an environment tends to
change continuously over time. In other words, two successive ‘frames’ of an
animation are likely to be similar if the difference in time is small. This again
depends upon object coherence, but with the added property that objects
(including the eye and light sources) tend not to move chaotically with time.

Spatial subdivision techniques rely heavily upon coherence, though this
dependence is rarely stated explicitly. The fact that small voxels tend to
intersect relatively few objects in the environment (i.e. that objects tend to be
‘locally separable’) is directly attributable to object coherence. This property
is precisely what makes spatial subdivision work. If the candidate lists
associated with voxels could not be made significantly simpler (on average)
than the original environment, spatial subdivision would gain nothing over
exhaustive ray tracing. In addition, other aspects of object coherence tend to
lessen the impact of ‘difficult’ voxels.If the objects associated with a voxel are
not separable by further subdivision, they will tend to intercept most rays
which pierce the voxel. As a result, the penalty of large candidate lists is at
least partially counterbalanced by a greater likelihood of terminating the voxel
walking. Kaplan [36] observed that this compensating effect can keep the cost
of ray tracing relatively insensitive to the number of objects in the environ-
ment. Though the complexity of individual voxels may increase, fewer voxels
are processed per ray on average.

Ray coherence is more difficult to exploit directly than object coherence,
though several approaches do so successfully. Among these are the generalized
ray techniques which will be described in Section 9. These rely upon the fact
that bundles of similar rays interact with the environment in a fairly uniform
way, making it significantly more efficient to process them as a group than
individually. As with individual rays, we can expect a narrow cone or beam to
miss most of the objects in the environment. This fact allows much of the work
involved in ray—environment intersection testing to be shared among many
rays.

Perhaps the most direct use of ray coherence in the setting of standard ray
tracing was attempted by Speer et al. [56]. In this approach the entire ray tree
resulting from a first-generation ray is retained in order to serve as a guide for

240 A Survey of Ray Tracing Acceleration Techniques

the construction of one or more subsequent ray trees. Ray coherence implies
that similar first-generation rays are likely to produce similar ray trees. The
problem addressed by Speer et al. was that of quickly identifying situations in
which a ray tree will have exactly the same structure as the previous one,
intersecting the same objects in the same order. If this were known a priori, the
new tree could be constructed very efficiently from the old one, performing
exactly one ray-object intersection calculation for each ray.

In the absence of such a priori knowledge, Speer’s approach examines each
ray of the new tree to determine which of them ‘behaves coherently.” That is,
to identify the rays which (1) hit the same object as the corresponding ray of
the previous tree, and (2) do not hit any new intervening objects. The first can
be verified by a direct ray—-object intersection calculation. In order to quickly
verify the second, each ray of the retained tree is given a cylindrical safety zone
which is as large as possible without intersecting any objects aside from those
at which the ray originates and terminates. Figure 25(a) shows the safety zones
for a ray tree consisting of two rays. If the corresponding rays of the next tree
intersect the same objects and do not pierce any of these cylinders, then no
other objects need be checked. This is the case of the dashed ray in Figure
25(a). If any cylinder is pierced, a more costly method is needed to find the
appropriate point of intersection, and the retained ray tree must be updated
with new objects and safety zones. Test results reported in [56] indicated that
a large percentage of the rays can be handled in a ‘coherent’ manner.
Unfortunately, the cost of testing and maintaining the cylindrical safety zones
were found to negate the benefits of this coherence.

Hanrahan [29] achieved better success with a related method. This method
also retains an entire ray tree but differs from Speer’s approach in that it does
not attempt to guarantee unobstructed passage from one object to the next.
Instead, all objects which can possibly prevent a ray from reaching the
previously hit object are identified using cones circumscribed around pairs of
objects (Figure25(b)) and are associated with the retained ray tree. This
retained tree is used as a cache, indicating which objects are likely to be hit by
each ray of a new ray tree, and also providing enough information to
determine when the ‘hint’ fails. A cache miss occurs when the ray either
misses the previously hit object or hits one of the potential blockers. When a
cache miss occurs, the tree is updated and new potentially blocking objects are
identified. Though the number of potential blockers may be large, requiring
an equal number of ray-object intersection tests, a greater number of
coherent rays are tracked and no ray-cylinder intersection checks are needed.

