
5.4 Some Example Programs 99

For the completness direction we need to generalize the induction hypothesis
somewhat differently.

Theorem 5.2 (Completeness of I/O Resource Management)

1. If Γ; ∆ =⇒ A ⇑ then Γ; ∆[1],∆O\∆[0],∆O =⇒ A ⇑ for any ∆O.

2. If Γ; ∆;A ⇓ =⇒ P then Γ; ∆[1],∆O\∆[0],∆O;A ⇓ =⇒ P for andy ∆O.

Proof: By mutual induction on the structure of the given derivation.5 2

5.4 Some Example Programs

We start with some simple programs. Following the tradition of logic program-
ming, we write implications in the program (Γ) in reverse so that A ◦−B means
B(A. Implication in this direction is left associative, and subgoals solved
(visually) from left-to-right. So,

P ◦−Q ◦−R

stands for (P ◦−Q) ◦−R which is the same as R((Q(P). If P matches the
current atomic goal, then first subgoal to be solved is Q and then R. This is
consistent with the informal operational semantics explained above.

The first program is non-terminating for the simple query p.
u1 : p ◦− p.
u0 : p.

Then a goal =⇒ p under this program will diverge, since it will use u1 first,
which produces the identical subgoal of =⇒ p. If we reorder the clauses

u0 : p.
u1 : p ◦− p.

the query =⇒ p will produce the immediate proof (u0) first and, if further
answer are requested, succeed arbitrarily often with different proofs. We can
slightly complicate this example by adding an argument to p.

u0 : p(0).
us : ∀x. p(s(x)) ◦− p(x).

In a query we can now leave an existential variable, indicated by an uppercase
letter, =⇒ p(X). this query will succeed and print the answer substitution
X = 0. If further solutions are requested, the program will enumerate X = s(0),
X = s(s(0)), etc. In general, most logic programming language implementation
print only substitutions for existential variables in a query, but not other aspects
of the proof it found.

The trivial examples above do not take advantage of the expressive power
of linear logic and could equally well be written, for example, in Prolog.

For the next example we introduce lists as terms, using constructors nil and
cons. For example, the list 1, 2, 3 would be written as cons(1, cons(2, cons(3, nil))).
A program to enumerate all permutations of a list is the following.

5[check for lemmas and write out some cases]

Draft of November 1, 2001

100 Linear Logic Programming

p0 : perm(cons(X,L), K) ◦−(elem(X)(perm(L,K))
p1 : perm(nil, cons(X,K)) ◦− elem(X) ◦− perm(nil, K)
p2 : perm(nil, nil)

Here we have left universal quantifiers on X, L, and K implicit in each
declaration in order to shorten the program. This is also supported by imple-
mentations of logic programming languages.

We assume a query of the form =⇒ perm(l, K) where l is a list and K is a
free existential variable. The program iterates over the list l with p0, creating a
linear hypothesis elem(t) for every element t of the list. Then it repeatedly uses
clause p1 to consume the linear hypothesis in the output list K. When there are
no longer any linear hypotheses, the last clause p2 will succeed and therefore
the whole program.

As a second example we consider a simple solitaire game with a board of the
form

Each circle represents a hole which is filled if that hole contains a peg. The

initial position

has one empty hole, while all other holes are filled by pegs (14 all together).
We move by jumping one peg over another if the hole behind it is empty. For
example, in the given initial position there are only two legal moves, one of
which leads to the following situation:

The goal is to achieve a configuration in which only one peg is left. Alternatively,
we can say the goal is to make 13 consecutive moves starting from the original
position.

Draft of November 1, 2001

5.4 Some Example Programs 101

We use two digits to represent the address of each hole on the board in the
following manner:

00

10 11

20 21 22

31 32 33

40 41 42 43 44

30

To represent the current situation, we have two predicates

empty(x, y) Hole xy is empty
peg(x, y) Hold xy contains a peg

Then the initial situation is represent by the linear hypotheses

peg(0, 0),
peg(1, 0), peg(1, 1),
peg(2, 0), empty(2, 1), peg(2, 2),
peg(3, 0), peg(3, 1), peg(3, 2), peg(3, 4),
peg(4, 0), peg(4, 1), peg(4, 2), peg(4, 3), peg(4, 4).

