
15-780: Graduate AI
Lecture 2. A*, Spatial Search

Geoff Gordon (this lecture)
Ziv Bar-Joseph

TAs Geoff Hollinger, Henry Lin

Admin

Slides on web site
Matlab tutorial next Tue (5-6 NSH 1507)
Please send your email address to TA
Henry Lin (thlin at cs), who is compiling a
class email list
Please check the website regularly for
readings (for Lec. 1–2, Ch. 1–4 of RN)

Review

Topics covered

What is AI? (Be able to discuss an
example or two)
Types of uncertainty & corresponding
approaches
How to set up state space graph for
problems like the robotic grad student or
path planning

Topics covered

Generic search algorithm & data
structures
Search methods: be able to simulate

BFS, DFS, DFID
Heuristic search

What are advantages of each?

Projects

Project ideas

Plan a path for this robot so that it gets a
good view of an object as fast as possible

Project ideas

Do something cool w/ Lego Mindstorms
plan footstep placements
plan how to grip objects

A* Search

Heuristic search looking bad

Heuristic search looking bad

Generic search

S = { start } M = ∅

While (S ≠ ∅)

x ← some element of S, S ← S \ x
CheckSolution(x)
For y ∈ neighbors(x) \ M

S ← S ∪ {y}

M = M ∪ {x}

A* search: Open list

Implement S with priority queue
S.insert(x, P)
S.pop()
and maybe S.test_member(x)

Like heuristic search
but priority calculated differently (more
below)

A* search: Path costs

For both priority and closed list, maintain
path cost function g(x)
g(x) = best cost to reach x so far

or ∞ if no path from start to x found yet

When pushing y, set g(y) = g(x) + c(x,y)
if g(y) finite, smaller of old and new
values

A* search: Closed list

Implementation of M: use g(x) and S
If g(x) finite, x must be either open or
closed
So, M = { g(x) finite ∧ x ∉ S }
This is where we’d use S.test_member(),
but it will turn out we can be slightly
smarter

A* search: Priority

When calling S.insert(x, P)
Set P = f(x) ≡ g(x) + h(x)

h(x) = heuristic estimate of distance from
x to goal (just like in heuristic search)
f(x) = estimate of cost of path through x
Idea: focus on nodes that might yield short
paths

Generic search

S = { start } M = ∅

While (S ≠ ∅)

x ← some element of S, S ← S \ x
CheckSolution(x)
For y ∈ neighbors(x) \ M

S ← S ∪ {y}

M = M ∪ {x}

Add to S

Initialize M

Update M

M check

A* search

Remove and return
an element of x

S = { start } g(x) = ∞ (∀x)
While (S ≠ ∅)

x ← S.pop()
CheckSolution(x)
For y ∈ neighbors(x)

g(y) = min(g(y), g(x) + c(x,y))
If g(y) decreased, S.insert(y, g(y)+h(y))

Admissible heuristic

A* has nice theoretical properties if h is
admissible
That is, h(x) ≤ true distance from x to goal
E.g., crow-flies distance in a maze
Intuition: make a path look better, we
examine it earlier, maybe waste some
work. Make it look worse, we might miss
it entirely, find a bad solution.

A* example

A* example

Node costs

Path costs

More complicated A* example

Optimal Solution End-effector Trajectory Probability of Obstacle Appearing Probability of Obstacle Appearing

So
lu

tio
n

C
os

t

St
at

e
Ex

pa
ns

io
ns

Figure 10: Environment used in our second experiment, along with the optimal solution and the end-effector trajectory (without
any dynamic obstacles). Also shown are the solution cost of the path traversed and the number of states expanded by each of
the three algorithms compared.