The directional techniques of Section 6 all exploit ray coherence in a natural
way. Each algorithm constructs candidate lists which are associated with
neighborhoods of similar rays, though these neighborhoods are defined

James Arvo and David Kirk 241

{b) Eye

Circumscribed
cones

(a)
Safety zones

Fig. 25. Two methods of using a previous ray tree to accelerate subsequent
intersection tests. In (a) cylindrical safety zones are used to determine when a
new object may be hit. In (b), objects which intersect the circumscribed cones
are potential blockers which cause cache misses.

differently in each case. One such collection of candidates can be efficiently
shared among all the rays of a neighborhood by virtue of the fact that similar
rays tend to interact with the environment similarly.

8 STATISTICAL OPTIMIZATIONS

Statistical methods have begun to play an important role in ray tracing. Cook
et al. [10] described a stochastic sampling technique which provided a means
of anti-aliasing as well as simulating effects such as motion blur, penumbrae,
depth of field, and dull reflections. Kajiya’s rendering equation [34] extended
these ideas to simulate effects such as caustics and diffuse interreflection of
light between objects. In most implementations, the color to be displayed at a
single pixel can be viewed as a weighted integral of the image function over a
neighborhood of the pixel, where the weight may be a filter for anti-aliasing
[42]. Stochastic sampling serves to compute reliable estimates of these
integrals via Monte Carlo integration. Naturally there is always a degree of
uncertainty in such estimates, although we can produce results of arbitrarily
high precision by computing the mean of a large number of samples.

To reduce the expense we wish to draw only enough samples to produce an
estimate of the desired accuracy. For example, we may wish to draw the
minimum number of samples which will place the estimate within 1% of the
true solution with 95% confidence. For maximal efficiency we need to
establish a relationship between the number of samples and the quality of the
estimate without resorting to rules of thumb such as ‘n is usually enough.’ If

242 A Survey of Ray Tracing Acceleration Techniques

we knew the variance of the image function over each pixel a priori, we could
pre-compute the appropriate number of samples which need to be drawn from
each. Unfortunately, this type of information is very hard to produce,
especially when the number of dimensions being sampled is large due to
effects such as motion blur and depth of field [9]. A more practical solution is
to rely upon the samples which are drawn not only to estimate the integral of
the image function, but also the variance of the estimator. If the variation
among the initial samples is sufficiently small, no further samples need to be
drawn.

After obtaining each sample we can compute a new estimate of the true
variance over the pixel. Such an estimator is itself a random variable, and its
distribution is related to the chi-square distribution if we assume that the
original samples are normally distributed. Lee et al. [42] used this fact to
devise a convenient stopping criterion for the stochastic sampling process.
Two parameters, T and 8 are used to control the quality of the image. The
tolerance, 7, specifies the acceptable variance of the computed pixel values,
and @3 is the probability of stopping too early. That is, 8 is the probability of
incorrectly inferring that the true variance is sufficiently low that the samples
drawn thus far will provide a good estimate. The parameters T and (3
determine threshold values which are pre-computed and stored in a table.
When the Nth sample is drawn, the estimated variance is incrementally
updated and compared with the Nth entry in the table. If the computed value
is less than the table entry, the sampling stops and the mean of the N samples
is used as the pixel value. A very similar approach based on the Student ¢-test
was described by Purgathofer[48].

9 GENERALIZED RAYS

The difficulty of anti-aliasing and exploiting coherence in ray tracing stems
from its use of infinitesimally thin rays. Though the simple form of these rays
leads to easy representation, efficient intersection calculations, and great
generality, some of these benefits can be traded in exchange for others. One
way to do this is to dispense with individual rays and, instead, operate
simultaneously on entire families of rays which are bundled as beams [30],
cones [1], or pencils [54]. Each of these generalized rays requires some type of
sacrifice. For instance, we may need to impose constraints on the environ-
ment, such as restricting the types of primitive objects, or we may need to
abandon the notion of ‘exact’ intersection calculations, accepting an approxi-
mation instead. The advantages gained in return can include faster execution,
effective anti-aliasing, and even additional optical effects.

