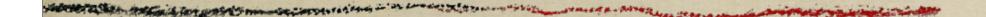
15-780: Graduate AI Lecture 2. A*, Spatial Search

Geoff Gordon (this lecture) Ziv Bar-Joseph TAs Geoff Hollinger, Henry Lin

Admin

- Slides on web site
- Matlab tutorial next Tue (5-6 NSH 1507)
- Please send your email address to TA Henry Lin (thlin at cs), who is compiling a class email list
- Please check the website regularly for readings (for Lec. 1–2, Ch. 1–4 of RN)



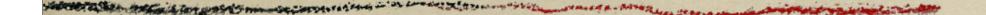
Review

Topics covered

- What is AI? (Be able to discuss an example or two)
- Types of uncertainty & corresponding approaches
- How to set up state space graph for problems like the robotic grad student or path planning

Topics covered

- Generic search algorithm & data structures
- Search methods: be able to simulate
 BFS, DFS, DFID
 Heuristic search
 What are advantages of each?



Projects

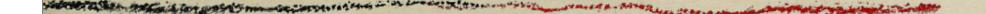
Project ideas

<image>

• Plan a path for this robot so that it gets a good view of an object as fast as possible

Project ideas

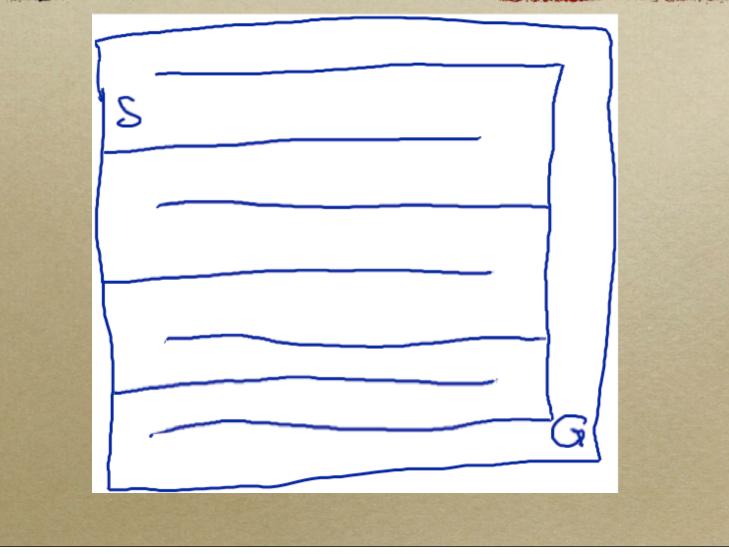
Do something cool w/ Lego Mindstorms
 plan footstep placements
 plan how to grip objects



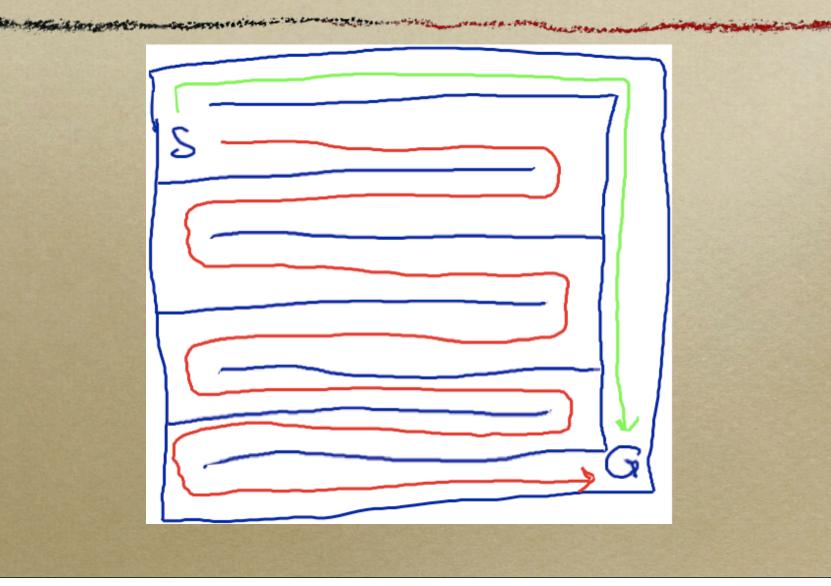
A* Search

Heuristic search looking bad

and a far a star a st



Heuristic search looking bad



Generic search

 $S = \{ start \} M = \emptyset$ While $(S \neq \emptyset)$ $x \leftarrow some \ element \ of \ S, \ S \leftarrow S \setminus x$ CheckSolution(x) For $y \in neighbors(x) \setminus M$ $S \leftarrow S \cup \{y\}$ $M = M \cup \{x\}$

A* search: Open list

- Implement S with priority queue
 - \circ S.insert(x, P)
 - *S.pop()*
 - and maybe S.test_member(x)
- Like heuristic search
 - but priority calculated differently (more below)

A* search: Path costs

- For both priority and closed list, maintain path cost function g(x)
- g(x) = best cost to reach x so far
 - or ∞ if no path from start to x found yet
- When pushing y, set g(y) = g(x) + c(x,y)
 - if g(y) finite, smaller of old and new values

A* search: Closed list

- Implementation of M: use g(x) and S
- If g(x) finite, x must be either open or closed
- So, $M = \{ g(x) \text{ finite } \land x \notin S \}$
- This is where we'd use S.test_member(), but it will turn out we can be slightly smarter

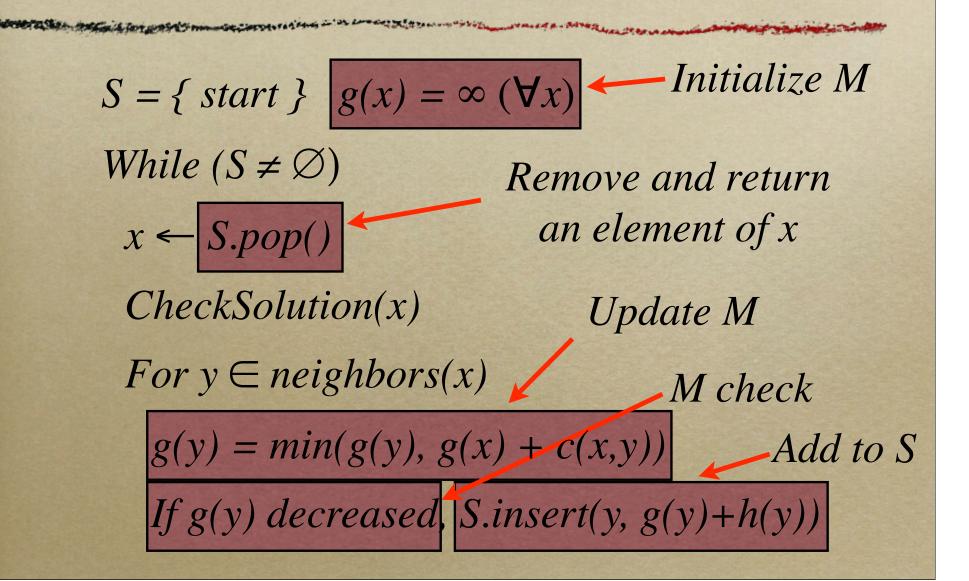
A* search: Priority

- When calling S.insert(x, P)
- Set $P = f(x) \equiv g(x) + h(x)$
- h(x) = heuristic estimate of distance from
 x to goal (just like in heuristic search)
- f(x) = estimate of cost of path through x
- Idea: focus on nodes that might yield short paths

Generic search

 $S = \{ start \} M = \emptyset$ While $(S \neq \emptyset)$ $x \leftarrow some \ element \ of \ S, \ S \leftarrow S \setminus x$ CheckSolution(x) For $y \in neighbors(x) \setminus M$ $S \leftarrow S \cup \{y\}$ $M = M \cup \{x\}$

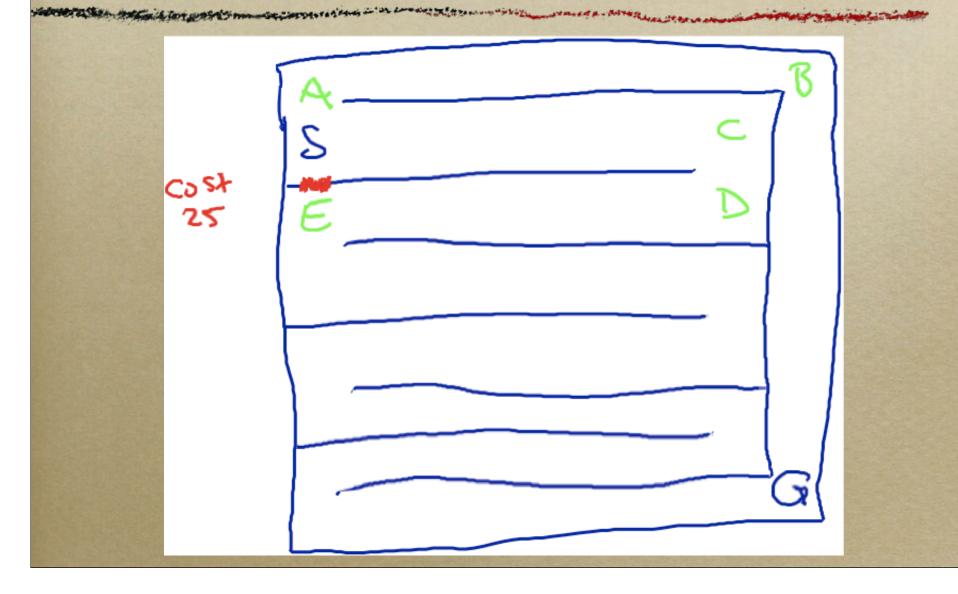
A* search

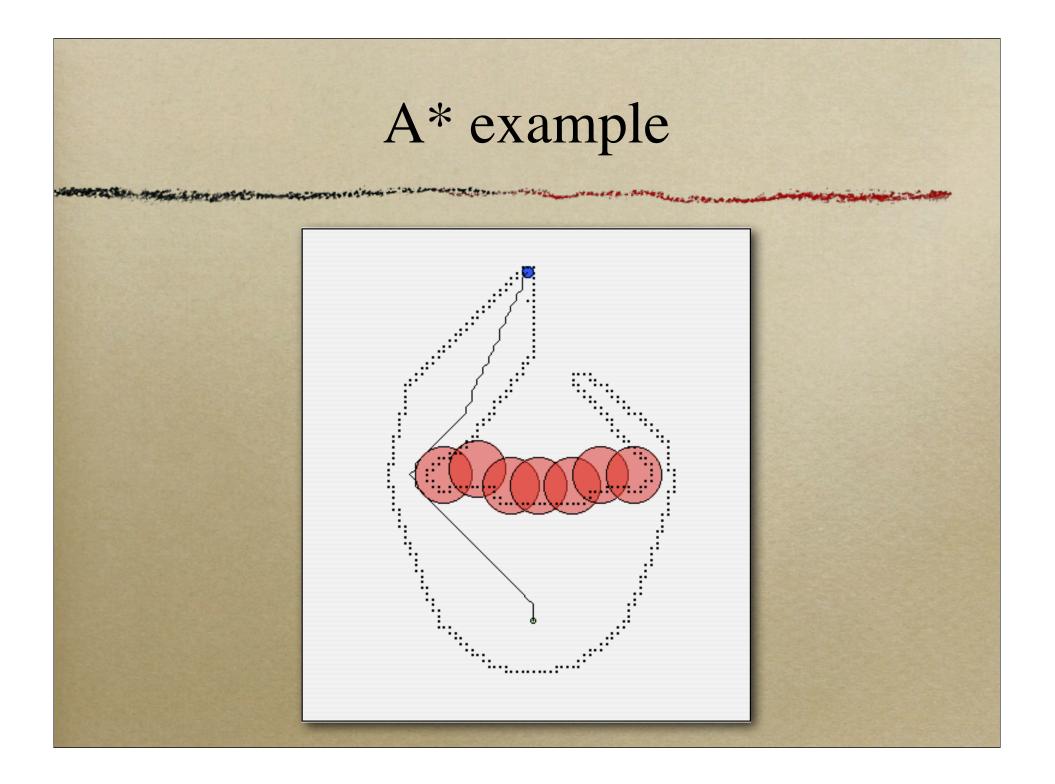


Admissible heuristic

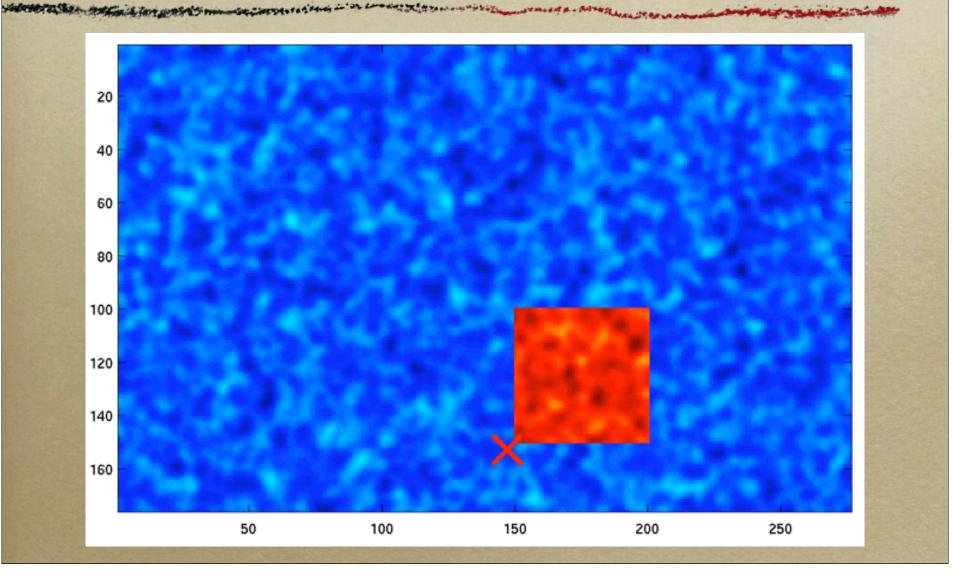
- A* has nice theoretical properties if h is admissible
- That is, $h(x) \leq true$ distance from x to goal
- E.g., crow-flies distance in a maze
- Intuition: make a path look better, we examine it earlier, maybe waste some work. Make it look worse, we might miss it entirely, find a bad solution.

