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o Slides on web site
o Matlab tutorial next Tue (5-6 NSH 1507)

o Please send your email address to TA
Henry Lin (thlin at cs), who is compiling a
class email list

o Please check the website regularly for
readings (for Lec. -2, Ch. 1-4 of RN)







Topics covered
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o What is AI? (Be able to discuss an
example or two)

o Types of uncertainty & corresponding
approaches

o How to set up state space graph for
problems like the robotic grad student or

path planning
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A* search: Path costs
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o For both priority and closed list, maintain
path cost function g(x)

o g(x) = best cost to reach x so far
o or % if no path from start to x found yet
o When pushing vy, set g(y) = g(x) + c(x,y)

o If g(y) finite, smaller of old and new
values




A* search: Closed list
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o Implementation of M: use g(x) and S

o If g(x) finite, x must be either open or
closed

o So, M ={ g(x) finite A xE S }

o This is where we’d use S.test_member( ),
but it will turn out we can be slightly
smarter
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A* search: Priority
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o When calling S.insert(x, P)
= f(x) = g(x) + h(x)

h(x) = heuristic estimate of distance from
X to goal (just like in heuristic search)

f(x) =

estimate of cost of path through x

ldea: focus on nodes that might yield short

paths







A* search
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S ={ start } -?Inmalzze M

While (S = ) Remove and return

—

X e-" an element of x

CheckSolution(x) Update M
Fory € neighbors(x) /

M check
/Add to S




Admissible heuristic
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o A* has nice theoretical properties if h is
admissible

o That is, h(x) < true distance from x to goal
o E.g., crow-flies distance in a maze

o Intuition: make a path look better, we
examine it earlier, maybe waste some
work. Make it look worse, we might miss
it entirely, find a bad solution.










Node costs
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Path costs




SRAATILNIG,
S
o SNSUIBL

o
R

AN

\







A* proof
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o Both optimality and efficiency follow from:

Lemma. For any two nodes x and y which
have f(x) < f(y), A* expands x before y

o 1o see why optimality and efficiency
follow, note goals have f(x) = g(x)

o h(x) must be 0
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Proof cont’d
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o So, all nodes w on path to x have

Jw) =f(x) < f(y)

o At least one such w is always on queue

while x has not been expanded (possibly
we have w = Xx)

o So if x has not yet been expanded, we must
pick w before we expand y — QED




A¥ extensions

" v : - Pty i’ P B g ¥ ey g S i = s - h - o oy et
mmw.wm{lﬁ i B 1 S & e et S o .MHM“;E*“M.MQW

o Suboptimal: use non-admissible heuristic,
lose guarantees but maybe increase speed

o lIterative deepening: avoid priqueue

o Anytime: start with suboptimal solution,
gradually improve it

o Dynamic: fast replan if map changes







Anytime, dynamic planmng
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http ://www.cs.cmu.edu/~goordon/likhachev-etal.anytime-dstar.pdf




A* Planning on Big Grids
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Credit: Kuffner
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Sample exercise
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o In graph on prev page, to find a path from
s to g, what is the expansion order for

o DFS, BFS
o Heuristic search using h = Manhattan
o A*usingf=g+ h

o Assume we can detect when we reach a
node via two different paths, and avoid
duplicating it on the queue
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Wouldn’t 1t be nice...
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o ...If we could break things up based more
on the real geometry of the world?

o Robot Motion Planning by Jean-Claude Latombe










Fip. 11. Swucture of the 10-DOF menipulatar.
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Configuration space
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o For any configuration q, can test whether
it intersects obstacles

o Set of legal configs is “configuration
space” C (a subset of R4s)

o Path is a continuous function from [0,1]
into C with g(0) = qs and q(1) = Qg










More C-space examples
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Another C-space example
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Topology of C- space
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o Topology of C-space can be something
other than the familiar Euclidean world

o E.g. set of angles = unit circle = SO(2)
o Nnot [0, ZTE) /

o Ball & socket joint (3d angle) C unit
sphere = SO(3)
















Shortest path
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o Suppose a planar polygonal C-space

o Shortest path in C-space is a sequence of
line segments

o Each segment’s ends are either start or
goal or one of the vertices in C-space

o In 3-d or higher, might lie on edge, face,
hyperface, ...