Amanatides [1] generalized rays to right circular cones which are

James Arvo and David Kirk 243

represented by an apex, center line, and spread angle. For the purpose of
anti-aliasing, the intersection calculation not only needs to detect when a cone
and an object intersect, but how much of the cone is blocked by the object. A
sorted list of the closest few objects which intersect the cone is required so that -
the partial coverages can be properly combined. For reflection and refraction,
the new center line is computed using standard ray tracing techniques. The
calculation of the new virtual origin and spread angle required knowledge of
the surface curvature. The method of cone tracing also extends the repertoire
of ray tracing to include penumbrae (from area light sources) and dull
reflections. Due to the difficulty of the cone intersection and partial coverage
calculation for most objects, the environment is restricted to spheres, planes,
and polygons.

Kirk [38] extended the cone technique by accelerating the processing of
partial intersections. The projected area of cone-sphere and cone-plane
intersections can be pre-calculated for a wide range of cases and stored in a
table. Using a table look-up instead of a direct calculation produces an
approximate but fast partial coverage calculation. The cone area at the
intersection can also be used to properly anti-alias procedural textures. The
cone radius at the intersection determines the aperture size of the smallest
feature which should be represented in the texture.

Heckbert and Hanrahan [30] introduced a different ray generalization in
their beam tracing algorithm. In this approach rays are replaced by beams
which are cones with arbitrary polygonal cross section. That is, a beam
consists of a collection of rays which originate at a common apex and pass
through some planar polygon. Note that this is different from the definition of
a beam in the context of the ray classification algorithm discussed in Section
6.4. There the rays are restricted to pass through a rectangular polygon and
the origins are not restricted to a single point.

The restriction placed on the environment by this algorithm is that all
objects must be constructed with planar polygonal facets. This preserves the
basic characteristics of beams under various interactions with the environ-
ment. For instance, the portion of a beam which continues past a partially
occluding object still has polygonal cross section (Figure 26), as do beams
which are reflected from any surface (Figure 27). Refraction is the one
phenomenon which does not preserve the nature of beams. Because of
nonlinearity, a refracted beam may no longer be a cone. One remedy is to
approximate the effect of refraction with a linear transformation. This is
another compromise which must be made in order to obtain the benefits of
beam tracing.

Many aspects of the beam tracing algorithm are very similar to those of
standard ray tracing. A beam tree is constructed by recursive reflection and
transmission of beams, though the process of applying these operations to

244 A Survey of Ray Tracing Acceleration Techniques

Initial beam
cross- section

Clipped beam
cross-section

e

Eye

Polygonat
obstruction

Fig. 26. A poly‘gonal obstruction is clipped out of the cross section of a beam.
This operation can quickly lead to cross sections which are non-simple
polygons (e.g. disconnected with holes).

Reflected beam

Eye

Reflection

Reflective object
plane :

Virtual eye

Fig. 27. A top view of the arrangement in Fig. 26. When a reflective face is
encountered by a beam, the reflected beam is formed by reflecting the original
apex through the plane of the polygon, and clipping the polygon against the
beam.

beams is more complex than the corresponding operations used in construct-
ing a standard ray tree. When reflective surfaces are encountered, a ‘virtual
eye’ point is computed by reflecting the apex of the beam through the plane of
the polygon. The reflected beam has the virtual eye as its apex and its cross
section is obtained by (effectively) intersecting the reflective polygon with the
beam. See Figure 27. An important property of beams is that they can be
partially occluded, whereas rays either hit an object or not. When a beam is
partially occluded we ‘clip out’ the silhouette of the obstruction from the beam
cross section and continue processing the remainder. See Figure 26. This
clipping of the beam is a generalization of the distance interval optimization

James Arvo and David Kirk 245

for rays. It makes it possible to avoid processing far away objects which are
occluded by near ones. Heckbert and Hanrahan [30] therefore performed a
sorting operation on the polygons intersected by the beam before processing
them. ‘

The beam clipping at the heart of the beam tracer requires operations on
polygons similar to those described by Weiler and Atherton [64]. We must be
able to subtract one polygon from another, or find their intersection, and
express the result as another polygon. These operations can quickly lead to
nonconvex or fragmented polygons containing holes. Because of the recursive
nature of the beam tracing algorithm, the output of one such operation may
become the input to another. This requires robust methods which can operate
on arbitrarily complex polygons.