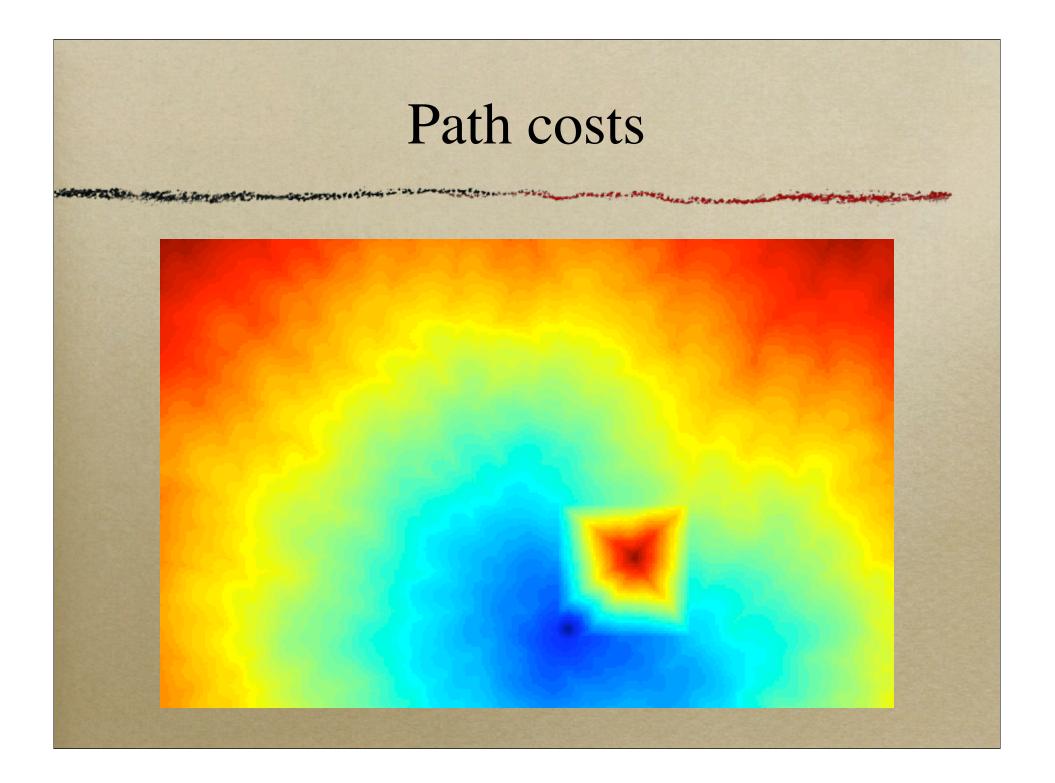
A* example





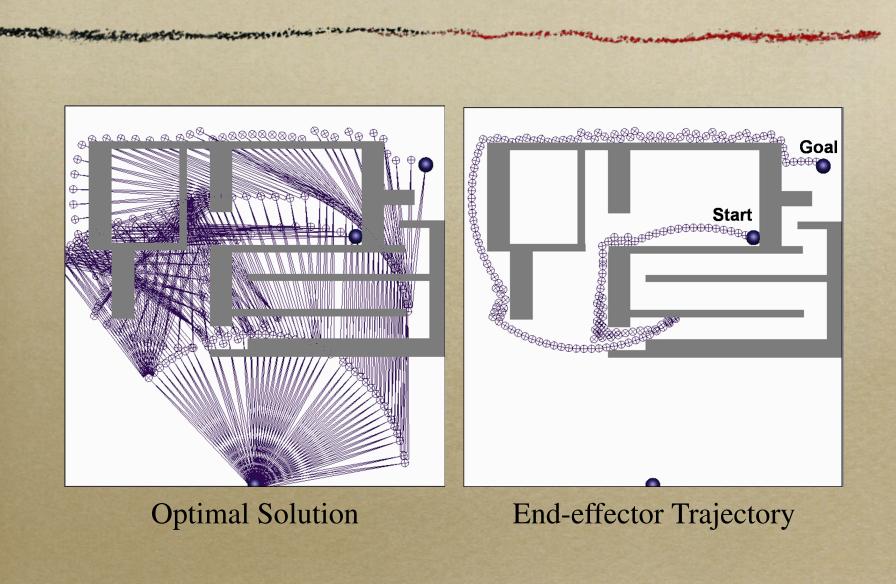
Node costs





More complicated A* example

Carle Tory and Some Streets



A* guarantees

- Write g* for depth of shallowest solution
- Assume h() is admissible
- (optimality) A* finds a solution of depth g*
- (efficiency) A* expands no nodes that have f(node) > g*

A* proof

- Both optimality and efficiency follow from: Lemma. For any two nodes x and y which have f(x) < f(y), A* expands x before y
- To see why optimality and efficiency follow, note goals have f(x) = g(x)
 h(x) must be 0

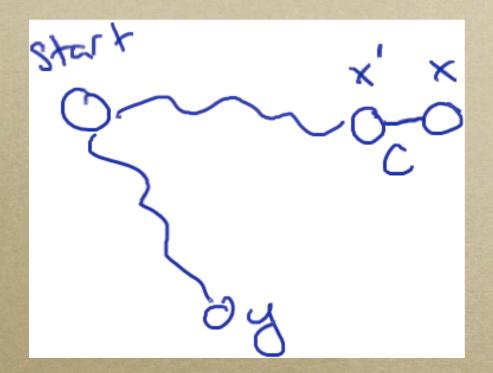
A* proof

 Will do a simple case: heuristic satisfies "triangle inequality"

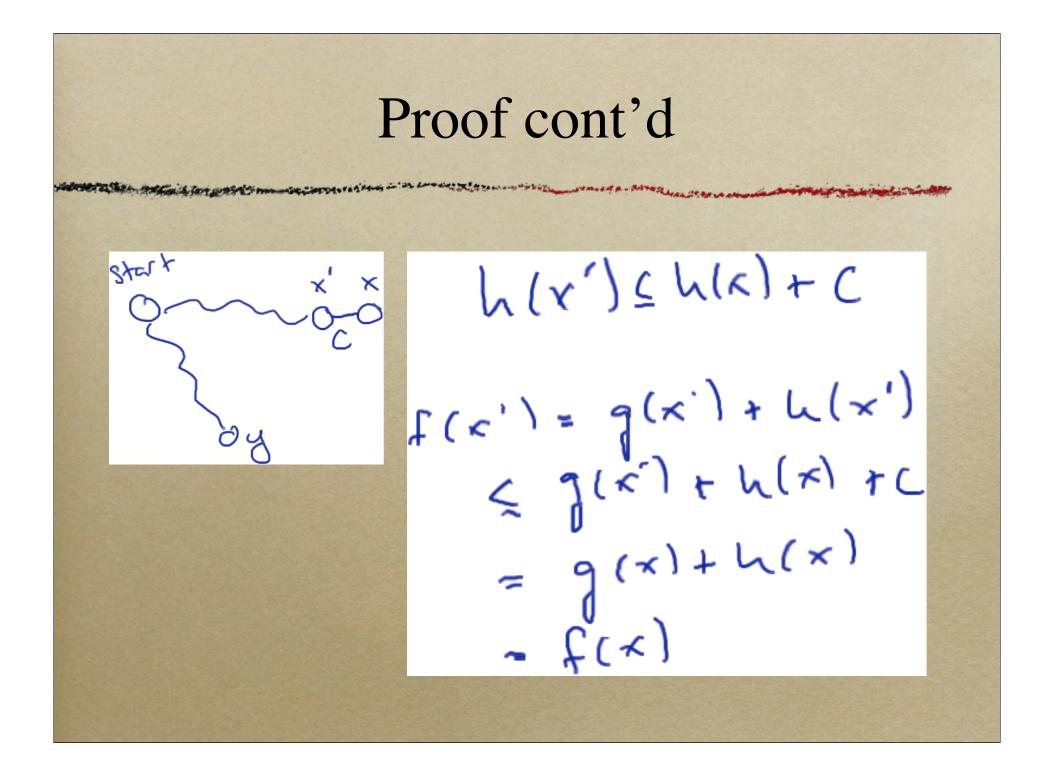
• For all neighboring pairs (x, y) $h(x) \le h(y) + c(x, y)$

Proof of lemma

Contraction of the second of t



Suppose f(y) > f(x) (so we want x first)
Consider shortest path from start to x



Proof cont'd

- So, all nodes w on path to x have $f(w) \le f(x) < f(y)$
- At least one such w is always on queue while x has not been expanded (possibly we have w = x)
- So if x has not yet been expanded, we must pick w before we expand y QED

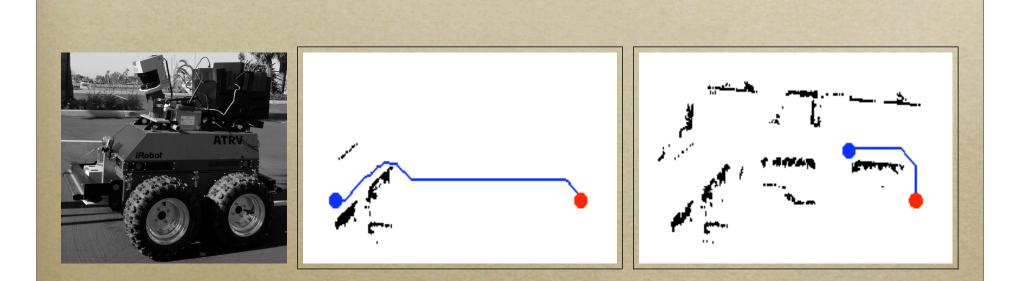
A* extensions

- Suboptimal: use non-admissible heuristic, lose guarantees but maybe increase speed
 Iterative deepening: avoid priqueue
 Anytime: start with suboptimal solution, gradually improve it
- Dynamic: fast replan if map changes

 $\Delta \times$

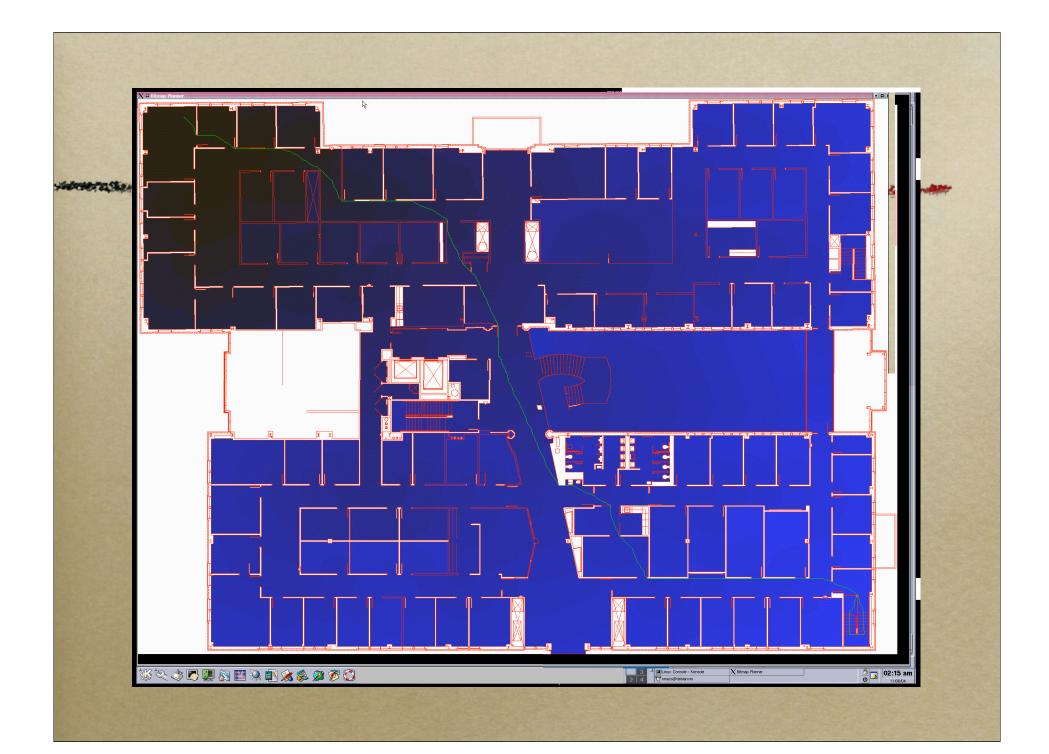
Do a DFS of all nodes with f(node) < k
If no solution, increment k and try again
Just like DFID, except that instead of a depth bound, bounds f = g + h