other words, by adding a fixed value to the key of each new
state placed on the queue, the old states are given a rela-
tive advantage in their queue placement. When a state is
popped off the queue whose key value is not in line with
the current bias term, it is placed back on the queue with an
updated key value. The intuition is that only a small num-
ber of the states previously on the queue may ever make
it to the top, so it can be much more efficient to only re-
order the ones that do. We can use the same idea when ε
decreases (from εo to εn, say) to increase the bias term by
(εo − εn) · maxs∈OPEN h(sstart, s). The key value of each
state becomes
key(s) = [min(g(s), rhs(s)) + ε · h(sstart, s) + bias,

min(g(s), rhs(s))].
By using the maximum heuristic value present in the queue
to update the bias term, we are guaranteeing that each state
already on the queue will be at least as elevated on the queue
as it should be relative to the new states being added. It is
future work to implement this approach but it appears to be
a promising modification.

Finally, it may be possible to reduce the effect of un-
derconsistent states in our repair of previous solution paths.
With the current version of AD*, underconsistent states need
to be placed on the queue with a key value that uses an un-
inflated heuristic value. This is because they could reside on
the old solution path and their true effect on the start state
may be much more than the inflated heuristic would suggest.
This means, however, that the underconsistent states quickly
rise to the top of the queue and are processed before many
overconsistent states. At times, these underconsistent states
may not have any effect on the value of the start state (for
instance when they do not reside upon the current solution
path). We are currently looking into ways of reducing the
number of underconsistent states examined, using ideas very
recently developed (Ferguson & Stentz 2005). This could
prove very useful in the current framework, where much of
the processing is done on underconsistent states that may not
turn out to have any bearing on the solution.

Conclusions
We have presented Anytime Dynamic A*, a heuristic-based,
anytime replanning algorithm able to efficiently generate so-

lutions to complex, dynamic path planning problems. The
algorithm works by continually decreasing a suboptimal-
ity bound on its solution, reusing previous search efforts as
much as possible. When changes in the environment are
encountered, it is able to repair its previous solution incre-
mentally. Our experiments and application of the algorithm
to two real-world robotic systems have shown it to be a valu-
able addition to the family of heuristic-based path planning
algorithms, and a useful tool in practise.

Acknowledgments
The authors would like to thank Sven Koenig for fruitful
discussions. This work was partially sponsored by DARPA’s
MARS program. Dave Ferguson is supported in part by an
NSF Graduate Research Fellowship.

References
Barbehenn, M., and Hutchinson, S. 1995. Efficient search
and hierarchical motion planning by dynamically maintain-
ing single-source shortest path trees. IEEE Transactions on
Robotics and Automation 11(2):198–214.
Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to
Act Using Real-Time Dynamic Programming. Artificial
Intelligence 72:81–138.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.
Chakrabarti, P.; Ghosh, S.; and DeSarkar, S. 1988. Ad-
missibility of AO* when heuristics overestimate. Artificial
Intelligence 34:97–113.
Dean, T., and Boddy, M. 1988. An analysis of time-
dependent planning. In Proceedings of the National Con-
ference on Artificial Intelligence (AAAI).
Edelkamp, S. 2001. Planning with pattern databases. In
Proceedings of the European Conference on Planning.
Ersson, T., and Hu, X. 2001. Path planning and navigation
of mobile robots in unknown environments. In Proceedings
of the IEEE International Conference on Intelligent Robots
and Systems (IROS).
Ferguson, D., and Stentz, A. 2005. The Delayed D* Algo-
rithm for Efficient Path Replanning. In Proceedings of the

A* guarantees

Write g* for depth of shallowest solution
Assume h() is admissible
(optimality) A* finds a solution of depth g*
(efficiency) A* expands no nodes that have
f(node) > g*

A* proof

Both optimality and efficiency follow from:
Lemma. For any two nodes x and y which
have f(x) < f(y), A* expands x before y
To see why optimality and efficiency
follow, note goals have f(x) = g(x)

h(x) must be 0

A* proof

Will do a simple case: heuristic satisfies
“triangle inequality”
For all neighboring pairs (x, y)

h(x) ≤ h(y) + c(x, y)

