

VISR b s 4, Tt g SAT PrrmaSti DA S Tty S O BTSSR I v e Ll b B ey T e

o Slides on web site
o Matlab tutorial next Tue (5-6 NSH 1507)

o Please send your email address to TA
Henry Lin (thlin at cs), who is compiling a
class email list

o Please check the website regularly for
readings (for Lec. -2, Ch. 1-4 of RN)

Topics covered

" v : - Pty i’ P B g ¥ ey g S i = s - h - AP
mmw.wm{lﬁ i B 1 S & e et S o .MHM“;E*“M.MQW

o What is AI? (Be able to discuss an
example or two)

o Types of uncertainty & corresponding
approaches

o How to set up state space graph for
problems like the robotic grad student or

path planning

E Projectideas

A* search: Path costs

. . : o . St P i S E g LT it Z : : ; 3 T
mmwmm"‘mﬂ Lad B 1 S & e et S o .MHM“;E*“M.MQW

o For both priority and closed list, maintain
path cost function g(x)

o g(x) = best cost to reach x so far
o or % if no path from start to x found yet
o When pushing vy, set g(y) = g(x) + c(x,y)

o If g(y) finite, smaller of old and new
values

A* search: Closed list

" v : - Pty i’ P B g ¥ ey g S i = s - h - AP
mmw.wm{lﬁ i B 1 S & e et S o .MHM“;E*“M.MQW

o Implementation of M: use g(x) and S

o If g(x) finite, x must be either open or
closed

o So, M ={ g(x) finite A xE S }

o This is where we’d use S.test_member(),
but it will turn out we can be slightly
smarter

0]

0]

Set P

A* search: Priority

£ : o I B o T v e ; S RNPUL BSR-LIT Yo
i ety A T e e S BAVER s 20,00 s 2 i i DI P O y l Ies Ty BN

o When calling S.insert(x, P)
= f(x) = g(x) + h(x)

h(x) = heuristic estimate of distance from
X to goal (just like in heuristic search)

f(x) =

estimate of cost of path through x

ldea: focus on nodes that might yield short

paths

A* search

A Py o P B e ey Ky e b gt S £ - el gy e

S ={ start } -?Inmalzze M

While (S =) Remove and return

—

X e-" an element of x

CheckSolution(x) Update M
Fory € neighbors(x) /

M check
/Add to S

Admissible heuristic

TS e i AL G Prmmaa it Ot T8 A s it -0 3 T L L R R P PSR i i Bade e el

o A* has nice theoretical properties if h is
admissible

o That is, h(x) < true distance from x to goal
o E.g., crow-flies distance in a maze

o Intuition: make a path look better, we
examine it earlier, maybe waste some
work. Make it look worse, we might miss
it entirely, find a bad solution.

Node costs

PPN TR s A Tt A Prrmaa St DA T4 A Tty S I S AL I vs SV ek MR NI e e i e i e

Path costs

SRAATILNIG,
S
o SNSUIBL

o
R

AN

\

A* proof

MWWWW B Bty i P Bl oy 1 T ”""';h.,.“_ 'y_“wﬂw

o Both optimality and efficiency follow from:

Lemma. For any two nodes x and y which
have f(x) < f(y), A* expands x before y

o 1o see why optimality and efficiency
follow, note goals have f(x) = g(x)

o h(x) must be 0

(/Y e W)+ C

fl:-(c'\ - ‘a(:’(\ ¥ L&('ﬂ")
< 'a(f'\ e Wi rC

— r.a(-lt“-l- L\(K)
~ Lcx)

Proof cont’d

. . : o . St P i S E g LT it Z : : ; 3 T
mmwmm"‘mﬂ Lad B 1 S & e et S o .MHM“;E*“M.MQW

o So, all nodes w on path to x have

Jw) =f(x) < f(y)

o At least one such w is always on queue

while x has not been expanded (possibly
we have w = Xx)

o So if x has not yet been expanded, we must
pick w before we expand y — QED

A¥ extensions

" v : - Pty i’ P B g ¥ ey g S i = s - h - o oy et
mmw.wm{lﬁ i B 1 S & e et S o .MHM“;E*“M.MQW

o Suboptimal: use non-admissible heuristic,
lose guarantees but maybe increase speed