Anytime, dynamic planning

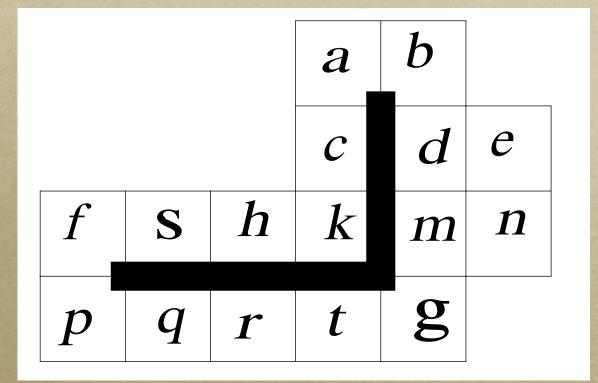


http://www.cs.cmu.edu/~ggordon/likhachev-etal.anytime-dstar.pdf

A* Planning on Big Grids



Sample exercise



credit: Andrew Moore

Nodes are connected in 4 cardinal directions, except across dark line

Sample exercise

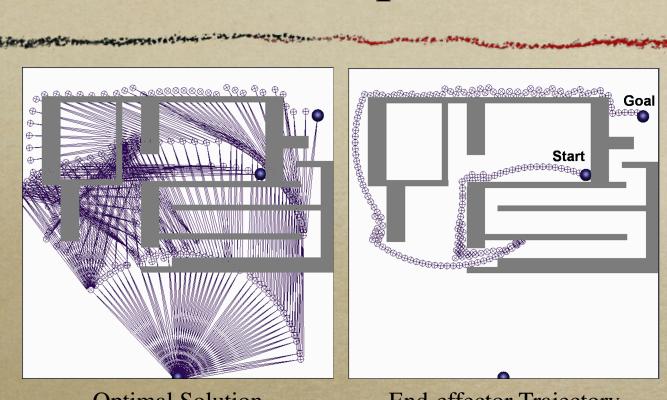
In graph on prev page, to find a path from s to g, what is the expansion order for
DFS, BFS

• *Heuristic search using h = Manhattan*

• A^* using f = g + h

 Assume we can detect when we reach a node via two different paths, and avoid duplicating it on the queue

Plans in Space...



Optimal Solution

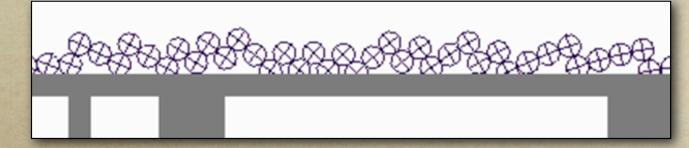
End-effector Trajectory

 Above, we saw A* for spatial planning (in contrast to, e.g., jobshop scheduling)

What's wrong w/ A* guarantees?

- (optimality) A* finds a solution of cost g*
- (efficiency) A* expands no nodes that have f(node) > g*

What's wrong with A*?



- Discretized space into tiny little chunks

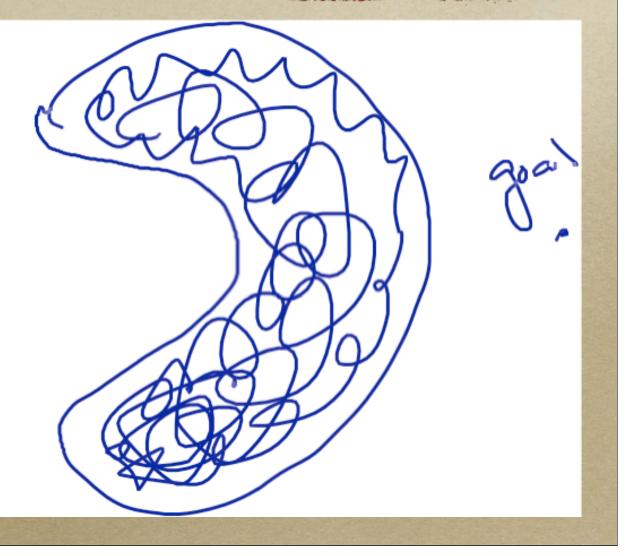
 a few degrees rotation of a joint
 Lots of states ⇒ slow

 Discretized actions too

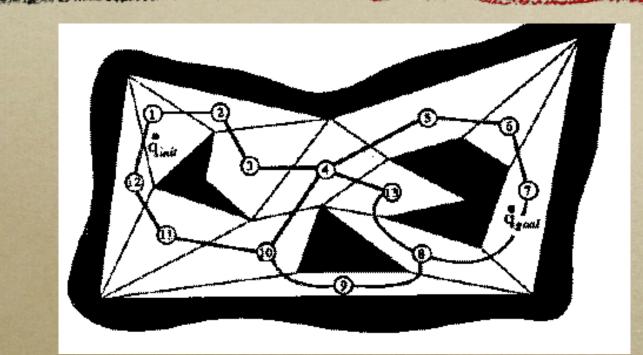
 one joint at a time, discrete angles
- Results in jagged paths

What's wrong with A*?

and a state of the second of t



Wouldn't it be nice...



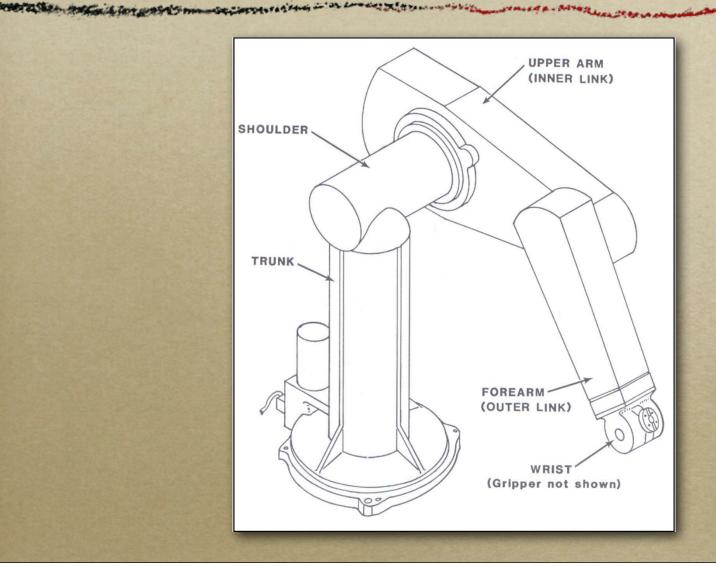
• ... if we could break things up based more on the real geometry of the world?

• Robot Motion Planning by Jean-Claude Latombe

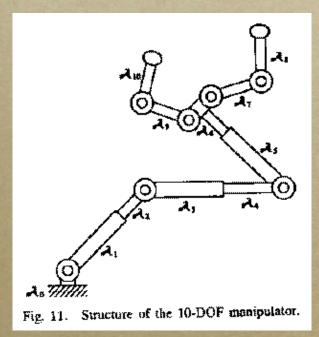
Physical system

- A moderate number of real-valued coordinates
- Deterministic, continuous dynamics
- Continuous goal set (or a few pieces)
- Cost = time, work, torque, ...

Typical physical system



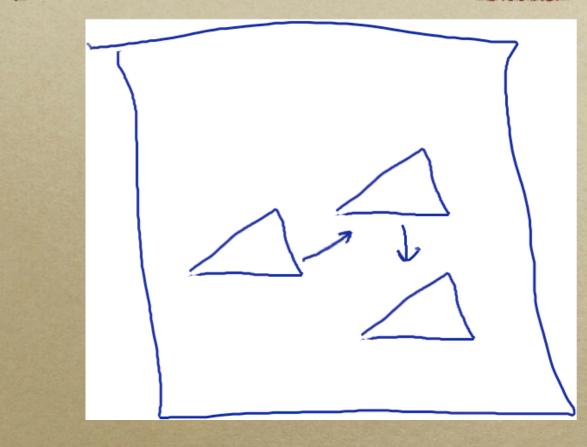
A kinematic chain



• Rigid links connected by joints • revolute or prismatic • Configuration $\mathbf{q} = (q_1, q_2, \ldots)$ q_i = angle or length of joint i • Dimension of $\mathbf{q} =$ "degrees of freedom"

Mobile robots

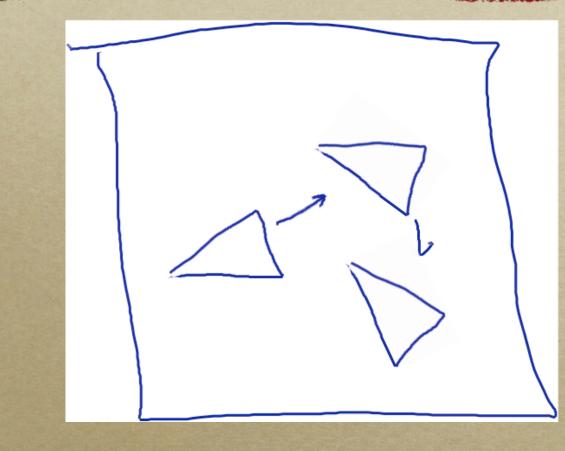
A CONTRACT OF THE STATE OF THE



• Translating in space = 2 dof

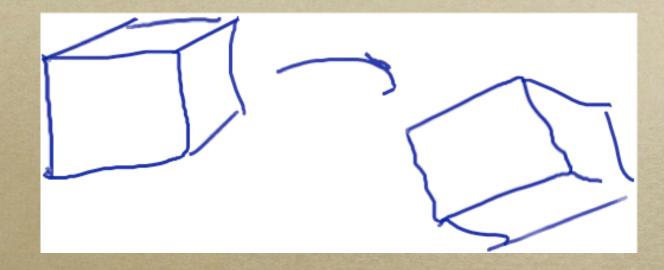
More mobility

and a start where the second and the



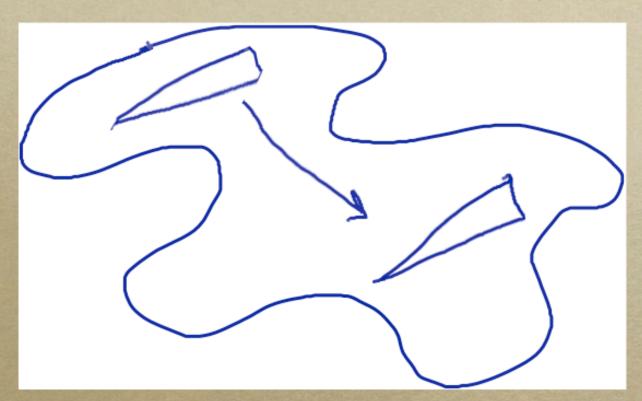
• Translation + rotation = 3 dof

Q: How many dofs?



• 3d translation & rotation

Robot kinematic motion planning



• Now let's add obstacles

Configuration space

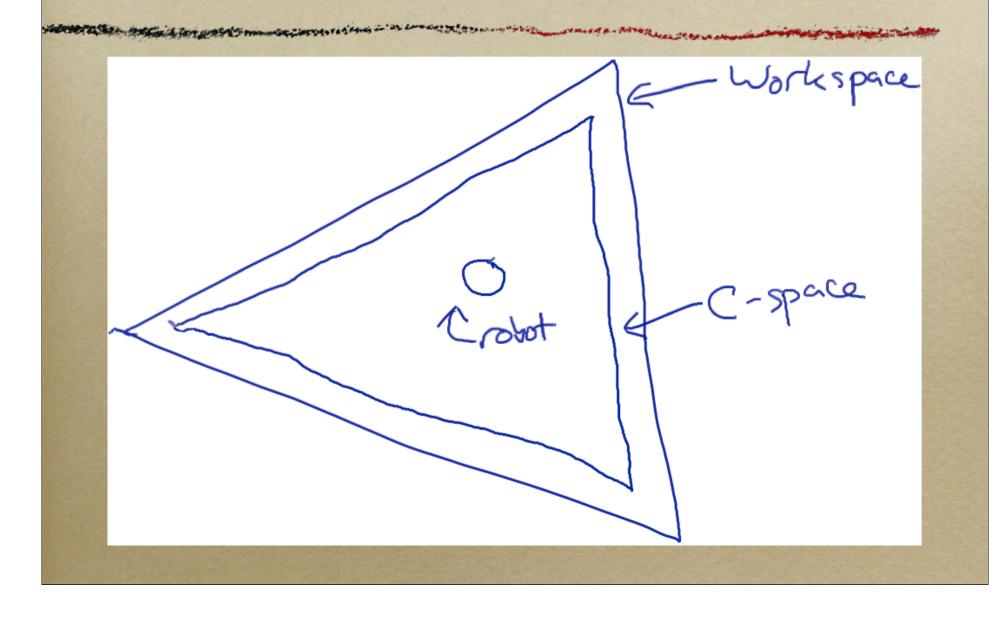
- For any configuration q, can test whether it intersects obstacles
- Set of legal configs is "configuration space" C (a subset of R^{dofs})
- Path is a continuous function from [0,1] into C with q(0) = q_s and q(1) = q_g