Beam tracing can be broken down into three basic subproblems: intersec-
tion, sorting, and clipping. Dadoun and Kirkpatrick [13] showed that all
three of these can be accelerated by introducing a hierarchical scene representation.
This data structure employs both nested convex hulls and partitioning planes,
combining aspects of bounding volume hierarchies with spatial subdivision.
To construct it, the environment is first recursively subdivided, top-down,
using a BSP tree. As in Fuch’s hidden surface algorithm [16], the partitioning
planes may be selected to contain given polygons in the environment. All
remaining polygons are grouped according to the two half-spaces defined by
the plane, which requires splitting polygons which straddle the plane. After
the BSP decomposition, we build a binary tree of nested convex hulls,
bottom-up, beginning at the leaves of the BSP tree. The convex hulls at
intermediate levels of the tree are constructed from the convex hulls of the two
linearly separated child nodes. This operation is linear in the number of hull
points, making this part of the pre-processing phase very fast. As Dadoun and
Kirkpatrick [13] point out, the hierarchy thus constructed allows us to exploit
convexity even in highly nonconvex environments. It can greatly accelerate
beam intersection testing by rejecting objects in clusters rather than
individually, which is exactly analogous to the bounding volume hierarchy
techniques of Section 4.

The hierarchical scene representation is a binary tree of convex hulls
separated by planar partitions. Given a beam origin, the partitions provide an
efficient means of assigning a priority to the groups of enclosed objects in
exactly the same way that polygons are prioritized in the BSP hidden surface
algorithm [16]. This moves much of the sorting operation into the initial
construction of this data structure. The recursive traversal algorithm shown
in Figure 12 is based upon the same principle and requires little modification to
be applicable in this context. The result is similar to that achieved by the
algorithm of Kay and Kajiya shown in Figure 9. Hierarchically nested convex
hulls are examined in the order in which they are encountered by the beam.

246 A Survey of Ray Tracing Acceleration Technigues

To further accelerate the beam-hull intersection testing, Dadoun and
Kirkpatrick [13] augment the beam and each convex hull of the hierarchy
with an outer sequence [12]. This is a nested sequence of successively large and
simpler convex polyhedra which are formed by removing bounding half-
spaces. Given two polyhedra with n and m hull points, respectively, if both
are augmented by an outer sequence the intersection test can be done in
O(log(m) + log(n)) time [12].

A pencil is another type of generalized ray. It is comprised of rays which are
in the vicinity of a special ray called the axial ray. Each of these nearby paraxial
rays can be represented as a 4-D vector encoding its deviation from the axial
ray. Shinya et al. [54] used techniques from paraxial approximation theory to
determine how these pencils interact with surfaces encountered in an environ-
ment, viewing it as an optical system. By restricting attention to small
deviations from the axial ray, the pencil transformations could be assumed to
be linear, and therefore representable as 4 x 4 system matrices. Propagation of
rays grouped as pencils could then be carried out by combining the system
matrices corresponding to the individual surfaces. The approximation is only
valid for sufficiently smooth surfaces, however, so it can only be applied to
pencils which do not encounter edges or surface discontinuities. Shinya et al.
traced individual rays in the areas which posed these problems.

10 OPTIMIZATIONS FOR CSG

Using the method of CSG (Constructive Solid Geometry), solid objects are
represented by combining primitive solids with the boolean set operators
intersection (&), union (+), and difference (-). One way to generate shaded
images from a CSG model is to generate a boundary surface representation
from the model and then render those surfaces using some hidden-surface
algorithm. In contrast, ray tracing can generate images of CSG models by
intersecting rays directly with the CSG tree. A straightforward method for
intersecting rays with CSG trees is to ‘classify’ each ray against the CSG tree,
determining the intervals along the ray which intersect the solid. Roth [50]
described this process as a recursive walk down the tree structure, intersecting
the ray with each primitive in the tree, and combining the resultant intervals
on the way back up the tree.

This algorithm can be accelerated by the use of object bounding volumes.
Roth [50] discussed the application of 2-D box and 3-D sphere bounding
volumes in this manner and reported a factor-of-two speed-up. The 2-D box
aids in the first-generation rays only, but the sphere may be used for other rays
as well. In addition, the ray distance interval optimization described in
Section 4 can be used to eliminate some CSG subtrees from consideration.

James Arvo and David Kirk 247

Gervautz [19] used both of these techniques and also applied 3-D bounding
boxes within the tree to reduce the number of ray/primitive intersection
checks.