o lIterative deepening: avoid priqueue

o Anytime: start with suboptimal solution,
gradually improve it

o Dynamic: fast replan if map changes

Anytime, dynamic planmng

’ e .4%# ﬂmﬂug B i S Y =1 S B “‘I’al e = ‘m 4

AT

http ://www.cs.cmu.edu/~goordon/likhachev-etal.anytime-dstar.pdf

A* Planning on Big Grids

WWWi.{% e L 13 14 S O SR e Py ma‘m‘ﬁf““ PR

ureew

Credit: Kuffner

s

.
TR

&l
] H -
T 7]
Il

E E3E
T T
2 &

i

==

+ [o8

ST TREECFEY Tl

7]
I

I I

I =

B

B
L Consol - Kessle 3 Eimap Flarwer
& enass@eianm

(=@l

K
E3
I
T
=
TH
H
]
H
W
e

02:15 am
& B 1110604

Sample exercise

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o In graph on prev page, to find a path from
s to g, what is the expansion order for

o DFS, BFS
o Heuristic search using h = Manhattan
o A*usingf=g+ h

o Assume we can detect when we reach a
node via two different paths, and avoid
duplicating it on the queue

PRI b B 2, Tt g WA Pl s T A

Spatlal
Planning

Wouldn’t 1t be nice...

PRSI b B 2, Tt B ol DA 4 Pty S OV TR v e Nt s B e e e

o ...If we could break things up based more
on the real geometry of the world?

o Robot Motion Planning by Jean-Claude Latombe

Fip. 11. Swucture of the 10-DOF menipulatar.

! E How Mo lloFs

Fixed Fl-&ﬂ. Clyivg

: How Man o\qfs ¢
m&i:%w$u hoth2mbl
How many DoFs :

Twe cmﬁ‘ju.u.ka\ 4, has ona real valuad
ertry per DOF.

2AO0J\] MAAPUY 1P

Configuration space

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o For any configuration q, can test whether
it intersects obstacles

o Set of legal configs is “configuration
space” C (a subset of R4s)

o Path is a continuous function from [0,1]
into C with g(0) = qs and q(1) = Qg

More C-space examples

mmwmu,fm i 13- 113 DO SR TS i Tt

Another C-space example

RIS b B L Tt BT Pl s A Ty SN TR I v s e s B ey - P e AR

R
N éf" ;"“llm“mm[““hh "lllﬂa m""" ‘H]I
o[F ’\A/J N) "“l ‘I||| 1||| l““ll 1‘,

image: J Kuffner

Topology of C- space

ORISR e 4, Tt ST Pt Tt T 4 K Tt 'OV BTS2 iy R R TR PRCAPP TIPS

o Topology of C-space can be something
other than the familiar Euclidean world

o E.g. set of angles = unit circle = SO(2)
o Nnot [0, ZTE) /

o Ball & socket joint (3d angle) C unit
sphere = SO(3)

Shortest path

mmwmm A ety ' e S il s g K gy e gt S o [lanks = U =

o Suppose a planar polygonal C-space

o Shortest path in C-space is a sequence of
line segments

o Each segment’s ends are either start or
goal or one of the vertices in C-space

o In 3-d or higher, might lie on edge, face,
hyperface, ...

Complex1ty

mmmﬁ!mm A Pty = " by :!_ "o ¥ Sl

- vy
Rdaa 2 0

o Naive algorithm is O(n?) in planar C-
space

o For algorithms that run faster, O(n?) and
O(k + n log n), see [Latombe, pg 157]

o k = number of edges that wind up in
visibility graph

o Once we have graph, search it!

Discussion of visibility graph

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o Good: finds shortest path

o Bad: complex C-space yields long
runtime, even if problem is easy

o get my 23-dof manipulator to move
Imm when nearest obstacle is Im

o Bad: no margin for error

Voronoi1 graph

- F : s = = " e - - = e e
OISO b A 4 Gt g2 IOt A s S R e MV st e b - VORI Bl s T

o Given a set of point obstacles

o Find all places that are equidistant from
two or more of them

o Result: network of line segments
o Called Voronoi graph

o Each line stays as far away as possible
from two obstacles while still going
between them