Note: dynamic planning

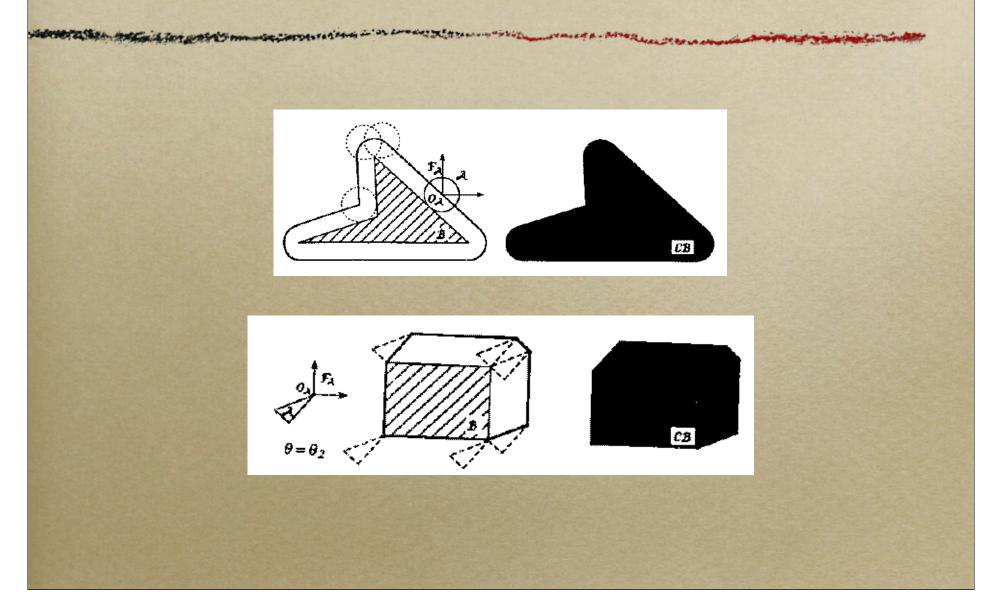
• Includes inertia as well as configuration

- **q**, **q**
- Harder, since twice as many dofs
- More later...

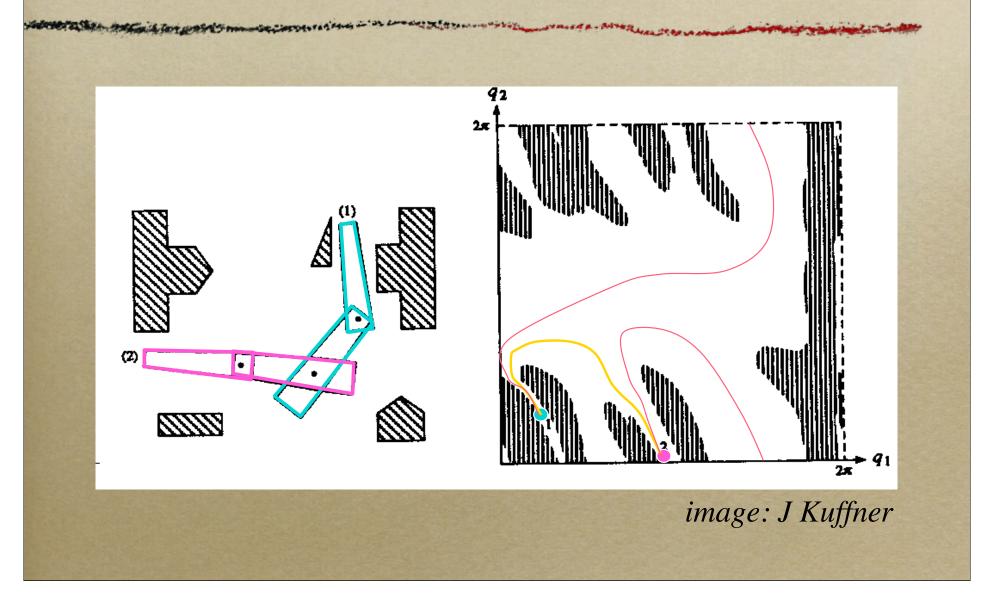
C-space example



More C-space examples



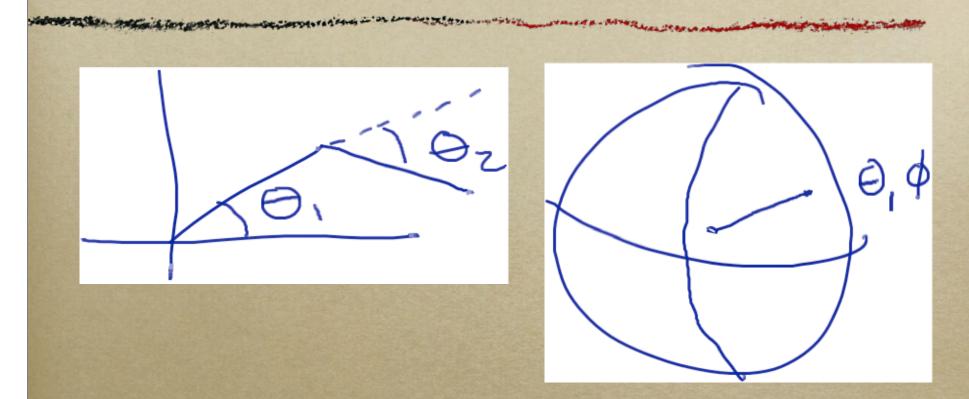
Another C-space example



Topology of C-space

- Topology of C-space can be something other than the familiar Euclidean world
- E.g. set of angles = unit circle = SO(2)
 not [0, 2π) !
- Ball & socket joint (3d angle) \subseteq unit sphere = SO(3)

Topology example

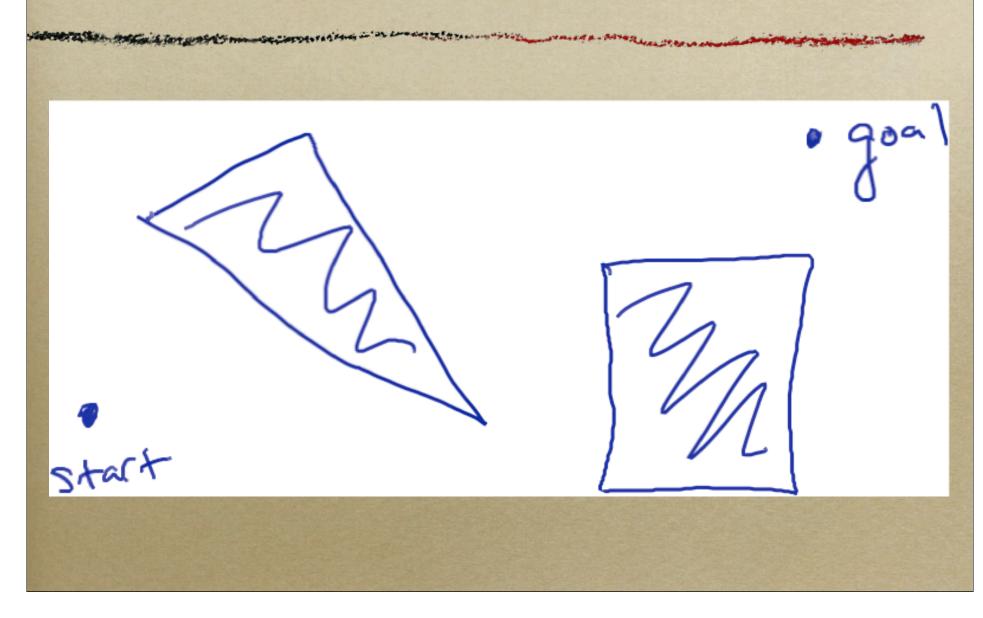


 Compare L to R: 2 planar angles v. one solid angle — both 2 dof (and neither the same as Euclidean 2-space)

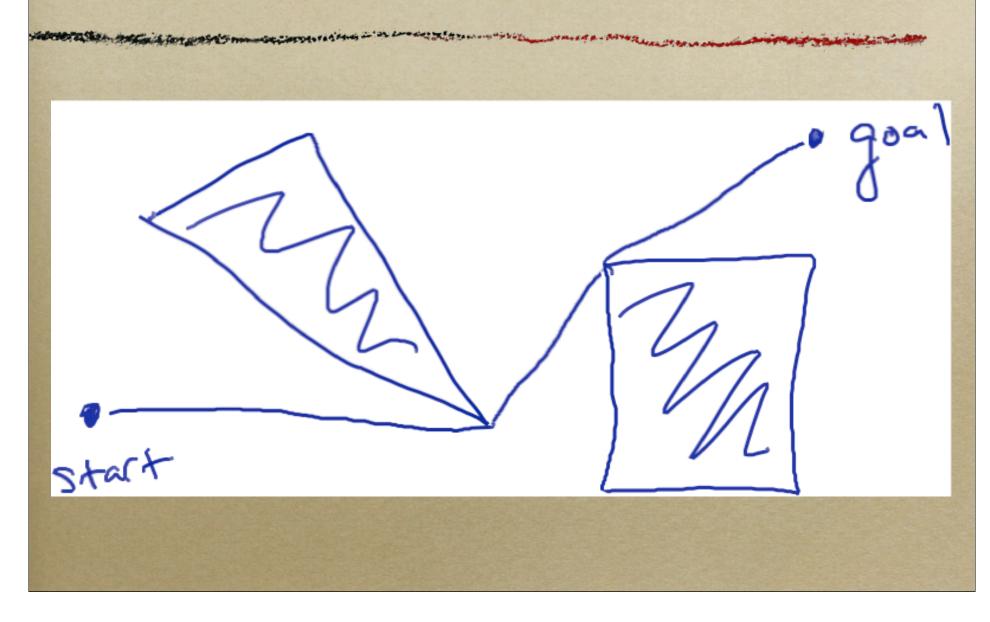
Back to planning

- Complaint with A* was that it didn't break up space intelligently
- How might we do better?
- Lots of roboticists have given lots of answers!

Shortest path in C-space



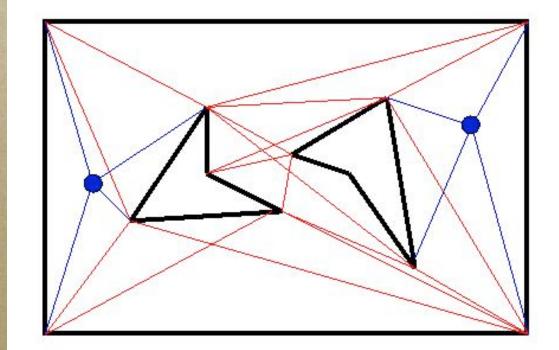
Shortest path in C-space



Shortest path

- Suppose a planar polygonal C-space
- Shortest path in C-space is a sequence of line segments
- Each segment's ends are either start or goal or one of the vertices in C-space
- In 3-d or higher, might lie on edge, face, hyperface, ...

Visibility graph



http://www.cse.psu.edu/~rsharma/robotics/notes/notes2.html

Naive algorithm

For $i = 1 \dots$ points For $j = 1 \dots$ points included = t For $k = 1 \dots$ edges if segment ij intersects edge k included = f

Complexity

- Naive algorithm is O(n³) in planar Cspace
- For algorithms that run faster, O(n²) and
 O(k + n log n), see [Latombe, pg 157]
 - k = number of edges that wind up in visibility graph
- Once we have graph, search it!

Discussion of visibility graph

- Good: finds shortest path
- Bad: complex C-space yields long runtime, even if problem is easy
 - get my 23-dof manipulator to move 1mm when nearest obstacle is 1m
- Bad: no margin for error

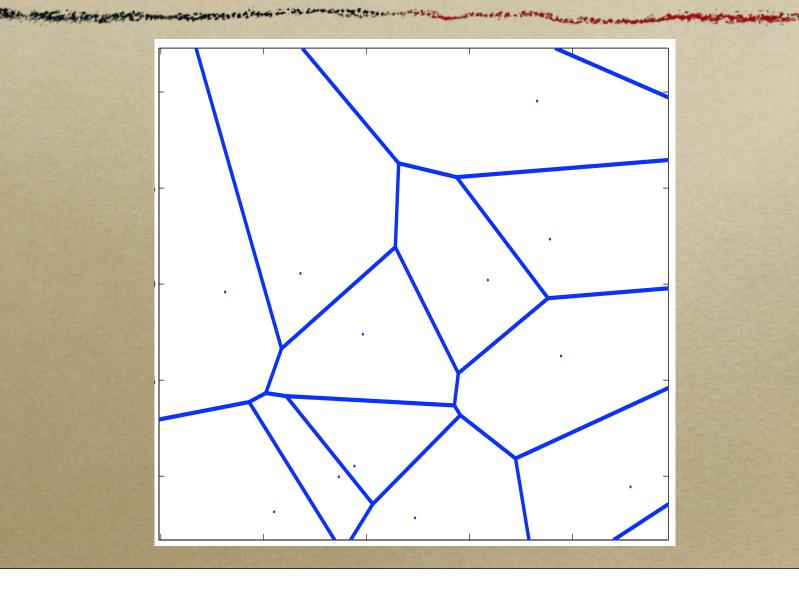
Getting bigger margins

• Could just pad obstacles

 but how much is enough? might make infeasible...