Now each possible move can be represented in the style of our earlier encodings
as a linear implication. Because there are six possible directions for jumping
(although many are impossible for any given peg), we have six different rules.
We name each rule with its compass direction

sw : peg(x, y)⊗ peg(x+ 1, y)⊗ empty(x+ 2, y)
(empty(x, y)⊗ empty(x+ 1, y)⊗ peg(x+ 2, y)

ne : peg(x+ 2, y)⊗ peg(x+ 1, y) ⊗ empty(x, y)
(empty(x+ 2, y)⊗ empty(x+ 1, y) ⊗ peg(x, y)

e : peg(x, y)⊗ peg(x, y + 1)⊗ empty(x, y + 2)
(empty(x, y)⊗ empty(x, y + 1)⊗ peg(x, y + 2)

w : peg(x, y+ 2)⊗ peg(x, y+ 1)⊗ empty(x, y)
(empty(x, y+ 2)⊗ empty(x, y+ 1)⊗ peg(x, y)

se : peg(x, y)⊗ peg(x+ 1, y+ 1)⊗ empty(x+ 2, y + 2)
(empty(x, y)⊗ empty(x+ 1, y+ 1)⊗ peg(x+ 2, y + 2)

nw : peg(x+ 2, y+ 2)⊗ peg(x+ 1, y+ 1)⊗ empty(x, y)
(empty(x+ 2, y+ 2)⊗ empty(x+ 1, y+ 1)⊗ peg(x, y)

In order to specify the goal, we can specify the precise desired configuration.
In this example we see if we won by counting the number of moves, so we can add
count(0) to the initial state, count(n) to the left-hand side of every implication

Draft of November 1, 2001

102 Linear Logic Programming

and count(n + 1) to the right-hand side. To solve the puzzle we then have to
prove

Γ0; ∆0, count(0) =⇒ count(13)⊗>

where Γ0 is the program above and ∆0 is the representation of the initial situ-
ation.

This representation is adequate, but unfortunately it does not fall within
the class of linear hereditary Harrop formulas because of its use of ⊗. In fact, if
we look at the seqent we have to prove above to solve the puzzle, the proof will
not proceed in a goal-directed fashion. Instead, we have to continually focus on
propositions in Γ0 until the goal happens to be provable in the end.

Fortunately, we can transfer it into the class LHHF by taking advantage of
two ideas. The first is a logical law called uncurrying :

(A⊗ B)(Ca`A((B(C)

This allows us to eliminate simultanous conjunction on the left-hand side of
linear implications. But what about the right-hand side? In this case no similar
local transformation exists. Instead we transform the whole program by using
a so-called A-translation or continuation-passing transform.6 Normally, a move
A(B is a function that transforms the resource A into the goal B. However,
instead of returning B, we will now add a second argument that consumes the
result B and eventually returns a final answer. By the substitution principle
(or cut, in the sequent calculus), this is sound and complete. So A(B is
transformed into A((B(p)(p where p is a new atomic predicate. Note
that this shifts B to the left-hand side of an implication, so we can now apply
uncurrying in case it is a tensor. In general, all clauses of the program need to
be transformed with the same new propositional parameter or constant p.

If we read the transformed proposition operationally (also changing the order
of subgoals),

p ◦−A ◦−(B(p),

it means that in order to prove p we have to prove A (which may consume some
resources), then assume B and make a recursive call. In our example, we call
the new predicate jump and the first clause

sw : peg(x, y) ⊗ peg(x+ 1, y) ⊗ empty(x + 2, y)
(empty(x, y) ⊗ empty(x+ 1, y) ⊗ peg(x+ 2, y)

is transformed into

sw : jump ◦−(peg(x, y) ⊗ peg(x+ 1, y) ⊗ empty(x + 2, y))
◦−(empty(x, y) ⊗ empty(x+ 1, y) ⊗ peg(x+ 2, y)(jump)

and similarly for the other clauses. Now we can eliminate the simultaneous
conjunction by uncurrying to obtain an equivalent proposition in the LHHF