It is possible to reduce the number of intersections by using known
characteristics of the CSG operators. In the case of union (+), the tree can be
rearranged without affecting the root object. Gervautz [19] pointed out that
this can be advantageous in terms of reducing the size of aggregate bounding
volumes. One can also take advantage of potential subtree elimination with
the < -’ and ‘&’ operators [50]. For instance, in the combination ‘A-B,’ if the
ray does not intersect ‘A,’ there is no value in checking the ‘B’ subtree for
intersection with the ray, since it cannot affect the outcome.

Since the process of ray—CSG tree intersection is recursive, it is advanta-
geous to reduce the overhead typically associated with recursion, such as
procedure calls and dynamic memory allocation [50]. Unfortunately, the
organization of the task is such that the classification and combination of
intervals must be performed independently for each ray, regardless of any
coherence which exists. Also, the entire set of 1-D ray intervals must be
computed since it is not known a priori which will be the closest. The
classification, which is essentially a depth sorting operation, must be per-
formed on all of the intervals. Atherton [4] proposed using a hybrid
scan-linefray tracing algorithm to solve this problem. The primitives in the
CSG tree are decomposed into polygonal approximations, and a Y-X-Z
scan-line algorithm is applied. Spans are maintained which represent simplif-
ications of the original CSG tree. At each pixel, the CSG problem is only
solved for the first intersection. '

Bronsvoort et al. [5] described an alternative way to utilize the coherence
properties of scan-line algorithms. The ray-bounding volume check described
by Roth [50] is replaced by a point/scan-line interval test. At each scan line,
only part of the CSG tree may contribute to the image. It is possible,
therefore, to maintain an active subtree of the CSG tree which is analogous to
the active polygon list in a typical scan-line algorithm. This greatly reduces
the complexity of the ray—CSG tree intersection which must be performed.
Maintaining a list of intervals instead of a hierarchy of bounding boxes is
more efficient because the intervals represent a tighter bound. The perform-
ance improvement is lessened due to the extra cost of computing and sorting
the intervals. A greater gain is realized by the simplification of the CSG tree
which can be performed.

Gervautz [19] also created ‘temporary’ active subtrees to accelerate the ray
tracing process. The subtrees for first-generation rays are created by project-
ing the bounding volumes of primitive objects onto the view plane and
maintaining a quadtree structure. Each pixel in the quadtree can be
associated with those objects which penetrate it. In order to accelerate the

248 A Survey of Ray Tracing Acceleration Technigques

tracing of shadowing rays, another quadtree can be generated for a projection
plane from a point light source. For other rays (reflection and transparent), an
octree was used. The CSG object tree must be quite complicated before the
savings in ray tracing time are negated by the cost of constructing the
subtrees, particularly in the octree case.

Youssef [71] described a variation of CSG in which the objects are
restricted to interval representations in some coordinate space. Examples of
such objects are boxes in Cartesian coordinates, spheres in spherical coor-
dinates, and cylinders in cylindrical coordinates. Aggregate objects are
constructed by combining the coordinate spaces using the union (+) or
subtraction ('~) operators. Intersection (&) is not provided. The process of
ray tracing is carried out by tracing rays through the coordinate volumes in which
the objects are represented. This approach is most effective when representing
many regularly spaced similar objects, such as bricks in a wall.

Wyvill et al. [68] also considered the use of an octree to subdivide space.
Within each voxel of the octree, the space can be classified with respect to the
solid represented by the CSG tree (or DAG). The possible classifications are:
(1) full (completely contained within some solid); (2) empty (completely
outside all solids); (3) contains boundaries between empty space and one
primitive object; (4) contains boundaries between full space and one subtrac-
ted primitive object; (5) volume is below some minimum size threshold.

Cases (1)~(4) are straightforward to ray trace directly, but case (5) is more
complex. In their early paper [66], Wyvill and Kunii labeled these voxels as
‘nasty cells’ and either ignored them or colored them black. In [68] each of the
voxels in case (5) is represented as a pruned CSG subtree which contains only
those primitives which are present in that voxel. The subtrees are constructed
as part of the process of generating the octree. The full CSG tree is traversed, -
subdividing each primitive into its component octree voxels. The different
octree structures are then combined according to the CSG operators linking
them together. The CSG tree simplification is implicit in this process in which
only relevant primitives ever appear in a given voxel. In the process of ray
tracing, the octree structure is traversed and only those subtrees which are
encountered are intersected with the rays. This simplification of a CSG tree
into smaller subtrees is a theme which recurs in almost all of the approaches
for ray tracing acceleration in the context of CSG.