 What if we try to stay as far away from obstacles as possible?

Voronoi graph

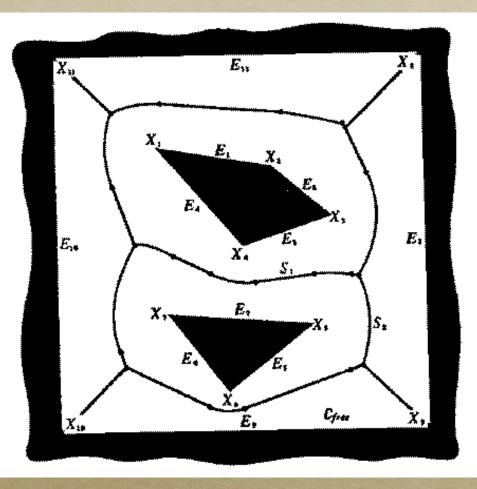


Voronoi graph

- Given a set of point obstacles
- Find all places that are equidistant from two or more of them
- Result: network of line segments
- Called Voronoi graph
- Each line stays as far away as possible from two obstacles while still going between them

Voronoi from polygonal C-space

and a start a for an a construction of the second of the s



Voronoi from polygonal C-space

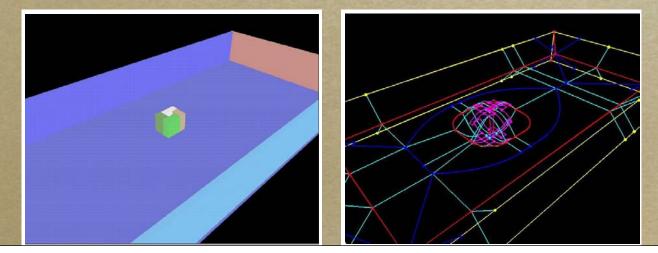
- Set of points which are equidistant from 2 or more closest points on border of Cspace
- Polygonal C-space in 2d yields lines & parabolas intersecting at points
 - lines from 2 points
 - parabolas from line & point

Voronoi method for planning

- Compute Voronoi diagram of C-space
- Go straight from start to nearest point on diagram
- Plan within diagram to get near goal (e.g., with A*)
- Go straight to goal

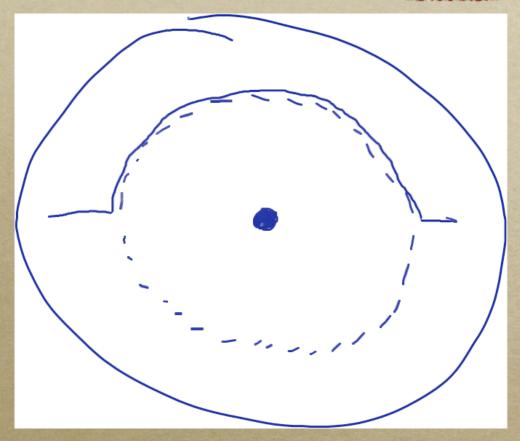
Discussion of Voronoi

- Good: stays far away from obstacles
- Bad: assumes polygons
- Bad: gets kind of hard in higher dimensions (but see Howie Choset's web page and book)



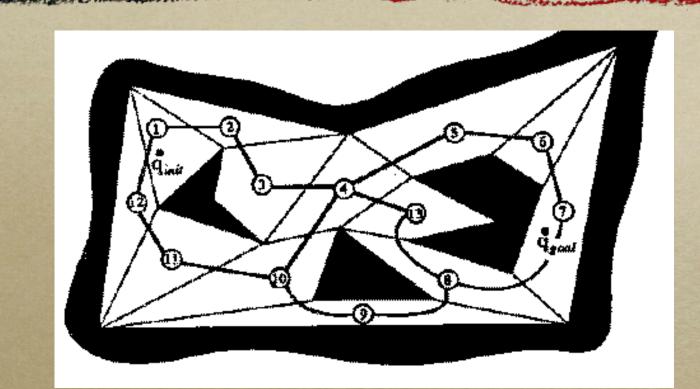
Voronoi discussion

and a start when the second and the second a start a st



• Bad: kind of gun-shy about obstacles

Exact cell decompositions



• We can try to break C-space into a bunch of convex polygons

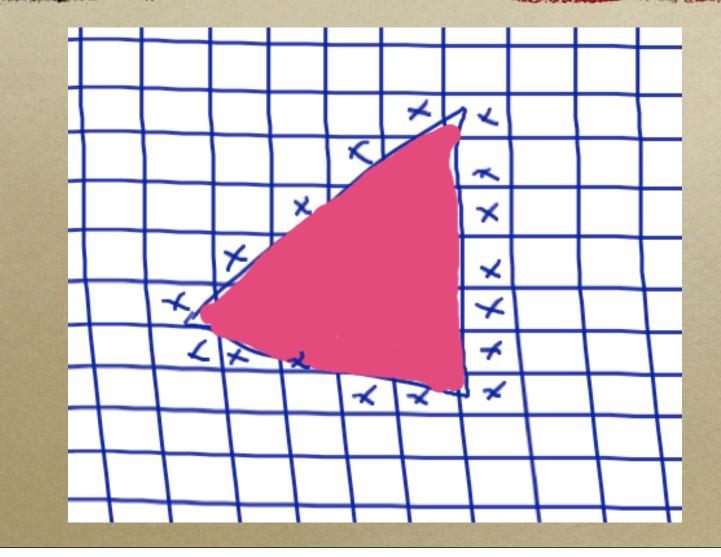
Exact cell decompositions

• Will not discuss how to do

- Common approach for video game NPCs
- But is also hard in higher than 2d
- And can result in wobbly paths

Approximate cell decompositions

States a straight and a straight a straight



Planning algorithm

- Lay down a grid in C-space
- Delete cells that intersect obstacles
- Connect neighbors
- A*
- If no path, double resolution and try again
 never know when we're done

Approximate cell decomposition

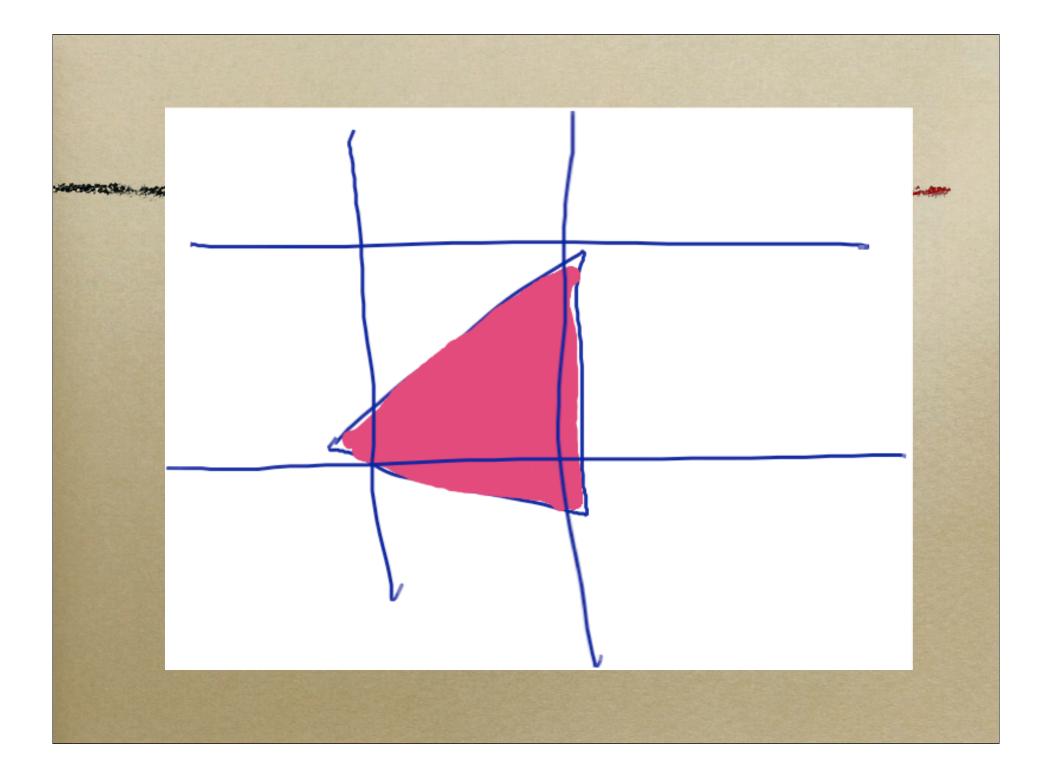
- This decomposition is what we were using for A* in examples from above
- Works pretty well except:
 - need high resolution near obstacles
 want low res away from obstacles

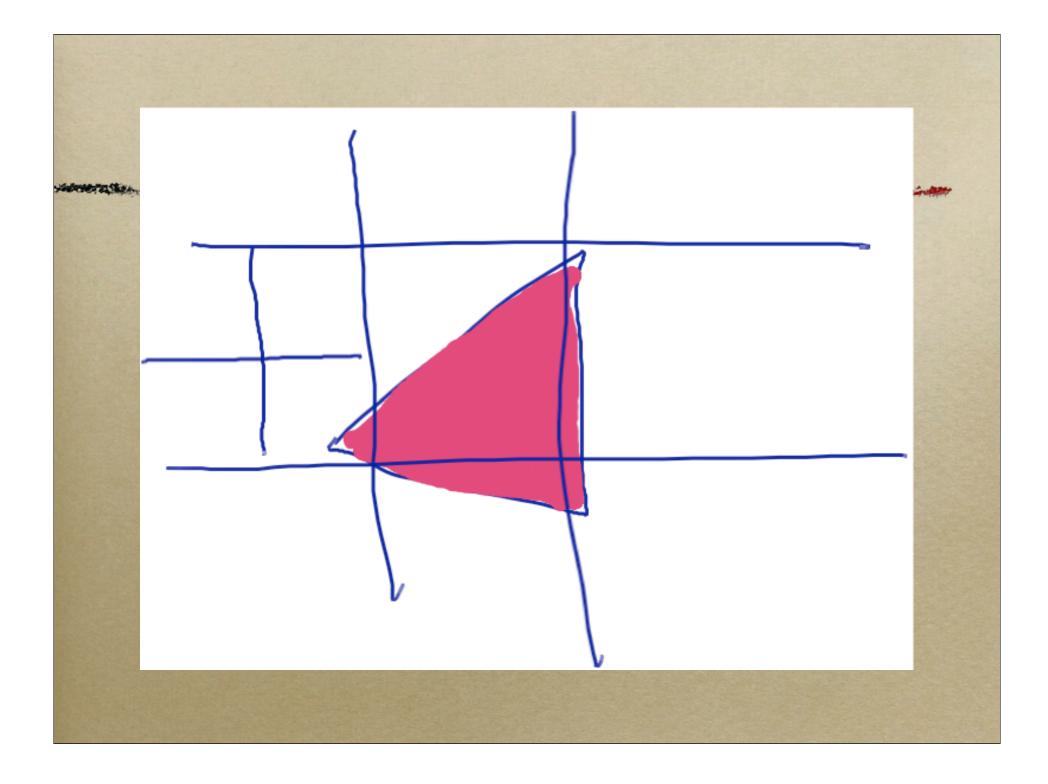
Fix: variable resolution

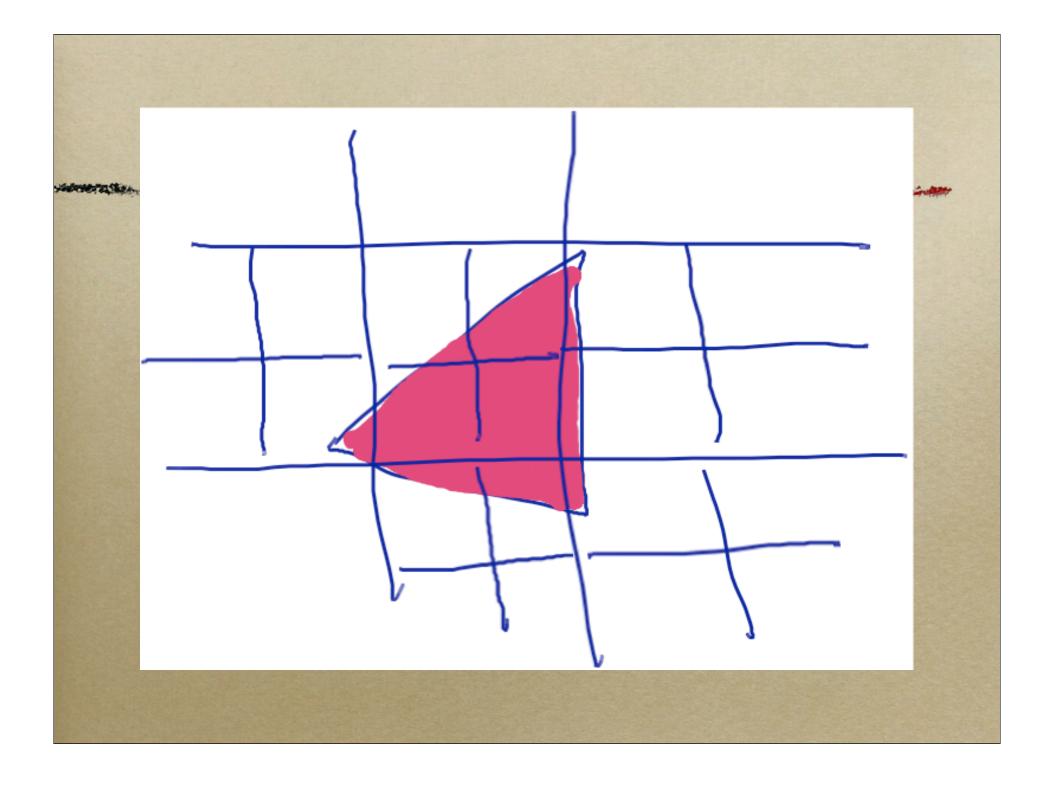
Lay down a coarse grid
Split cells that intersect obstacle borders