Proof of lemma

Suppose f(y) > f(x) (so we want x first)
Consider shortest path from start to x

Proof cont’d

Proof cont’d

So, all nodes w on path to x have
f(w) ≤ f(x) < f(y)

At least one such w is always on queue
while x has not been expanded (possibly
we have w = x)
So if x has not yet been expanded, we must
pick w before we expand y — QED

A* extensions

Suboptimal: use non-admissible heuristic,
lose guarantees but maybe increase speed
Iterative deepening: avoid priqueue
Anytime: start with suboptimal solution,
gradually improve it
Dynamic: fast replan if map changes

IDA*

Do a DFS of all nodes with f(node) < k
If no solution, increment k and try again
Just like DFID, except that instead of a
depth bound, bounds f = g + h

Anytime, dynamic planning

Figure 7: The ATRV robotic platform. Also shown are two images of the robot moving from the left side to the right side of an
initially-unknown outdoor environment using AD* for updating and improving its solution path.

Solving this initial 4D search in large environments can be
computationally costly, and an optimal solution may be in-
feasible if the initial processing time of the robot is limited.

Once the robot starts moving, it is highly unlikely that it
will be able to replan an optimal path if it discovers changes
in the environment. But if the environment is only partially-
known or is dynamic, either of which is common in the ur-
ban areas we are interested in traversing, changes will cer-
tainly be discovered. As a result, the robot needs to be able
to quickly generate suboptimal solutions when new infor-
mation is gathered, then improve these solutions as much as
possible given its processing constraints.

We have used AD* to provide this capability for two
robotic platforms currently used for outdoor navigation. To
direct the 4D search in each case, we use a fast 2D (x, y)
planner to provide the heuristic values. Figure 7 shows our
first system, an ATRV vehicle equipped with two laser range
finders for mapping and an inertial measurement unit for po-
sition estimation. Also shown in Figure 7 are two images
taken of the map and path generated by the robot as it tra-
versed from one side of an initially-unknown environment to
the other. The 4D state space for this problem has roughly 20
million states, however AD* was able to provide fast, safe
trajectories in real-time.

We have also implemented AD* on a Segway Robotic
Mobility Platform, shown in Figure 8. Using AD*, it has
successfully navigated back and forth across a substantial
part of the Stanford campus.

Experimental Results
To evaluate the performance of AD*, we compared it to
ARA* and D* Lite (with an inflation factor of ε = 20) on
a simulated 3 degree of freedom (DOF) robotic arm manip-
ulating an end-effector through a dynamic environment (see
Figures 9 and 10). In this set of experiments, the base of
the arm is fixed, and the task is to move into a particular
goal configuration while navigating the end-effector around
fixed and dynamic obstacles. We used a manufacturing-like
scenario for testing, where the links of the arm exist in an
obstacle-free plane, but the end-effector projects down into a
cluttered space (such as a conveyor belt moving goods down
a production line).

In each experiment, we started with a known map of the

Figure 8: The Segbot robotic platform.

end-effector environment. As the arm traversed each step of
its trajectory, however, there was some probability Po that
an obstacle would appear in its path, forcing the planner to
repair its previous solution.

We have included results from two different initial envi-
ronments and several different values of Po, ranging from
Po = 0.04 to Po = 0.2. In these experiments, the agent
was given a fixed amount of time for deliberation, T d = 1.0
seconds, at each step along its path. The cost of moving each
link was nonuniform: the link closest to the end-effector had
a movement cost of 1, the middle link had a cost of 4, and
the lower link had a cost of 9. The heuristic used by all al-
gorithms was the maximum of two quantities; the first was
the cost of a 2D path from the current end-effector position
to its position at the state in question, accounting for all the
currently known obstacles on the way; the second was the
maximum angular difference between the joint angles at the
current configuration and the joint angles at the state in ques-
tion. This heuristic is admissible and consistent.