Fujimoto et al. [18] described a similar approach, but used the SEADS
approach described in Section 5.2. The task of filling this data structure was
performed by a pre-processor termed B-COM, for ‘boolean compiler.” The
B-COM classified voxels as being either homo or hetero. The homo case
corresponds to cases (1) and (2) from [68], and the hetero case corresponds to
cases (3), (4) and (5). In the process of tracing rays, all homo voxels can be
ignored and rays need only be intersected with the contents of hetero voxels

James Arvo and David Kirk 249

which the ray pierces. Fujimoto’s results indicate that SEADS outperforms the
octree method if the pre-processing time is ignored.

Arnaldi ef al. [2] also described a voxel structure within which simplified
CSG subtrees can be used to accelerate ray intersection calculations. The
structure is hierarchical but not regular. The image plane is divided into
parallelepiped cells which closely surround projections of the primitive
objects. These cells are constructed around the bounding boxes of the
primitives and intermediate nodes. Some minimization of the bounding boxes
at the intermediate intersection (&) nodes is possible by computing the
intersections of the bounding boxes. A Binary Space Partitioning (BSP)
algorithm is used to perform the subdivision and classification of bounding
boxes with respect to the voxels.

After the 2-D partitioning has been performed, each resulting frustrum is
subdivided in depth to generate a stack of frustra. This presents some
difficulty in determining which voxel is a neighbor when a ray passes from one
column of voxels to another. To accelerate the voxel walking, a set of pointers
is maintained to express the connectivity. The adjacency is expensive to
compute, but the cost can be reduced by calculating it as subdivision proceeds
and updating it continuously. Tracing first-generation rays is efficient because
each ray traverses a single column. Other rays are much more costly due to
the added expense of calculating the neighbor across columns.

The main optimization which underlies all of the approaches for accelera-
ting ray tracing of CSG is to subdivide space and pre-process or compile the
CSG structure into the spatial hierarchy. Subtrees of the main CSG tree can
be generated for individual spatial hierarchy nodes by intersecting the volume
of the node (or voxel) with the CSG tree. This process allows the ray tracer to
take advantage of the coherence present due to the locality of primitives.

11 PARALLELIZATION AND VECTORIZATION

Acceleration of ray tracing can also be achieved by performing some of the
operations concurrently. Several approaches to this have been attempted,
including: (1) vectorization; (2) execution on a collection of general-purpose
computers; (3) execution on a general-purpose multicomputer; and (4)
custom special-purpose hardware.

In addition, a number of parallel algorithms have been developed which are
broadly applicable. We will discuss the different classes independently,
progressing in roughly chronological order. Approach (2), execution on a
collection of general-purpose computers, has not really been directly
addressed in any research, although it clearly has a place in this taxonomy.
Although we will not explicitly discuss this case, it is interesting to note that

250 A Survey of Ray Tracing Acceleration Techniques

many of the special-purpose architectures are described in terms of simulated
performance on one or more general-purpose computers.

11.1 Vectorization

Max [43] organized a restricted procedural ray tracer for the vectorizing
compiler on a Cray-1 supercomputer. The procedural model rendered ocean
waves and islands. The waves are represented as a height field constructed
from superimposed traveling sine waves. The islands are also represented as
height fields, composed of elliptical paraboloids with superimposed cosine
terms to give rolling hills. First-generation rays are traced against the water
and islands, as are up to two reflections from the water. No shadow rays are
traced, although island surfaces which face away from the light source (sun)
are considered to be in shadow. This relatively uniform organization allows
the ray tracing to be vectorized more efficiently.

The ocean height field points which are relevant for a given scan line are
bounded by an ellipse. Using this bound, only a subset of the possible points
must be generated. The set of points is passed through a depth-buffer to
determine the visible points. The first-generation rays are processed as a
vector, and the resulting shading calculations are also vectorized. Similarly,
those rays which are reflected are gathered into smaller vectors to be processed
as a unit.