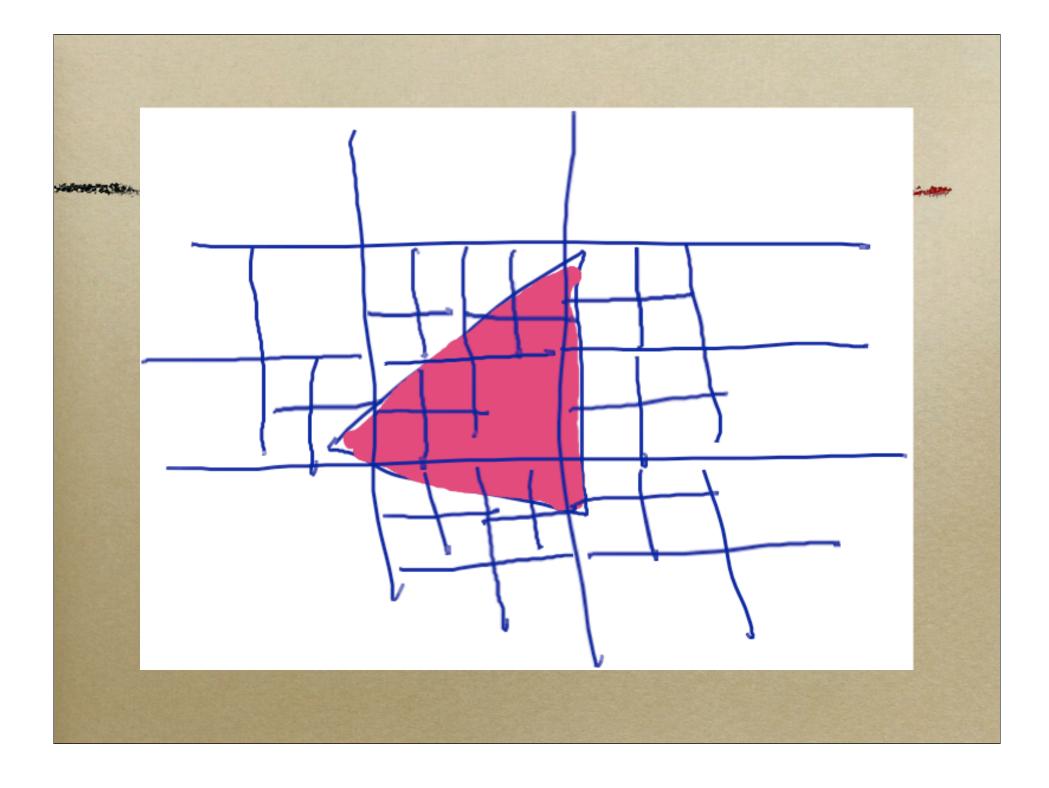
empty cells good
full cells also don't need splitting

Stop at fine resolution
Data structure: quadtree









Discussion

Works pretty well, except:
Still don't know when to stop
Won't find shortest path
Still doesn't really scale to high-d

Better yet

• Adaptive decomposition

 Split only cells that actually make a difference

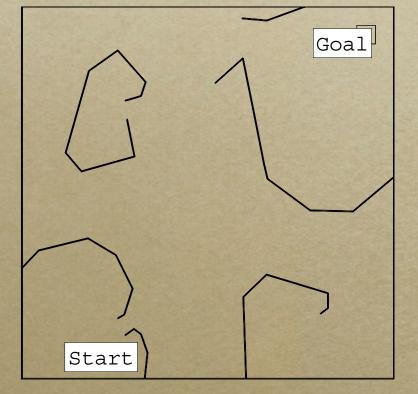
• are on path from start

• make a difference to our policy

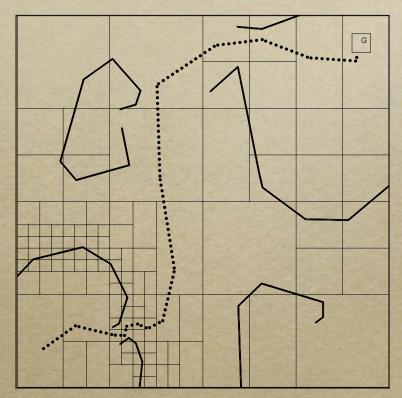
Parti-game algorithm

- Try actions from several points per cell
- Try to plan a path from start to goal
- On the way, pretend an opponent gets to choose which outcome happens (out of all that have been observed in this cell)
- If we can get to goal, we win
- Otherwise we can split a cell

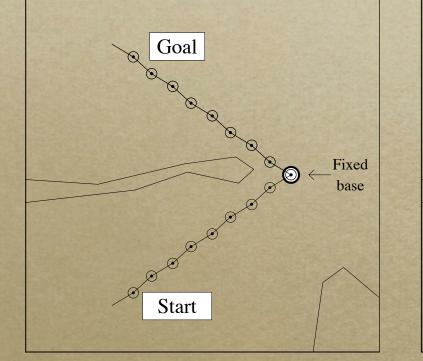
Parti-game example

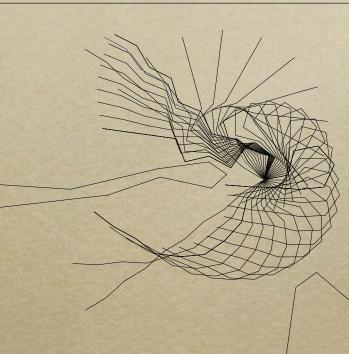


A CONSTRUCTION AND



9dof planar arm





85 partitions total

Parti-game paper

- Andrew Moore and Chris Atkeson. The Parti-game Algorithm for Variable Resolution Reinforcement Learning in Multidimensional State-spaces
- <u>http://www.autonlab.org/autonweb/14699.html</u>

Randomness

in search

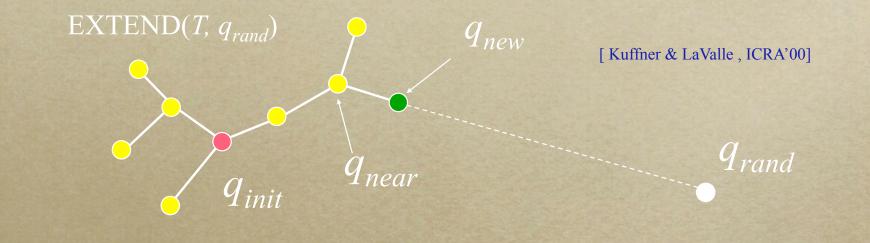
Rapidly-exploring Random Trees

- Put landmarks into C-space
- Break up C-space into Voronoi regions around landmarks
- Put landmarks densely only if high resolution is needed to find a path
- Will not guarantee optimal path (*)

RRT assumptions

• RANDOM CONFIG • samples from a distribution on C-space • $EXTEND(\mathbf{q}, \mathbf{q'})$ • local controller, heads toward q' from q • stops before hitting obstacle • FIND_NEAREST(\mathbf{q}, Q) • searches current tree Q for point near q

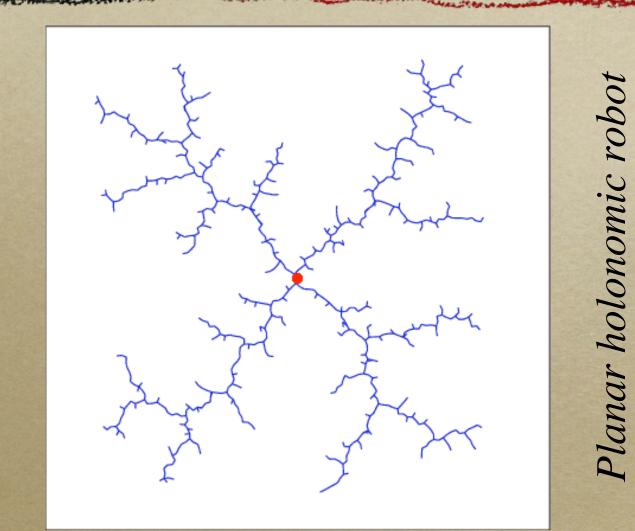
Path Planning with RRTs RRT = Rapidly-Exploring Random Tree

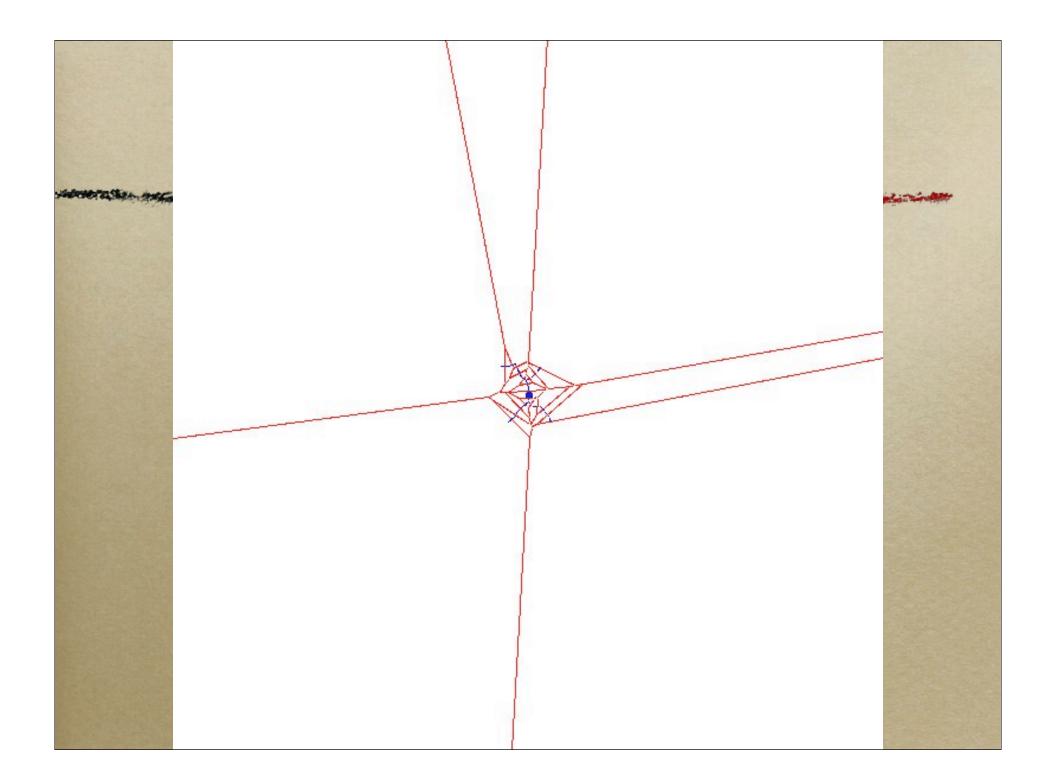


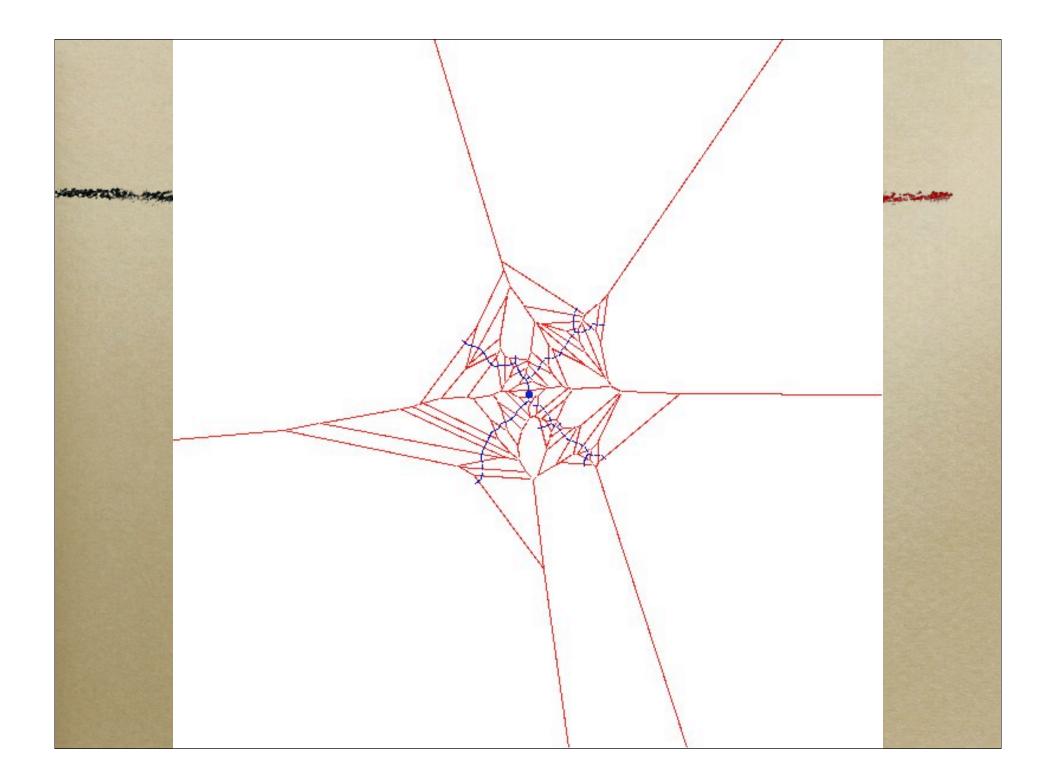
 $\begin{array}{l} \text{BUILT_RRT(q_{init}) } \\ \text{T} = q_{init} \\ \text{for } k = 1 \text{ to } K \\ q_{rand} = \text{RANDOM_CONFIG()} \\ \text{EXTEND(T, q_{rand});} \\ \end{array}$

