
15-780: Graduate AI
Lecture 1. Intro & Search

Geoff Gordon (this lecture)
Ziv Bar-Joseph

TAs Geoff Hollinger, Henry Lin

Admin

www.cs.cmu.edu/~ggordon/780/

Website highlights

Book: Russell and Norvig. Artificial
Intelligence: A Modern Approach, 2nd ed.
Grading
Final project
Office hours

Background

No prerequisites
But, suggest familiarity with at least some
of the following:

Linear algebra
Calculus
Algorithms & data structures
Complexity theory

Waitlist, Audits

If you need us to approve something, send
us email

Course email list

Send an email to thlin at cs to be included
on course announcement list

Matlab

Should all have access to Matlab via
school computers

Those with access to CS license servers,
please use if possible
Limited number of Andrew licenses

Tutorial a week from today

Intro

What is AI?

Easy part: A
Hard part: I

Anything we don’t know how to make a
computer do yet
Corollary: once we do it, it isn’t AI
anymore :-)

Definition by examples

Board games
Deep Blue
TD-Gammon
Samuels’s checkers player

Card games
Poker
Bridge

Web search

Web search, cont’d

Recommender systems

from http://www.math.wpi.edu/IQP/BVCalcHist/calctoc.html

Computer algebra systems

Grand Challenge road race

Getting from A to B

ITA software (http://beta.itasoftware.com)

Robocup

More examples

Motor skills: riding a bicycle, learning to
walk, playing pool, …
Vision

More examples

Valerie and Tank, the
Roboceptionists
Social skills: attending
a party, giving
directions, …

More examples

Natural language
Speech recognition

Common threads

Search and optimization
Set the problem up well (so that we can
apply a standard algorithm)

Managing uncertainty
The more different types of uncertainty,
the harder the problem (and the slower
the solution)

Sources of uncertainty

Classic AI: no uncertainty, pure search
Mathematica
deterministic planning

This is the topic of Part I of the course

Opponents cause uncertainty

In chess, must guess what opponent will
do; cannot directly control him/her
Alternating moves: game trees (Part I)
Simultaneous or hidden moves: game
theory (Part III; computationally harder,
especially if a sequence of moves)

Outcome uncertainty

In backgammon, don’t know ahead of time
what the dice will show
When driving down a corridor, wheel
slippage causes unexpected deviations
Open a door, find out what’s behind it
MDPs (Part II)

Sensor uncertainty

Image of a handwritten digit → 0, 1, …, 9

Image of room → person locations,
identities
Laser rangefinder scan of a corridor →
map, robot location

Sensor uncertainty example

Sensor uncertainty

For given set of immediate measurements,
multiple states may be possible
State = “everything we know about the
world”
More in Part II

Combining sensor and outcome
uncertainty

Build a robotic mouse
Lives in cage with levers, blinky lights, etc.
Pressing levers in the right sequence
dispenses a snack of robo-cheese
Move around, experiment w/ levers to turn
on lights, get robo-cheese
This is a POMDP (more in Part II)

Other agents cause uncertainty

In many AI problems, there are other
agents who aren’t (necessarily) opponents

Ignore them & pretend part of Nature
Assume they’re opponents (pessimistic)
Learn to cope with what they do
Try to convince them to cooperate
(paradoxically, this is the hardest case)

Part III

Search

How to build a robotic
grad student

Grad AI: progress for graduation 4, time 4
Wine tasting: progress 1, time 2
Nonlinear Frobnitz Dynamics: progress 5,
time 9

Constraints

Must take courses w/ ttl progress ≥ 5
Total time ≤ 10

Solution by enumeration

Can we do better?

What about partial state (*, T, T)?

Search graph

Node: ***,
**F, **T,
F, *FF,
*FT, …

Search graph

Node: solution or partial solution
Neighbor generating function
Solution test = yes, no, maybe

Alternate search graph

Nodes: FFF, FFT, FTF, FTT, …

A node can be anything

A list of variable settings
A mathematical formula
A set of flights that go from PIT to LAX
A graph

When a node is a graph

Not to be confused with search graph
E.g., a (partial) matching, a (partial)
spanning tree, or a (partial) path

Search graph for shortest path

Isomorphism

For path planning, if we prune non-
shortest paths, search graph is isomorphic
to original graph
Node X in original graph ≡ shortest path
from start to X

Generic search

S = { some set of nodes } M = ∅

While (S ≠ ∅)

x ← some element of S, S ← S \ x
M = M ∪ {x}

if (solution(x) = Y) return x
if (solution(x) = N) continue
S = S ∪ (neighbors(x) \ M)

can be
approximate

Choices

Where to start?
Which element of S to visit next?
How much effort to maintain S, M?

Shortcuts for open, visited list

Open list:
Throw away some elements?
Sort key?

Visited list:
Just don’t return to parent
Keep nodes in path from start to X
Keep all nodes

Data structures: M

Need insert, membership test
hash table (expense of equality test?)
avoid M altogether using node ordering

only insert neighbors y > x into S

Data structures: S

For S: need insert, pop
LIFO (stack)
FIFO (queue)
priority queue (choice of sort key)

Stack: DFS

DFS discussion

Advantages
low memory if search graph is shallow

Disadvantages
fails to terminate if graph has infinite
depth
May not find shallowest solution

Queue: BFS

BFS discussion

Advantages
low memory if graph is narrow (rare)
always finds shallowest solution

Disadvantages
common case: memory grows
exponentially with search depth

DFID

Run a DFS but limit depth to k
If we fail to find a solution, increase k and
try again

DFID discussion

Combines advantages of BFS and DFS
Always low memory
Finds shallowest (or nearly shallowest)
solution
Also works for A* (described below)

Heuristic
Search

DFS looking stupid

start

goal

DFS looking stupid

start

goal

DFS looking stupid

start

goal

DFS looking stupid

start

goal

…skipping a few steps

start

goal

DFS looking stupid

start

goal

DFS looking stupid

start

goal

DFS looking stupid

start

goal

Heuristic search

Implement open set S with a priority queue
Ops: insert, update_priority, pop

Pop always gives node w/ best priority
Priority function = place to give the
search algorithm additional info
E.g., priority(x, y) = |gx-x| + |gy-y|

Heuristic search looking smart

start

goal

Heuristic search looking smart

start

goal

Heuristic search looking smart

start

goal

Heuristic search looking smart

start

goal

Heuristic search looking smart

start

goal

Heuristic search looking smart

start

goal

Heuristic search looking smart

start

goal

Heuristic search looking smart

start

goal

Question

What is optimal heuristic?

Heuristic search discussion

Cost: priqueue is more expensive than
stack, queue
Benefit: could visit many fewer nodes

Question

When could heuristic search look dumb?
Can we find conditions we can satisfy that
guarantee that it won’t look dumb?