Plunket and Bailey [49] described a more general implementation of ray
tracing on a CDC Cyber 205. The task is organized to trace a list of rays
sequentially against all of the surfaces in the scene. The list accumulates until
it is large enough to be traced, and each ray is considered concurrently and
totally independently. In other words, there is no advantage taken of
coherence between rays. A simple implementation of vectorized ray tracing
was described as follows.

While there are still unfinished pixels:

(1) Add first-generation, reflection, and shadowing rays to the queue until
it is full.

(2) Intersect the entire queue of rays with each surface in the scene using
vector code.

(3) Determine the visible surface for each ray using CSG evaluation
techniques.

(4) Spawn additional rays for modeling special effects and add these to the
queue. '

(5) Determine the intensity of pixels which have complete visible surface
calculations.

This algorithm is necessarily more complex than the scalar version since

James Arvo and David Kirk 251

more than one pixel is being processed at the same time. An additional
problem is that given that CSG operations are going to be performed based on
the intersection distances, the results of processing the queue must include
enough information to resolve the CSG tree. The storage space required for
results is proportional to the product of the number of rays and the number of
objects. This conflicts with the desire to make the vector queue as long as
possible to most effectively use the vector capabilities. A compromise Is to
process rays in groups of 500.

The process of traversing the CSG tree is also vectorized because the time
spent in this operation becomes significant once the intersection calculations
are vectorized. Vectorizing the tree traversal requires that the tree be
traversed in the same order for all rays and therefore precludes the subtree
simplifications of many other CSG algorithms. Though more arithmetic
operations are required in the vectorized organization, there is a net gain in
performance due to the absolute speed of the vector processing.

11.2 Special-purpose Hardware

An example of special purpose ray tracing hardware is the LINKS-1
multicomputer [46]. This is a rare specimen among special-purpose render-
ing architectures because it has actually been built and is in operation
generating ray traced images. LINKS-1 is similar to the vectorized
approaches in that each ray is traced concurrently and independently. The
LINKS-1 architecture consists of 64 node computers interconnected with a single
controlling root computer. The root computer can dynamically reconfigure
the organization of the node computers, using them in parallel, as a pipeline,
or in any combination. Communication between node computers is achieved
through an intercomputer memory swapping unit, which is a device for transferring
large amounts of data between node computers.

Each node computer consists of a Zilog Z8001 control processor (CU), an
Intel 8086/8087 arithmetic processor (APU), 1 Mbyte of local memory, and is
attached to two intercomputer memory swapping units (IMSU). The APU
operates as a slave of the CU. Each node computer N(:) is connected to its
nearest neighbor N(i + 1) by an IMSU. It is also connected to the root
computer via another IMSU. These connections allow rapid swapping of data
between processors.

The process of ray tracing on the LINKS-1 is described as a pipelined
sequence of object sorting, ray tracing, and shading. The node computers can
be configured as a set of parallel pipelines to render a sequence of images. It is
assumed that each pipeline retains the entire world database, and rays are
distributed among different pipelines. Timings for execution of such a
configuration provided parallel utilization of up to 65 % , largely because of the

252 A Survey of Ray Tracing Acceleration Techniques

ray tracing component of the pipe which is kept busy. However, the first and
third stages of the pipe (object sorting and shading, respectively) are often
kept waiting.

While the LINKS architecture duplicates the entire database and distrib-
utes rays, Kobayashi et al. [41] proposed a parallel machine in which the
database is distributed over a set of intersection processors (IPs). Each IP
receives only a portion of the world which corresponds to spatial subdivision
and rays are passed from one processor to another as they are propagated
through space. A host computer generates the initial viewing rays and
distributes them to the appropriate IP based on the ray direction. Each IP
checks its rays for intersection with its objects and passes on the rays which do
not intersect anything. Each IP is also responsible for calculation of the next
IP. Rays which do intersect an object are passed to a network of shading
processors (SP) which resolve the ray tree and generate final pixel colors.

The space bounding the environment is subdivided using an octree. To
ease the problem of stepping between voxels of varying size, a quadtree is
maintained on each voxel face to keep track of the neighbors. The octree is
first generated based on the distribution of objects, and then the face-neighbor
quaditree is constructed. This method was termed an adaptive division graph. The
resulting space was mapped on