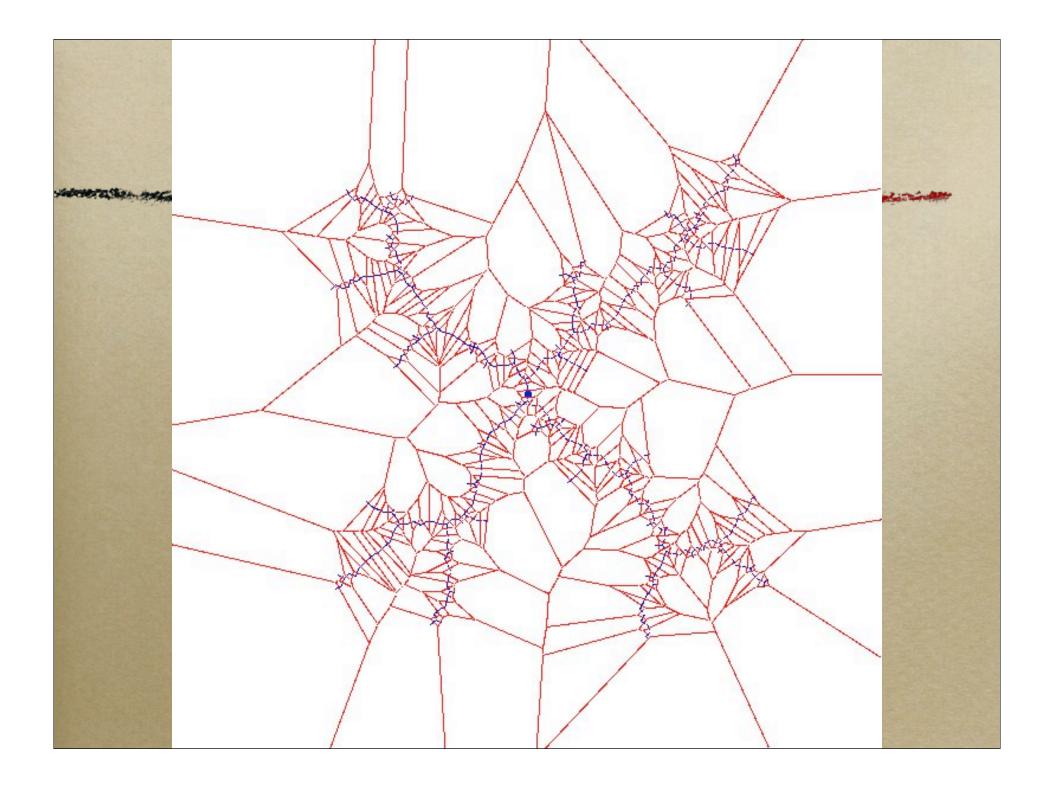
EXTEND(T, q) { q_{near} = FIND_NEAREST(q, T) q_{new} = EXTEND(q_{near}, q) T = T + (q_{near}, q_{new}) }

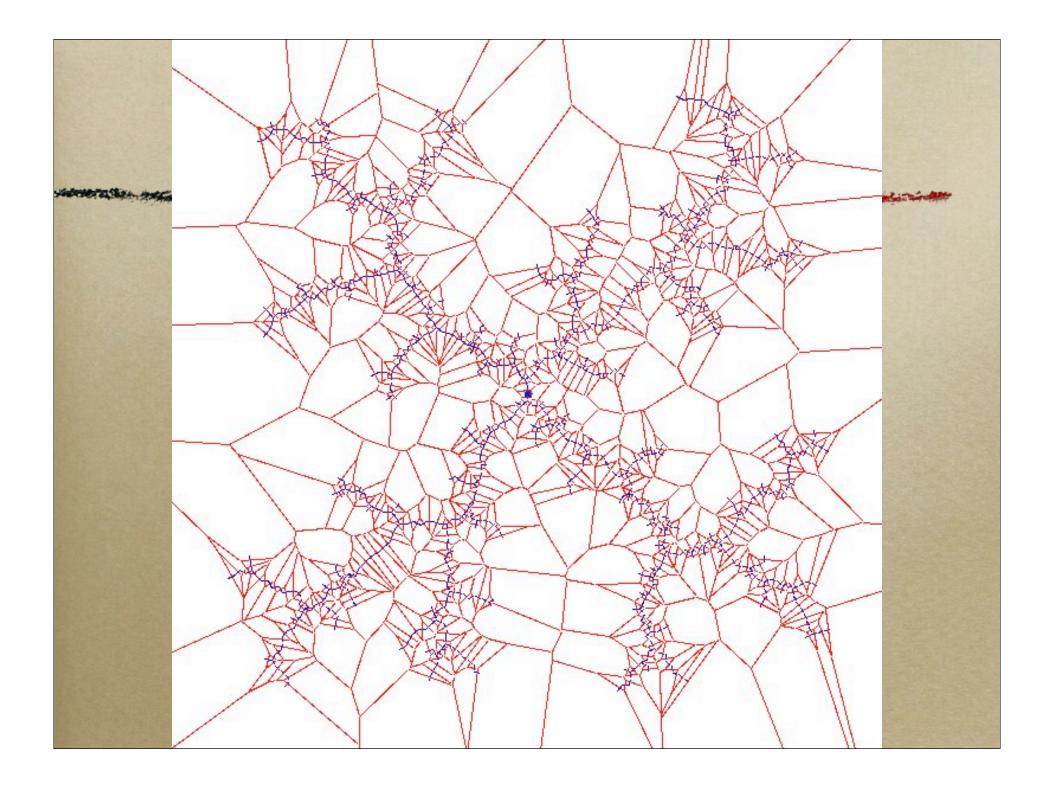
RRT example

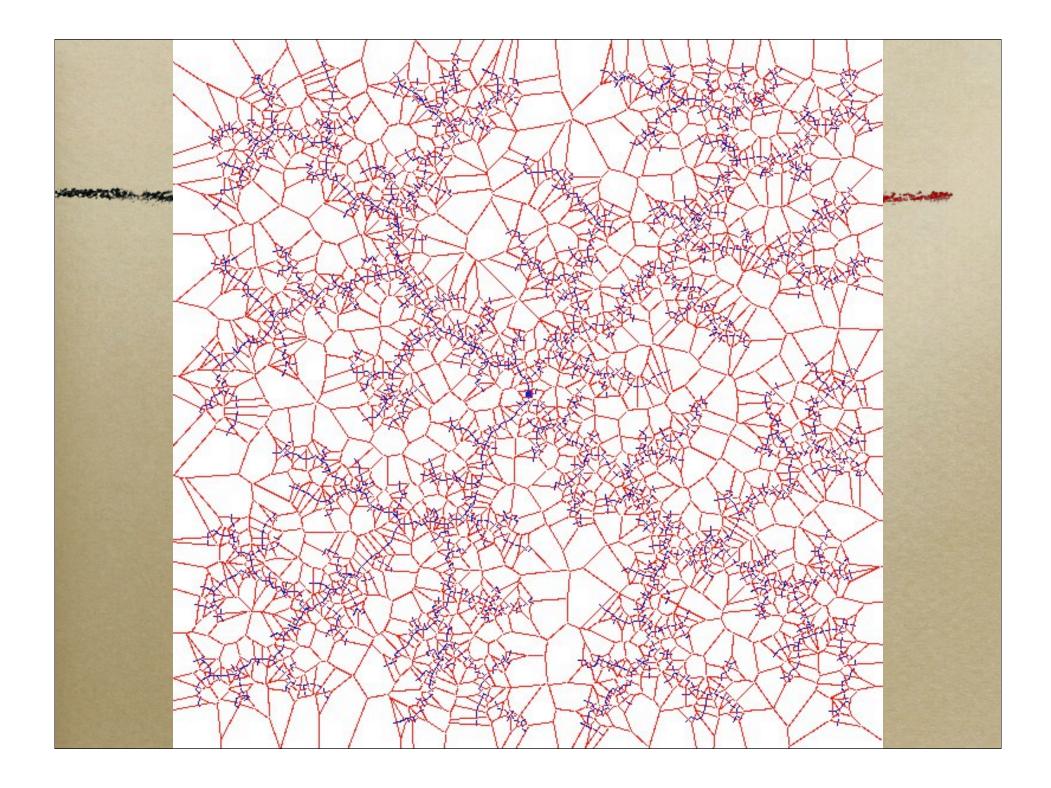




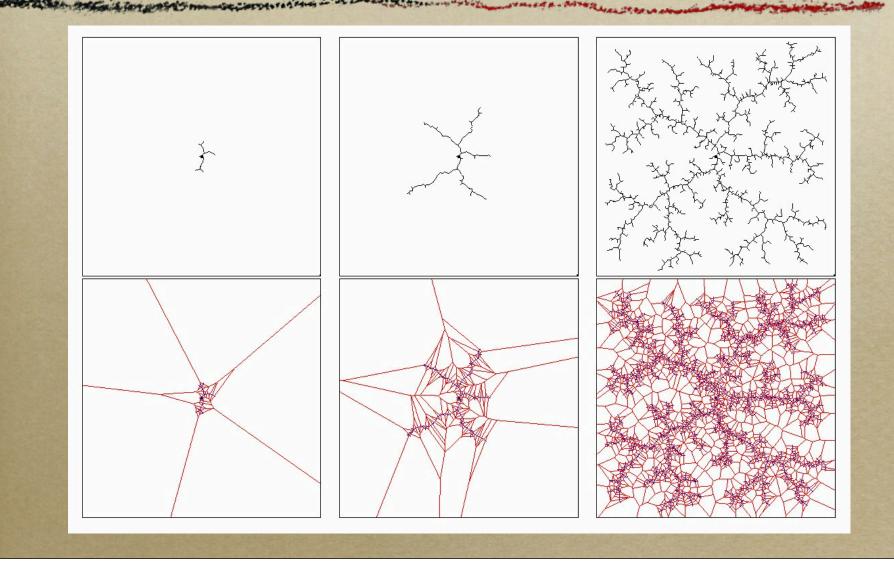




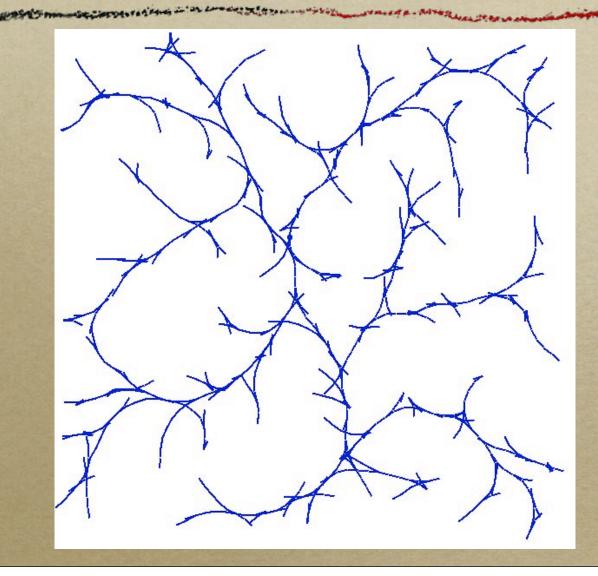




RRT example



RRT for a car (3 dof)