In each experiment, we compared the cost of the path tra-
versed by ARA* with ε0 = 20 and D* Lite with ε = 20 to

http://www.cs.cmu.edu/~ggordon/likhachev-etal.anytime-dstar.pdf

A* Planning on Big Grids

2D grids: 500,000 nodes = ~ 0.8 sec
 10 million nodes = ~ 12 sec

Credit: Kuffner

A* on Big Grids

Sample exercise

Andrew Moore, www.cs.cmu.edu/~awm, awm@cs.cmu.edu

Page 21

Exercise Part (1)

In the following maze the successors of a cell include any cell directly to the
east, south, west or north of the current cell except that no transition may
pass through the central barrier. For example successors(m) = { d , n , g }.

The search problem is to find a path from s to g. We are going to examine the
order in which cells are expanded by various search algorithms. For example,
one possible expansion order that breadth first search might use is:

s h f k p c q a r b t d g

There are other possible orders depending on which of two equal-distance-
from-start states happen to be expanded first. For example s f h p k c q r a t b
g is another possible answer.

Assume you run depth-first-search until it expands the goal node. Assume
that you always try to expand East first, then South, then West, then North.
Assume your version of depth first search avoids loops: it never expands a
state on the current path. What is the order of state expansion?

s
g

a b

c d e

kf h m n

p q r t

Page 22

Exercise Part 2

Next, you decide to use a Manhattan Distance Metric heuristic function

h(state) = shortest number of steps from state to g if there were no barriers

So, for example, h(k) = 2, h(s) = 4, h(g) = 0.

Assume you now use best-first greedy search using heuristic h (a version that
never re-explores the same state twice). Again, give all the states expanded, in
the order they are expanded, until the algorithm expands the goal node.

Finally, assume you use A* search with heuristic h, and run it until it termi-
nates using the conventional A* termination rule. Again, give all the states
expanded, in the order they are expanded. (Note that depending on the
method that A* uses to break ties, more than one correct answer is possible).

s
g

a b

c d e

kf h m n

p q r t

Page 23

Another Example Question

Consider the use of the A* algorithm on a search graph with cycles, and
assume that this graph does not have negative-length edges. Suppose you are
explaining this algorithm to Pat, who is not familiar with AI. After your elabo-
rated explanation of how A* handles cycles, Pat is convinced that A* does a lot
of unnecessary work to guarantee that it works properly (i.e. finds the optimal
solution) in graphs containing cycles. Pat suggests the following modification
to improve the efficiency of the algorithm:

Since the graph has cycles, you may detect new cycles from time to
time when expanding a node. For example, if you expand nodes A, B,
and C shown on figure (a) below, then after expanding C and noticing
that A is also a successor of C, you will detect the cycle A-B-C-A.
Every time you notice a cycle, you may remove the last edge of this
cycle from the search graph. For example, after expanding C, you can
remove the edge C-A. (see the figure (b) below). Then, if A* visits node
C again in the process of further search, it will not need to traverse
this useless edge the second time.

Does this modified version of A* always find the optimal path to a solution?
Why or why not?

Start

A

C

B

. . .

. . .

. . .

Start

A

C

B

. . .

. . .

. . .

(a) Detecting a Cycle (b) Removing the detected cycle

Nodes are connected in 4 cardinal directions, except
across dark line

credit: Andrew
 M

oore

Sample exercise

In graph on prev page, to find a path from
s to g, what is the expansion order for

DFS, BFS
Heuristic search using h = Manhattan
A* using f = g + h

Assume we can detect when we reach a
node via two different paths, and avoid
duplicating it on the queue

Spatial
Planning

Plans in Space…

Above, we saw A* for spatial planning (in
contrast to, e.g., jobshop scheduling)

Optimal Solution End-effector Trajectory Probability of Obstacle Appearing Probability of Obstacle Appearing

So
lu

tio
n

C
os

t

St
at

e
Ex

pa
ns

io
ns

Figure 10: Environment used in our second experiment, along with the optimal solution and the end-effector trajectory (without
any dynamic obstacles). Also shown are the solution cost of the path traversed and the number of states expanded by each of
the three algorithms compared.