Complex1ty
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o Naive algorithm is O(n?) in planar C-
space

o For algorithms that run faster, O(n?) and
O(k + n log n), see [Latombe, pg 157]

o k = number of edges that wind up in
visibility graph

o Once we have graph, search it!




Discussion of visibility graph
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o Good: finds shortest path

o Bad: complex C-space yields long
runtime, even if problem is easy

o get my 23-dof manipulator to move
Imm when nearest obstacle is Im

o Bad: no margin for error










Voronoi1 graph
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o Given a set of point obstacles

o Find all places that are equidistant from
two or more of them

o Result: network of line segments
o Called Voronoi graph

o Each line stays as far away as possible
from two obstacles while still going
between them




Voronoi1 from polygonal C-space
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Voronoi1 from polygonal C-space

TS e i At gAY ol Ot ¥4 A Tty i I B '"""'-f:'i-':.ff?:"-""‘-";'"":-u-—r—"““"“"”"'“hugupw o et Tl

o Set of points which are equidistant from 2
or more closest points on border of C-
space

o Polygonal C-space in 2d yields lines &
parabolas intersecting at points

o lines from 2 points

o parabolas from line & point




Vorono1l method for planning
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o Compute Voronoi diagram of C-space

o Go straight from start to nearest point on
diagram

o Plan within diagram to get near goal (e.g.,
with A*)

o Go straight to goal




Discussion of Voronoi
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o Good: stays far away from obstacles

o Bad: assumes polygons

o Bad: gets kind of hard in higher
dimensions (but see Howie Choset’s web

page and book)







Exact cell decompositions

o We can try to break C-space into a bunch
of convex polygons
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Approximate cell decomposition
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o This decomposition is what we were using
for A* in examples from above

o Works pretty well except:
o need high resolution near obstacles

o want low res away from obstacles

























Parti-game algorithm
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o Try actions from several points per cell
o Try to plan a path from start to goal

o On the way, pretend an opponent gets to
choose which outcome happens (out of all
that have been observed in this cell)

o If we can get to goal, we win

o Otherwise we can split a cell










Parti-game paper
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o Andrew Moore and Chris Atkeson. The
Parti-game Algorithm for Variable
Resolution Reinforcement Learning in
Multidimensional State-spaces

o http.://www.autonlab.org/autonweb/14699.html
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Rapidly- explormg Random Trees
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o Put landmarks into C-space

o Break up C-space into Voronoi regions
around landmarks

o Put landmarks densely only if high
resolution is needed to find a path

o Will not guarantee optimal path (*)




RRT assumptions
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o RANDOM_CONFIG
o samples from a distribution on C-space
o EXTEND(q, q’)
o local controller, heads toward q’ from q
o Stops before hitting obstacle
o FIND_NEAREST(q, O)

o Searches current tree Q for point near (




Path Planning with RRTs

RRT = Rapidly- EXplorlng Random Tree
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[ Kuffner & LaValle , ICRA’00]

BUILT_RRT(qinit) {

T = qinit EXTEND(T, q) {
fork =1to K{ Qnear = F|ND_NEAREST(C|, T)
Jrand = RANDOM_CONHG() Onew = EXTEND(CInear, CI)

EXTEND(T, CIrand); T=TH+ (CInear, CInew)
} }




























RRTs explore coarse to fine
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o . 2l

o TIend to break up large Voronoi regions

o Limiting distribution of vertices is
RANDOM_CONFIG

o Key idea in proof: as RRT grows,
probability that qrana is reachable with local
controller (and so immediately becomes a
new vertex) approaches 1




Plannmg with RRTs
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o Build RRT from start until we add a node
that can reach goal using local controller

o (Unique) path: root — last node — goal

o Optional: cross-link tree by testing local
controller, search within tree using A*

o Optional: grow forward and backward
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What you should know
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o C-space
o Ways of splitting up C-space
o Visibility graph
o Voronoi
o Exact, approximate cell decomposition

o Variable resolution or adaptive cells
(quadtree, parti-game)

o RRIs