6[add citations]

Draft of November 1, 2001

5.5 Logical Compilation 103

fragment.

sw : jump ◦− peg(x, y) ◦− peg(x+ 1, y) ◦− empty(x+ 2, y)
◦−(empty(x, y)(empty(x+ 1, y)(peg(x+ 2, y)(jump)

In order to count the number of moves we just add an argument to the jump
predicate that we count down to zero.

sw : jump(n+ 1) ◦− peg(x, y) ◦− peg(x+ 1, y) ◦− empty(x+ 2, y)
◦−(empty(x, y)(empty(x+ 1, y)(peg(x+ 2, y)(jump(n))

ne : jump(n+ 1) ◦− peg(x+ 2, y) ◦− peg(x+ 1, y) ◦− empty(x, y)
◦−(empty(x+ 2, y)(empty(x+ 1, y)(peg(x, y)(jump(n))

e : jump(n+ 1) ◦− peg(x, y) ◦− peg(x, y+ 1) ◦− empty(x, y+ 2)
◦−(empty(x, y)(empty(x, y+ 1)(peg(x, y+ 2)(jump(n))

w : jump(n+ 1) ◦− peg(x, y + 2) ◦− peg(x, y + 1) ◦− empty(x, y)
◦−(empty(x, y+ 2)(empty(x, y+ 1)(peg(x, y)(jump(n))

se : jump(n+ 1) ◦− peg(x, y) ◦− peg(x+ 1, y + 1) ◦− empty(x + 2, y+ 2)
◦−(empty(x, y)(empty(x+ 1, y+ 1)(peg(x+ 2, y+ 2)(jump(n))

nw : jump(n+ 1) ◦− peg(x+ 2, y+ 2) ◦− peg(x+ 1, y + 1) ◦− empty(x, y)
◦−(empty(x+ 2, y + 2)(empty(x+ 1, y+ 1)(peg(x, y)(jump(n))

Finally we add a clause to succeed if we can make n moves given the query
jump(n).

done : jump(0) ◦−>

Note the use of > in order to consume the state at the end of the computation.
The runnable implementation of this program in the concrete syntax of Lolli

can be found in the Lolli distribution in the directory examples/solitaire/.
In order to circumvent the problem that Lolli does not show proofs, but only
instantiations for the free variables in the query, we can add another argument
to the jump predicate to construct a sequence of moves as it executes.

5.5 Logical Compilation

In this section we examine means to compile program clauses, which may reside
either in Γ or ∆. We do not push the ideas very far, but we want to give some
intuition on how more efficient and lower level compilation strategies can be
developed.

The main question is how to compile procedure call, which, as we have seen,
corresponds to applying focusing on the left once the goal is atomic. Instead
of working with focusing rules on the left, we would like to translate the pro-
gram clause to a residual subgoal, still is logically described but which can be
interpreted as providing instructions for search (and thereby for computation).
More formally, we introduce three new judgments. Note that propositions A

Draft of November 1, 2001

104 Linear Logic Programming

stand for linear hereditary Harrop formulas as before, while G stands for resid-
ual formulas whose formal definition we postpone until we have considered what
is needed.

Γ; ∆ =⇒ A ↑↑ A follows by resolution from Γ; ∆
A� P \ G A immediately entails goal P with residual subgoal G
Γ; ∆ =⇒ G ↑ residual subgoal G has a resolution proof from Γ; ∆

The resolution judgment A ↑↑ arises from the uniform proof judgment A ⇑ by
copying all right rules except the choice rules

Γ; ∆;A ⇓ =⇒ P
decideL

Γ; ∆, A =⇒ P ⇑
Γ, A; ∆;A ⇓ =⇒ P

decideL!
Γ, A; ∆ =⇒ P ⇑

which are replaced by

A� P \ G Γ; ∆ =⇒ G ↑
decideL�

Γ; ∆, A =⇒ P ↑↑

A� P \ G Γ, A; ∆ =⇒ G ↑
decideL!�

Γ, A; ∆ =⇒ P ↑↑

We design the residuation A� P \ G to be parametric in P , so the translation
of A to G does not depend on the precise form of P . In other words, we
compile A independently of the form of the call—relaxing this would allow
some inlining optimizations. Furthermore, we must be careful that compilation
always succeeds and gives a uniquely defined result. That is, for every A and
P there exists a unique residual goal G such that A � P \ G. Therefore the
natural form of definition is inductive on the structure of A.