other words, by adding a fixed value to the key of each new
state placed on the queue, the old states are given a rela-
tive advantage in their queue placement. When a state is
popped off the queue whose key value is not in line with
the current bias term, it is placed back on the queue with an
updated key value. The intuition is that only a small num-
ber of the states previously on the queue may ever make
it to the top, so it can be much more efficient to only re-
order the ones that do. We can use the same idea when ε
decreases (from εo to εn, say) to increase the bias term by
(εo − εn) · maxs∈OPEN h(sstart, s). The key value of each
state becomes
key(s) = [min(g(s), rhs(s)) + ε · h(sstart, s) + bias,

min(g(s), rhs(s))].
By using the maximum heuristic value present in the queue
to update the bias term, we are guaranteeing that each state
already on the queue will be at least as elevated on the queue
as it should be relative to the new states being added. It is
future work to implement this approach but it appears to be
a promising modification.

Finally, it may be possible to reduce the effect of un-
derconsistent states in our repair of previous solution paths.
With the current version of AD*, underconsistent states need
to be placed on the queue with a key value that uses an un-
inflated heuristic value. This is because they could reside on
the old solution path and their true effect on the start state
may be much more than the inflated heuristic would suggest.
This means, however, that the underconsistent states quickly
rise to the top of the queue and are processed before many
overconsistent states. At times, these underconsistent states
may not have any effect on the value of the start state (for
instance when they do not reside upon the current solution
path). We are currently looking into ways of reducing the
number of underconsistent states examined, using ideas very
recently developed (Ferguson & Stentz 2005). This could
prove very useful in the current framework, where much of
the processing is done on underconsistent states that may not
turn out to have any bearing on the solution.

Conclusions
We have presented Anytime Dynamic A*, a heuristic-based,
anytime replanning algorithm able to efficiently generate so-

lutions to complex, dynamic path planning problems. The
algorithm works by continually decreasing a suboptimal-
ity bound on its solution, reusing previous search efforts as
much as possible. When changes in the environment are
encountered, it is able to repair its previous solution incre-
mentally. Our experiments and application of the algorithm
to two real-world robotic systems have shown it to be a valu-
able addition to the family of heuristic-based path planning
algorithms, and a useful tool in practise.

Acknowledgments
The authors would like to thank Sven Koenig for fruitful
discussions. This work was partially sponsored by DARPA’s
MARS program. Dave Ferguson is supported in part by an
NSF Graduate Research Fellowship.

References
Barbehenn, M., and Hutchinson, S. 1995. Efficient search
and hierarchical motion planning by dynamically maintain-
ing single-source shortest path trees. IEEE Transactions on
Robotics and Automation 11(2):198–214.
Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to
Act Using Real-Time Dynamic Programming. Artificial
Intelligence 72:81–138.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.
Chakrabarti, P.; Ghosh, S.; and DeSarkar, S. 1988. Ad-
missibility of AO* when heuristics overestimate. Artificial
Intelligence 34:97–113.
Dean, T., and Boddy, M. 1988. An analysis of time-
dependent planning. In Proceedings of the National Con-
ference on Artificial Intelligence (AAAI).
Edelkamp, S. 2001. Planning with pattern databases. In
Proceedings of the European Conference on Planning.
Ersson, T., and Hu, X. 2001. Path planning and navigation
of mobile robots in unknown environments. In Proceedings
of the IEEE International Conference on Intelligent Robots
and Systems (IROS).
Ferguson, D., and Stentz, A. 2005. The Delayed D* Algo-
rithm for Efficient Path Replanning. In Proceedings of the

What’s wrong w/ A* guarantees?

(optimality) A* finds a solution of cost g*
(efficiency) A* expands no nodes that have
f(node) > g*

What’s wrong with A*?