Voronoi1 from polygonal C-space

m‘mwm'lfﬁﬁ I B IR eV st s A, =

Voronoi1 from polygonal C-space

TS e i At gAY ol Ot ¥4 A Tty i I B '"""'-f:'i-':.ff?:"-""‘-";'"":-u-—r—"““"“"”"'“hugupw o et Tl

o Set of points which are equidistant from 2
or more closest points on border of C-
space

o Polygonal C-space in 2d yields lines &
parabolas intersecting at points

o lines from 2 points

o parabolas from line & point

Vorono1l method for planning

= * . s =t - ¥ i - . g "
AT EIRE . 2, Tt A oSt Ot T4 A Tty S O BT AL I vs o SVt mes e N Gt i

o Compute Voronoi diagram of C-space

o Go straight from start to nearest point on
diagram

o Plan within diagram to get near goal (e.g.,
with A*)

o Go straight to goal

Discussion of Voronoi

' # . ; L "4*,,.,_-,;.'ﬂ#ﬂw.t:(_ﬂ_gp..-uu.";-'l--:..u___,..'fn-aﬂ-ll--“""*:l_.“ o
'mﬂll !Eﬁ 4% LA,]

o Good: stays far away from obstacles

o Bad: assumes polygons

o Bad: gets kind of hard in higher
dimensions (but see Howie Choset’s web

page and book)

Exact cell decompositions

o We can try to break C-space into a bunch
of convex polygons

-
-
7
-
| <
< L1

‘ --I
A EAE

Approximate cell decomposition

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o This decomposition is what we were using
for A* in examples from above

o Works pretty well except:
o need high resolution near obstacles

o want low res away from obstacles

Parti-game algorithm

' # . ; L "44“;,'nmw_gm_’l‘f_gt..,-...-.M;-l--:_u___r,-rn-urs-.”"#;z_.“ o

o Try actions from several points per cell
o Try to plan a path from start to goal

o On the way, pretend an opponent gets to
choose which outcome happens (out of all
that have been observed in this cell)

o If we can get to goal, we win

o Otherwise we can split a cell

Parti-game paper

VISR b Mo 4, Tt GBS PrrmaSi DA S A Tty S OV BTSSR I s Lyt mes TR s 1% 0 1 e i AL B I TN

o Andrew Moore and Chris Atkeson. The
Parti-game Algorithm for Variable
Resolution Reinforcement Learning in
Multidimensional State-spaces

o http.://www.autonlab.org/autonweb/14699.html

PRI b B 2, Tt g WA Pl s T A

Randomness
1n search

Rapidly- explormg Random Trees

PRI ISR b B 2, Tt WA Pl s A Py N ST I sl Lkt PR S B s el

o Put landmarks into C-space

o Break up C-space into Voronoi regions
around landmarks

o Put landmarks densely only if high
resolution is needed to find a path

o Will not guarantee optimal path (*)

RRT assumptions

e o e i i tanie PRSP =2 PRt T

o RANDOM_CONFIG
o samples from a distribution on C-space
o EXTEND(q, q’)
o local controller, heads toward q’ from q
o Stops before hitting obstacle
o FIND_NEAREST(q, O)

o Searches current tree Q for point near (

Path Planning with RRTs

RRT = Rapidly- EXplorlng Random Tree

MWMWW oA iy S O i oy Ky, e e W S < ”":‘-ﬁnhﬁhnwﬁw

[Kuffner & LaValle , ICRA’00]

BUILT_RRT(qinit) {

T = qinit EXTEND(T, q) {
fork =1to K{ Qnear = F|ND_NEAREST(C|, T)
Jrand = RANDOM_CONHG() Onew = EXTEND(CInear, CI)

EXTEND(T, CIrand); T=TH+ (CInear, CInew)
} }

RRTs explore coarse to fine

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o . 2l

o TIend to break up large Voronoi regions

o Limiting distribution of vertices is
RANDOM_CONFIG

o Key idea in proof: as RRT grows,
probability that qrana is reachable with local
controller (and so immediately becomes a
new vertex) approaches 1

Plannmg with RRTs

PRI ISR b B 2, Tt WA Pl s A Py N ST I P e AT PR L S Pl e eSS

o Build RRT from start until we add a node
that can reach goal using local controller

o (Unique) path: root — last node — goal

o Optional: cross-link tree by testing local
controller, search within tree using A*

o Optional: grow forward and backward

\“\\\\\\\\\\\\\\\\ _ 5\\\\\\\\\\\\\\\\\\}\\&&\\\\
N ——

P~
;\\\\\\\\\\\\‘\\\\\‘
I \\\\\\\\\\\S&W

AR

N 3
\\\\5\\\\§\ AN
&\\%\\\\\\\\\\\

NN

NS
Vs

e
\\\\\\\\\\\\\\\\\R\\‘
AR NS

=

o
o

o

!
i

What you should know

T e b £ b 3 TR

ORI 4+ e &, Gt oA

Clagurecnt? e s o .+ PR e e I

o C-space
o Ways of splitting up C-space
o Visibility graph
o Voronoi
o Exact, approximate cell decomposition

o Variable resolution or adaptive cells
(quadtree, parti-game)

o RRIs