On the other hand it turns out our propositions A are not general enough
to express residual goals, so we need some additional propositions. We will see
for each connective what we need and collect them at the end. Note that if
A � P \ G then a uniform proof with focus formula A ⇓ and goal P should
correspond to a proof of the residual goal G ↑.

Atomic Propositions. If our focus formula is atomic, then we have to resid-
uate an equality check. Operationally, this will be translated into a call to
unification.

P ′ � P \ P ′ .= P

The right rule for this new connective is clear: it just establishes the equality.

.
= R

Γ; · =⇒ P
.
= P ↑

For the left rule (which is not needed here), see Exercise 5.3.

Draft of November 1, 2001

5.5 Logical Compilation 105

Linear Implication. If the focus formula is A1(A2, then A1 is must be
solved as a subgoal. In addition, the residuation of A2 yields another subgoal
G. These must be joined with simultaneous conjunction in order to reflect the
context split in the(L rule.

A2 � P \ G

A1(A2 � P \ G⊗A1

The order is determined by our general convention on conjunctive non-determinism:
we first solve G and then A, so G is written on the left. The corresponding right
rule for ⊗ is familiar, but used here in a slight different form, so we restate it
explicitly.

Γ; ∆1 =⇒ G ↑ Γ; ∆2 =⇒ A ↑↑
⊗R

Γ; ∆1,∆2 =⇒ G⊗ A ↑
Of course, we use resource management as shown before to postpone the split-
ting of ∆ = (∆1,∆2) when using this rule during logic program execution.

Alternative Conjunction. If the focus formula is an alternative conjunction
A1NA2, then we must choose either to use the NL1 or NL2 rule. This choice
is residuated into an external choice, for which we have the two corresponding
rules ⊕R1 and ⊕R2.

A1 � P \ G1 A2 � P \ G2

A1NA2 � P \ G1 ⊕G2

Again, we repeat the two right rules for ⊕.

Γ; ∆ =⇒ G1 ↑
⊕R1

Γ; ∆ =⇒ G1 ⊕G2 ↑
Γ; ∆ =⇒ G2 ↑

⊕R2
Γ; ∆ =⇒ G1 ⊕G2 ↑

Additive Truth. If the focus formula is > then there is no left rule that can
be applied and focusing fails. Correspondingly, there is no right rule for 0, so
> residuates to 0.

> � P \ 0

As usual, this can be seen as a zero-ary alternative conjunction. And there is
no right rule for 0 ↑.

Unrestricted Implication. If the focus formula is an unrestricted implica-
tion A1 ⊃ A2 we have to solve A1 as a subgoal, but with access to any of the
linear resources.

A2 � P \ G

A1 ⊃ A2 � P \ G ⊗! A1

Here we should think of ⊗! as a single binary connective, a point overlooked
in [CHP00]. The reason is that it should be statically obvious when solving G

Draft of November 1, 2001

106 Linear Logic Programming

in a proposition G ⊗! A1 that A1 cannot consume any resources remaining from
G. The new connective is characterized by the following right rule.

Γ; ∆ =⇒ G ↑ Γ; · =⇒ A ↑↑
⊗! R

Γ; ∆ =⇒ G ⊗! A ↑

For the left rule (which is not needed here) see Exercise 5.2.

Universal Quantification. The universal quantifier is simply residuated into
a corresponding existential quantifier.

[a/x]A� P \ [a/x]G
a

∀x. A� P \ ∃x. A

where a must be a new parameter. The new version of the right rule is just as
before with a new judgment

Γ; ∆ =⇒ [t/x]G ↑
∃R

Γ; ∆ =⇒ ∃x. G ↑

Thus we needed the following language of residual goals G where A ranges
over linear hereditary Harrop formulas.