Discretized space into tiny little chunks
a few degrees rotation of a joint
Lots of states ⇒ slow

Discretized actions too
one joint at a time, discrete angles

Results in jagged paths

Optimal Solution End-effector Trajectory Probability of Obstacle Appearing Probability of Obstacle Appearing

So
lu

tio
n

C
os

t

St
at

e
Ex

pa
ns

io
ns

Figure 10: Environment used in our second experiment, along with the optimal solution and the end-effector trajectory (without
any dynamic obstacles). Also shown are the solution cost of the path traversed and the number of states expanded by each of
the three algorithms compared.

other words, by adding a fixed value to the key of each new
state placed on the queue, the old states are given a rela-
tive advantage in their queue placement. When a state is
popped off the queue whose key value is not in line with
the current bias term, it is placed back on the queue with an
updated key value. The intuition is that only a small num-
ber of the states previously on the queue may ever make
it to the top, so it can be much more efficient to only re-
order the ones that do. We can use the same idea when ε
decreases (from εo to εn, say) to increase the bias term by
(εo − εn) · maxs∈OPEN h(sstart, s). The key value of each
state becomes
key(s) = [min(g(s), rhs(s)) + ε · h(sstart, s) + bias,

min(g(s), rhs(s))].
By using the maximum heuristic value present in the queue
to update the bias term, we are guaranteeing that each state
already on the queue will be at least as elevated on the queue
as it should be relative to the new states being added. It is
future work to implement this approach but it appears to be
a promising modification.

Finally, it may be possible to reduce the effect of un-
derconsistent states in our repair of previous solution paths.
With the current version of AD*, underconsistent states need
to be placed on the queue with a key value that uses an un-
inflated heuristic value. This is because they could reside on
the old solution path and their true effect on the start state
may be much more than the inflated heuristic would suggest.
This means, however, that the underconsistent states quickly
rise to the top of the queue and are processed before many
overconsistent states. At times, these underconsistent states
may not have any effect on the value of the start state (for
instance when they do not reside upon the current solution
path). We are currently looking into ways of reducing the
number of underconsistent states examined, using ideas very
recently developed (Ferguson & Stentz 2005). This could
prove very useful in the current framework, where much of
the processing is done on underconsistent states that may not
turn out to have any bearing on the solution.

Conclusions
We have presented Anytime Dynamic A*, a heuristic-based,
anytime replanning algorithm able to efficiently generate so-

lutions to complex, dynamic path planning problems. The
algorithm works by continually decreasing a suboptimal-
ity bound on its solution, reusing previous search efforts as
much as possible. When changes in the environment are
encountered, it is able to repair its previous solution incre-
mentally. Our experiments and application of the algorithm
to two real-world robotic systems have shown it to be a valu-
able addition to the family of heuristic-based path planning
algorithms, and a useful tool in practise.

Acknowledgments
The authors would like to thank Sven Koenig for fruitful
discussions. This work was partially sponsored by DARPA’s
MARS program. Dave Ferguson is supported in part by an
NSF Graduate Research Fellowship.

References
Barbehenn, M., and Hutchinson, S. 1995. Efficient search
and hierarchical motion planning by dynamically maintain-
ing single-source shortest path trees. IEEE Transactions on
Robotics and Automation 11(2):198–214.
Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to
Act Using Real-Time Dynamic Programming. Artificial
Intelligence 72:81–138.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.
Chakrabarti, P.; Ghosh, S.; and DeSarkar, S. 1988. Ad-
missibility of AO* when heuristics overestimate. Artificial
Intelligence 34:97–113.
Dean, T., and Boddy, M. 1988. An analysis of time-
dependent planning. In Proceedings of the National Con-
ference on Artificial Intelligence (AAAI).
Edelkamp, S. 2001. Planning with pattern databases. In
Proceedings of the European Conference on Planning.
Ersson, T., and Hu, X. 2001. Path planning and navigation
of mobile robots in unknown environments. In Proceedings
of the IEEE International Conference on Intelligent Robots
and Systems (IROS).
Ferguson, D., and Stentz, A. 2005. The Delayed D* Algo-
rithm for Efficient Path Replanning. In Proceedings of the

What’s wrong with A*?