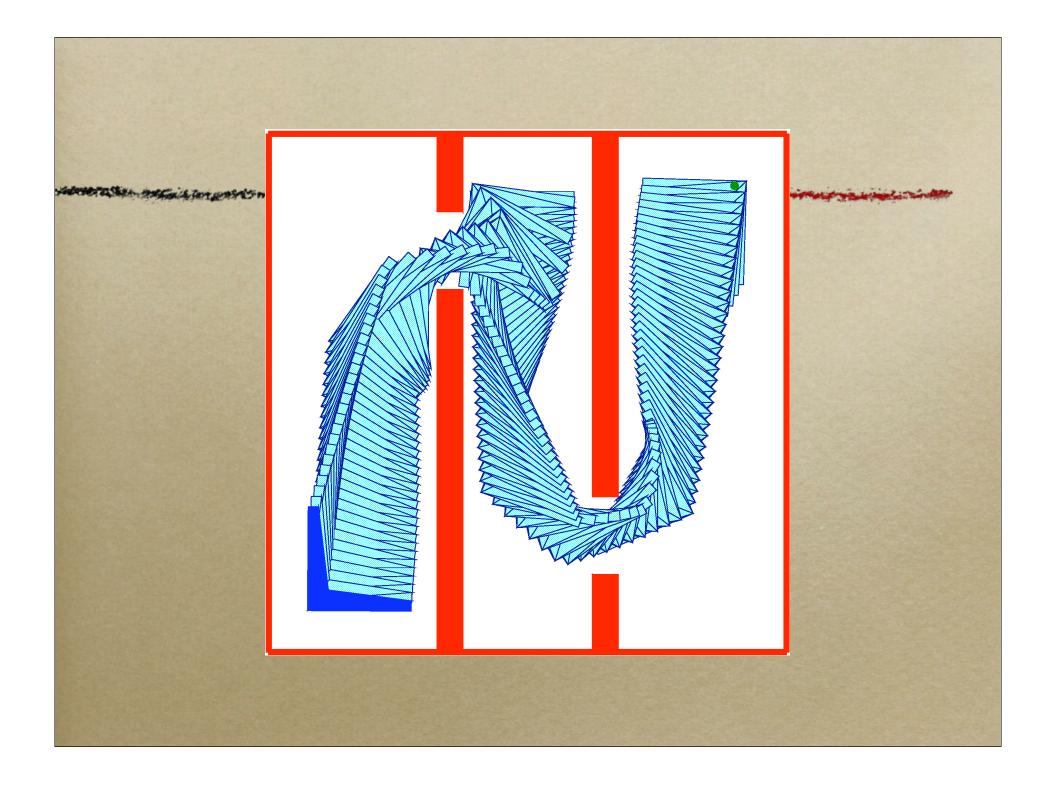
RRTs explore coarse to fine

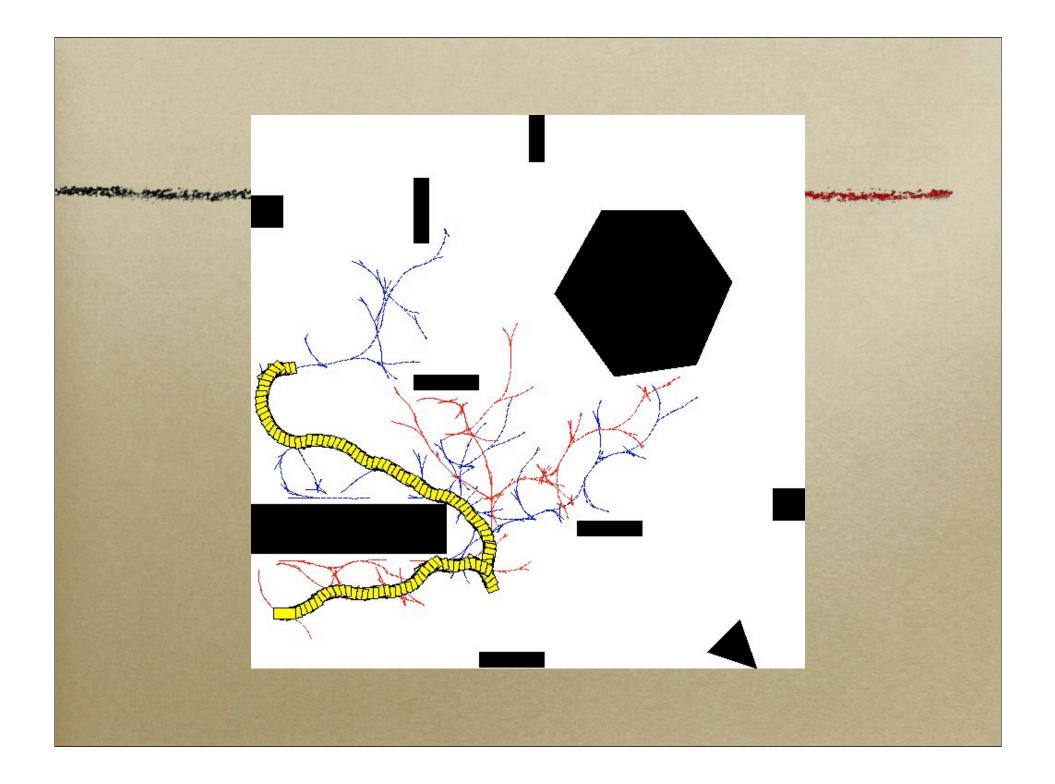
- Tend to break up large Voronoi regions
- Limiting distribution of vertices is RANDOM_CONFIG

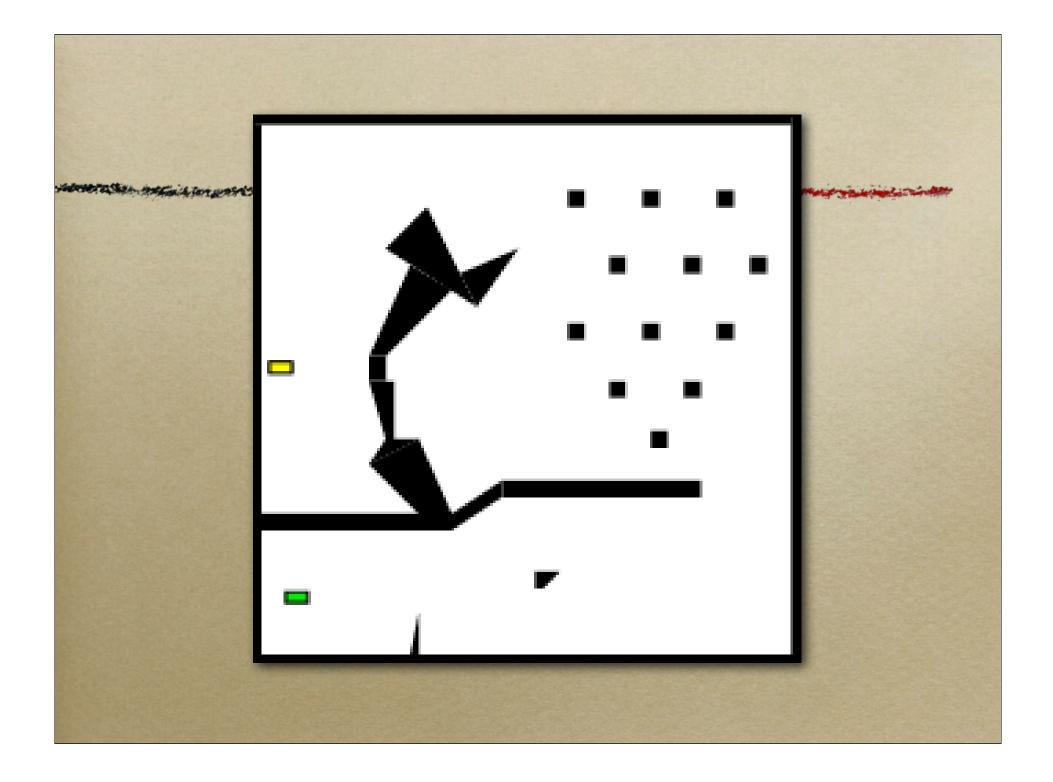
 Key idea in proof: as RRT grows, probability that q_{rand} is reachable with local controller (and so immediately becomes a new vertex) approaches 1

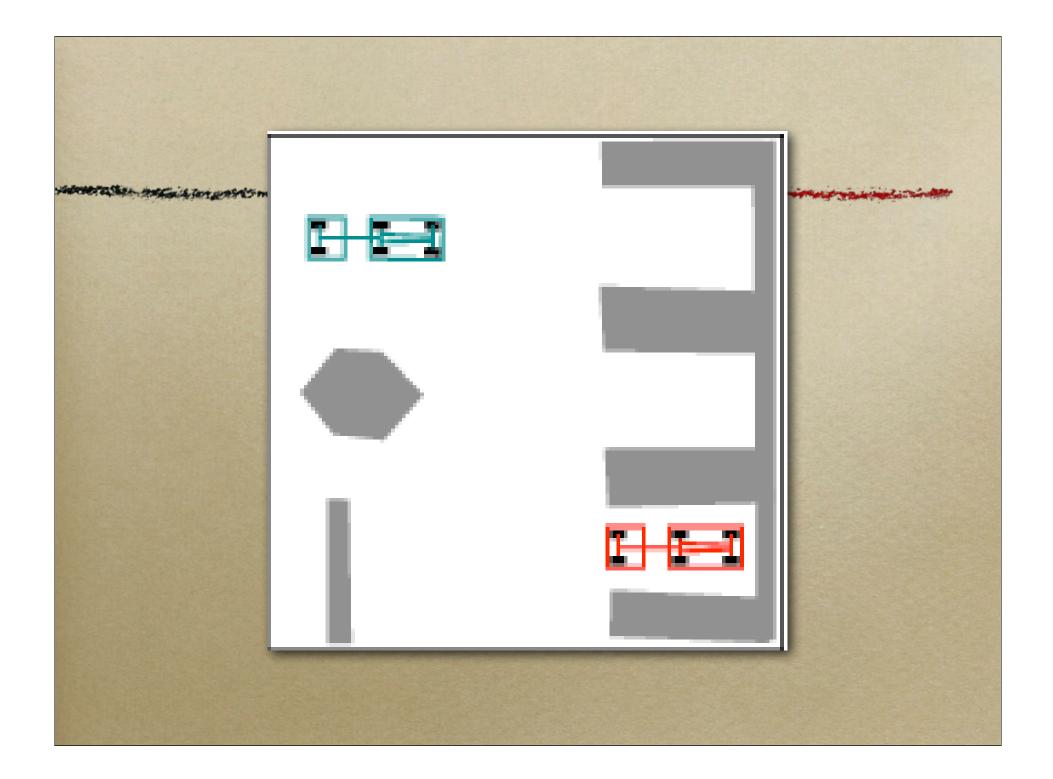
Planning with RRTs

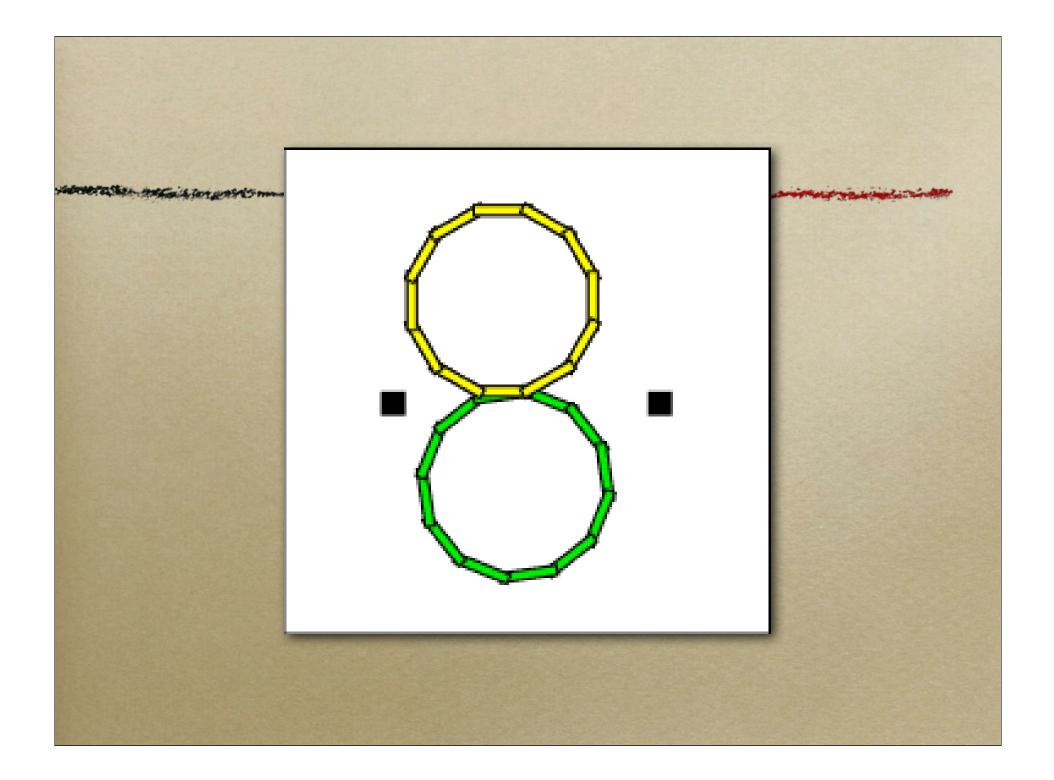
- Build RRT from start until we add a node that can reach goal using local controller
- (Unique) path: root \rightarrow last node \rightarrow goal
- Optional: cross-link tree by testing local controller, search within tree using A*
- Optional: grow forward and backward











What you should know

- C-space
- Ways of splitting up C-space
 - Visibility graph
 - Voronoi
 - Exact, approximate cell decomposition
 - Variable resolution or adaptive cells (quadtree, parti-game)
- RRTs