G ::= P ′
.
= P | G⊗A | G1 ⊕G2 | 0 | G ⊗! A | ∃x. G

We call the system of uniform proofs where we replace the choice rules
decideL and decideL! with decideL� and decideL!� the system of resolution.
Now the have the following theorem asserting the correctness of resolution.

Theorem 5.3 (Correctness of Resolution)
Γ; ∆ =⇒ A ⇑ if and only if Γ; ∆ =⇒ A ↑↑.

Proof: See Exercise 5.1 2

To see how subgoal residuation is related to compilation, consider a simple
concrete program that implements a test if a natural number in unary presen-
tation is even.

even(0)N∀x. even(x)(even(s(s(x)))

Let us call the proposition E. For illustration purposes, we have combined
the unrestricted clauses defining even into one using alternative conjunction,
because unrestricted assumptions A,B are equivalent to a single unrestricted
assumption ANB. If we have generic goal even(t) for some (unknown) term t,
we can calculate

E � even(t) \ even(0)
.
= even(t) ⊕ ∃x. even(s(s(x)))

.
= even(t)⊗ even(x)

Now we can read the new connectives in the residual goal as search instructions
from left to right:

Draft of November 1, 2001

5.6 Exercises 107

1. Unify (
.
=) the proposition even(0) with the goal even(t).

2. If this fails (⊕) then create a new existential variable X (∃x).

3. Then unify (
.
=) the proposition even(s(s(X))) with the goal even(t).

4. If this succeeds (⊗) continue with a recursive call to even with X.

Given the logical reading, we can reason about optimizations using the laws of
linear logic. For example, even(0)

.
= even(t) succeeds exactly if 0

.
= t. In the

second line we can unfold the unification further, since one of the terms to be
unified is known to be s(s(x)). This kinds of optimization naturally lead to a
higher-level version of the Warren Abstract Machine (WAM) [AK91] which is
the basis for almost all modern Prolog compilers.

5.6 Exercises

Exercise 5.1 Carefully prove the correctness of resolution (Theorem 5.3). Ex-
plicitly state and prove any generalized induction hypotheses or lemmas you
might need.

Exercise 5.2 We consider the new connective ⊗! from subgoal residuation as
a connective in full intuitionistic linear logic A ⊗! B. The right rule in the
sequent calculus is determined by the right rule given in Section 5.5.

Γ; ∆ =⇒ A Γ; · =⇒ B
⊗! R

Γ; ∆ =⇒ A ⊗! B

This corresponds directly to the introduction rule in natural deduction.

1. Show the elimination rule(s) in the natural deduction.

2. Show these rule(s) to be locally sound and complete.

3. Show the corresponding left rule(s) in the sequent calculus.

4. Show the new essential cases in the proof of admissibility of cut.

This demonstrates that ⊗! can be seen as a first-class connective of linear logic,
even if A ⊗! B may also be considered to as a shorthand for A ⊗ (!B).

Exercise 5.3 We consider the new connective
.
= from subgoal residuation as a

connective in full intuitionistic linear logic A
.
= B. The right rule in the sequent

calculus is determined by the right rule given in Section 5.5:

.
= R

Γ; · =⇒ A
.
= A

As usual, this corresponds directly to the introduction rule in natural deduction.

Draft of November 1, 2001

108 Linear Logic Programming

1. Show the elimination rule(s) in the natural deduction.

2. Show these rule(s) to be locally sound and complete.

3. Show the corresponding left rule(s) in the sequent calculus.

4. Show how to modify the proof of admissibility of cut to account for the
new connective.

Exercise 5.4 Extend the translation to A-normal form, as used in the encoding
of the solitaire game, to arbitrary propositions in linear logic. It should have
the property that each proposition is translated into a corresponding proposition
using only the additional predicate p. State explicitly which laws you need that
are similar to uncurrying to eliminate gratuitous uses of propositions that are
left asynchronous.

Exercise 5.5 Implement the Towers of Hanoi puzzle with three pegs and sev-
eral disks in Lolli.

Exercise 5.6 Define a translation that maps a regular expressions r to a pred-
icates p and some unrestricted linear hereditary Harrop formulas. This transla-
tion, to be described on paper, should have the property that a word w is in the
language of r if and only if p(w) can be proven by the logic programming inter-
preter underlying Lolli. Implement words as list of single character constants
and make sure to pay attention to termination issues.