Wouldn’t it be nice…

… if we could break things up based more
on the real geometry of the world?
Robot Motion Planning by Jean-Claude Latombe

Physical system

A moderate number of real-valued
coordinates
Deterministic, continuous dynamics
Continuous goal set (or a few pieces)
Cost = time, work, torque, …

Typical physical system

A kinematic chain

Rigid links connected by joints
revolute or prismatic

Configuration
q = (q1, q2, …)

qi = angle or length of joint i
Dimension of q = “degrees of
freedom”

Mobile robots

Translating in space = 2 dof

More mobility

Translation + rotation = 3 dof

Q: How many dofs?

3d translation & rotation

credit: Andrew
 M

oore

Robot kinematic motion planning

Now let’s add obstacles

Configuration space

For any configuration q, can test whether
it intersects obstacles
Set of legal configs is “configuration
space” C (a subset of ℝdofs)
Path is a continuous function from [0,1]
into C with q(0) = qs and q(1) = qg

Note: dynamic planning

Includes inertia as well as configuration
q, q
Harder, since twice as many dofs
More later…

C-space example

More C-space examples

Another C-space example

image: J Kuffner

Topology of C-space

Topology of C-space can be something
other than the familiar Euclidean world
E.g. set of angles = unit circle = SO(2)

not [0, 2π) !

Ball & socket joint (3d angle) ⊆ unit
sphere = SO(3)

Topology example

Compare L to R: 2 planar angles v. one
solid angle — both 2 dof (and neither the
same as Euclidean 2-space)

Back to planning

Complaint with A* was that it didn’t break
up space intelligently
How might we do better?
Lots of roboticists have given lots of
answers!

Shortest path in C-space

Shortest path in C-space

Shortest path

Suppose a planar polygonal C-space
Shortest path in C-space is a sequence of
line segments
Each segment’s ends are either start or
goal or one of the vertices in C-space
In 3-d or higher, might lie on edge, face,
hyperface, …

Visibility graph

http://www.cse.psu.edu/~rsharma/robotics/notes/notes2.html

Naive algorithm

For i = 1 … points
For j = 1 … points

included = t
For k = 1 … edges

if segment ij intersects edge k
included = f

Complexity

Naive algorithm is O(n3) in planar C-
space
For algorithms that run faster, O(n2) and
O(k + n log n), see [Latombe, pg 157]

k = number of edges that wind up in
visibility graph

Once we have graph, search it!

Discussion of visibility graph

Good: finds shortest path
Bad: complex C-space yields long
runtime, even if problem is easy

get my 23-dof manipulator to move
1mm when nearest obstacle is 1m

Bad: no margin for error

Getting bigger margins

Could just pad obstacles
but how much is enough? might make
infeasible…

What if we try to stay as far away from
obstacles as possible?

Voronoi graph

!1.5 !1 !0.5 0 0.5

!1

!0.5

0

0.5

1

Voronoi graph

Given a set of point obstacles
Find all places that are equidistant from
two or more of them
Result: network of line segments
Called Voronoi graph
Each line stays as far away as possible
from two obstacles while still going
between them

Voronoi from polygonal C-space

Voronoi from polygonal C-space

Set of points which are equidistant from 2
or more closest points on border of C-
space
Polygonal C-space in 2d yields lines &
parabolas intersecting at points

lines from 2 points
parabolas from line & point

Voronoi method for planning

Compute Voronoi diagram of C-space
Go straight from start to nearest point on
diagram
Plan within diagram to get near goal (e.g.,
with A*)
Go straight to goal

Discussion of Voronoi

Good: stays far away from obstacles
Bad: assumes polygons
Bad: gets kind of hard in higher
dimensions (but see Howie Choset’s web
page and book)