Apply your translation to r = a(b+ c)∗a and execute the resulting program
on several successful and failing queries.

Draft of November 1, 2001

Bibliography

[ABCJ94] D. Albrecht, F. Bäuerle, J. N. Crossley, and J. S. Jeavons. Curry-
Howard terms for linear logic. In ??, editor, Logic Colloquium ’94,
pages ??–?? ??, 1994.

[Abr93] Samson Abramsky. Computational interpretations of linear logic.
Theoretical Computer Science, 111:3–57, 1993.

[ACS98] Roberto Amadio, Ilaria Castellani, and Davide Sangiorgi. On bisim-
ulations for the asynchrounous π-calculus. Theoretical Computer
Science, 195(2):291–423, 1998.

[AK91] Hassan Äıt-Kaci. Warren’s Abstract Machine: A Tutorial Recon-
struction. MIT Press, 1991.

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in
linear logic. Journal of Logic and Computation, 2(3):197–347, 1992.

[AP91] J.-M. Andreoli and R. Pareschi. Logic programming with sequent
systems: A linear logic approach. In P. Schröder-Heister, edi-
tor, Proceedings of Workshop to Extensions of Logic Programming,
Tübingen, 1989, pages 1–30. Springer-Verlag LNAI 475, 1991.

[Bar96] Andrew Barber. Dual intuitionistic linear logic. Technical Report
ECS-LFCS-96-347, Department of Computer Science, University of
Edinburgh, September 1996.

[Bib86] Wolfgang Bibel. A deductive solution for plan generation. New
Generation Computing, 4:115–132, 1986.

[Bie94] G. Bierman. On intuitionistic linear logic. Technical Report 346,
University of Cambridge, Computer Laboratory, August 1994. Re-
vised version of PhD thesis.

[BS92] G. Bellin and P. J. Scott. On the π-calculus and linear logic.
Manuscript, 1992.

Draft of November 1, 2001

110 BIBLIOGRAPHY

[Cer95] Iliano Cervesato. Petri nets and linear logic: a case study for logic
programming. In M. Alpuente and M.I. Sessa, editors, Proceed-
ings of the Joint Conference on Declarative Programming (GULP-
PRODE’95), pages 313–318, Marina di Vietri, Italy, September
1995. Palladio Press.

[CHP00] Iliano Cervesato, Joshua S. Hodas, and Frank Pfenning. Efficient
resource management for linear logic proof search. Theoretical Com-
puter Science, 232(1–2):133–163, February 2000. Special issue on
Proof Search in Type-Theoretic Languages, D. Galmiche and D.
Pym, editors.

[Dos̆93] Kosta Dos̆en. A historical introduction to substructural logics. In Pe-
ter Schroeder-Heister and Kosta Dos̆en, editors, Substructural Log-
ics, pages 1–30. Clarendon Press, Oxford, England, 1993.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen.
Mathematische Zeitschrift, 39:176–210, 405–431, 1935. Translated
under the title Investigations into Logical Deductions in [Sza69].

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102,
1987.

[Gir93] J.-Y. Girard. On the unity of logic. Annals of Pure and Applied
Logic, 59:201–217, 1993.

[Her30] Jacques Herbrand. Recherches sur la théorie de la démonstration.
Travaux de la Société des Sciences et de Lettres de Varsovic, 33,
1930.

[HM94] Joshua Hodas and Dale Miller. Logic programming in a fragment of
intuitionistic linear logic. Information and Computation, 110(2):327–
365, 1994. A preliminary version appeared in the Proceedings of the
Sixth Annual IEEE Symposium on Logic in Computer Science, pages
32–42, Amsterdam, The Netherlands, July 1991.

[Hod94] Joshua S. Hodas. Logic Programming in Intuitionistic Linear Logic:
Theory, Design, and Implementation. PhD thesis, University of
Pennsylvania, Department of Computer and Information Science,
1994.

[HP97] James Harland and David Pym. Resource-distribution via boolean
constraints. In W. McCune, editor, Proceedings of the 14th Interna-
tional Conference on Automated Deduction (CADE-14), pages 222–
236, Townsville, Australia, July 1997. Springer-Verlag LNAI 1249.

[HT91] Kohei Honda and Mario Tokoro. An object calculus for asynchronous
communication. In P. America, editor, Proceedings of the European
Conference on Object-Oriented Programming (ECOOP’91), pages

Draft of November 1, 2001

BIBLIOGRAPHY 111

133–147, Geneva, Switzerland, July 1991. Springer-Verlag LNCS
512.

[Hue76] Gérard Huet. Résolution d’équations dans des langages d’ordre
1, 2, . . . , ω. PhD thesis, Université Paris VII, September 1976.

[Kni89] Kevin Knight. Unification: A multi-disciplinary survey. ACM Com-
puting Surveys, 2(1):93–124, March 1989.

[Lin92] P. Lincoln. Linear logic. ACM SIGACT Notices, 23(2):29–37, Spring
1992.

[Mil92] D. Miller. The π-calculus as a theory in linear logic: Preliminary
results. In E. Lamma and P. Mello, editors, Proceedings of the Work-
shop on Extensions of Logic Programming, pages 242–265. Springer-
Verlag LNCS 660, 1992.

[Mil99] Robin Milner. Communicating and Mobile Systems: the π-Calculus.
Cambridge University Press, 1999.

[ML96] Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Nordic Journal of Philosophical
Logic, 1(1):11–60, 1996.

[MM76] Alberto Martelli and Ugo Montanari. Unification in linear time and
space: A structured presentation. Internal Report B76-16, Istituto di
Elaborazione delle Informazione, Consiglio Nazionale delle Ricerche,
Pisa, Italy, July 1976.

[MM82] Alberto Martelli and Ugo Montanari. An efficient unification algo-
rithm. ACM Transactions on Programming Languages and Systems,
4(2):258–282, April 1982.

[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov.
Uniform proofs as a foundation for logic programming. Annals of
Pure and Applied Logic, 51:125–157, 1991.

[MOM91] N. Mart́ı-Oliet and J. Meseguer. From Petri nets to linear logic
through categories: A survey. Journal on Foundations of Computer
Science, 2(4):297–399, December 1991.

[PD01] Frank Pfenning and Rowan Davies. A judgmental reconstruction of
modal logic. Mathematical Structures in Computer Science, 11:511–
540, 2001. Notes to an invited talk at the Workshop on Intuitionistic
Modal Logics and Applications (IMLA’99), Trento, Italy, July 1999.

[Pra65] Dag Prawitz. Natural Deduction. Almquist & Wiksell, Stockholm,
1965.

[PW78] M. S. Paterson and M. N. Wegman. Linear unification. Journal of
Computer and System Sciences, 16(2):158–167, April 1978.

Draft of November 1, 2001

112 BIBLIOGRAPHY

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23–41, January 1965.

[Rob71] J. A. Robinson. Computational logic: The unification computation.
Machine Intelligence, 6:63–72, 1971.

[Sce93] A. Scedrov. A brief guide to linear logic. In G. Rozenberg and
A. Salomaa, editors, Current Trends in Theoretical Computer Sci-
ence, pages 377–394. World Scientific Publishing Company, 1993.
Also in Bulletin of the European Association for Theoretical Com-
puter Science, volume 41, pages 154–165.

[SHD93] Peter Schroeder-Heister and Kosta Dos̆en, editors. Substructural
Logics. Number 2 in Studies in Logic and Computation. Clarendon
Press, Oxford, England, 1993.

[Sza69] M. E. Szabo, editor. The Collected Papers of Gerhard Gentzen.
North-Holland Publishing Co., Amsterdam, 1969.

[Tro92] A. S. Troelstra. Lectures on Linear Logic. CSLI Lecture Notes
29, Center for the Study of Language and Information, Stanford,
California, 1992.

[Tro93] A. S. Troelstra. Natural deduction for intuitionistic linear logic.
Prepublication Series for Mathematical Logic and Foundations ML-
93-09, Institute for Language, Logic and Computation, University
of Amsterdam, 1993.

Draft of November 1, 2001