!"#$%&'()*+,- ./*0-1'(+,1/(0,23,4,5631(5*78,32(49*:((;<=<()62-9(+/*(

>**0->8(?60-@(/,0(3*1-0(*3(3*1-0(?8(A6358(B:61*

C*D(+,1/(E7-3,32

!"#$%&'()*+,- ./*0-1'(+,1/(0,23,4,5631(5*78,32(49*:((;<=<()62-9(+/*(

>**0->8(?60-@(/,0(3*1-0(*3(3*1-0(?8(A6358(B:61*

C*D(+,1/(E7-3,32

Voronoi discussion

Bad: kind of gun-shy about obstacles

Exact cell decompositions

We can try to break C-space into a bunch
of convex polygons

Exact cell decompositions

Will not discuss how to do
Common approach for video game NPCs
But is also hard in higher than 2d
And can result in wobbly paths

Approximate cell
decompositions

Planning algorithm

Lay down a grid in C-space
Delete cells that intersect obstacles
Connect neighbors
A*
If no path, double resolution and try again

never know when we’re done

Approximate cell decomposition

This decomposition is what we were using
for A* in examples from above
Works pretty well except:

need high resolution near obstacles
want low res away from obstacles

Fix: variable resolution

Lay down a coarse grid
Split cells that intersect obstacle borders

empty cells good
full cells also don’t need splitting

Stop at fine resolution
Data structure: quadtree

Discussion

Works pretty well, except:
Still don’t know when to stop
Won’t find shortest path
Still doesn’t really scale to high-d

Better yet

Adaptive decomposition
Split only cells that actually make a
difference

are on path from start
make a difference to our policy

Parti-game algorithm

Try actions from several points per cell
Try to plan a path from start to goal
On the way, pretend an opponent gets to
choose which outcome happens (out of all
that have been observed in this cell)
If we can get to goal, we win
Otherwise we can split a cell

Parti-game example

G

Start

Goal

G

G

G

9dof planar arm

Fixed

base

Start

Goal

85 partitions total

Parti-game paper

Andrew Moore and Chris Atkeson. The
Parti-game Algorithm for Variable
Resolution Reinforcement Learning in
Multidimensional State-spaces
http://www.autonlab.org/autonweb/14699.html

Randomness
in search

Rapidly-exploring Random Trees

Put landmarks into C-space
Break up C-space into Voronoi regions
around landmarks
Put landmarks densely only if high
resolution is needed to find a path
Will not guarantee optimal path (*)

RRT assumptions

RANDOM_CONFIG
samples from a distribution on C-space

EXTEND(q, q’)
local controller, heads toward q’ from q
stops before hitting obstacle

FIND_NEAREST(q, Q)
searches current tree Q for point near q

Path Planning with RRTs

EXTEND(T, qrand)

qnear

qnew

qinit

qrand

[Kuffner & LaValle , ICRA’00]

RRT = Rapidly-Exploring Random Tree

BUILT_RRT(qinit) {

 T = qinit

 for k = 1 to K {

 qrand = RANDOM_CONFIG()

 EXTEND(T, qrand);

 }
}

EXTEND(T, q) {

 qnear = FIND_NEAREST(q, T)

 qnew = EXTEND(qnear, q)

 T = T + (qnear, qnew)
}

RRT example

Pl
an

ar
 h

ol
on

om
ic

 ro
bo

t

RRT example

RRT for a car (3 dof)

RRTs explore coarse to fine

Tend to break up large Voronoi regions

Limiting distribution of vertices is
RANDOM_CONFIG

Key idea in proof: as RRT grows,
probability that qrand is reachable with local
controller (and so immediately becomes a
new vertex) approaches 1

Planning with RRTs

Build RRT from start until we add a node
that can reach goal using local controller
(Unique) path: root → last node → goal

Optional: cross-link tree by testing local
controller, search within tree using A*
Optional: grow forward and backward

What you should know

C-space
Ways of splitting up C-space

Visibility graph
Voronoi
Exact, approximate cell decomposition
Variable resolution or adaptive cells
(quadtree, parti-game)

RRTs

