

Workmg together

mmmﬁmm A Tty " P Sty ¥ 1 P [ot PV e #“M%w

o Working together on HW, looking on web,
etc.: great idea!

o but each person must write up and
submit his/her own solution, without
reference to written/electronic materials
from web or other students

o Last year’s HWs are on course web site

Late pohcy

PRI ISR b B 2, Tt WA Pl s A Py N ST I T i PRSP = P e T

o If you need to hand a HW in late: contact
us before due date

o Unless agreed otherwise, HW is worth

/3% credit up to 24 hrs late, 50% credit
up to 48 hrs late, 0% credit afterwards

o Even if for 0% credit, must hand in all
assignments to pass

-y S edeay : . > s el
5 . 8 L o 'ftn..a...-_#;-'l--: o e i - m“&ﬁ#ﬂwm
R e T ¥ G T ¥ A Ty 2 L
J N K Tt A

Project 1deas

Poker

e = b o i 4 Aty O e L Lk C PSRRI = s Ao e P S

Poker

' i 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mul--_w-fn-nrs-.”"ﬂ;z_.u 28

o Minimax strategy for heads-up poker =
solving linear program

o I-card hands, 13-card deck: 52 vars,
instantaneous

o RI Hold’Em: ~1,000,000 vars
o 2 weeks / 30GB (exact sol, CPLEX)
o 40 min/ 1.5GB (approx sol)
o TX Hold’Em: ??? (up to 107 vars or so)

Learning models for control

TS e i At gAY ol Ot ¥4 A Tty i I B '"""'-f:'i-':.ff?:"-""‘-";'"":-u-—r—"““"“"”"'“hugupw o et Tl

o Most of this course, we’ll assume we have
a good model of the world when we’re
trying to plan

o Usually not true in practice—must learn it

o Project: learn a model for an interesting
system, write a planner for learned model,
make planner work on original system

Learning models for control

o RIC car

Learning models for control

FEOISTEIRE b Ao 4, Tt S BIAT Prmai BEDAST S A Pt = I At s v VSl tmes e MR e el el

o Model arplane

Why 10g1<:‘7

mmmﬁmm oA ety S O bl oy ¥y [ot PV e #“M%w

o Search: for problems like 8-puzzle, can
write compact description of rules

o Reasoning: figure out consequences of the
knowledge we’ve given our agent

o Foreshadowing: logical inference is a
special case of probabilistic inference

(Part I1)

Expressive variable names

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o Rather than variable names like x, y, may
use names like “rains” or “happy(John)”

o For now, “happy(John)” is just a string
with no internal structure

o there is no “John’”

o happy(John) = —-happy(Jack) means
the same as x = -y

Truth table for implication

ReR N aioih - L T POy P PRI SR
o (a=>b)is logically equivalent s bl o
to(—av b)
o If ais True, b must be True too | L 4
o If a False, no requirement on b Lo bl 4
o E.g., “ifl gotothemovielwill | FF | T 7
h ”: . s :
ave popcorn’: if no movie | F T
may or may not have popcorn

PRI b B 2, Tt g WA Pl s T A T R e

Workmg with
formulas

Definitions

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o Two sentences are equivalent, A = B, if
they have same truth value in every model

o (rains = pours) = (—~rains v pours)
o reflexive, transitive, commutative

o Simplifying = transforming a formula into
a shorter®, equivalent formula

Transtormation rules

VIPONTTIRR b Mo 4, Tt g Prrma St DAY S A Tty S I BTSSR s e s Ll st B e Pl i Tl
(e ANB) = (BAa) commutativity of A
(aVB) = (BVa) commutativity of V
((aAB)Avy) = (aA(BA7y)) associativity of A
((aVB)Vy) = (aV(BV7y)) associativity of V
—(—-a) = a double-negation elimination
(N (BV)) ((aAB)V (aA)) distributivity of A over V

((aVPB)A(aVy)) distributivity of V over A

a, B, v are arbitrary formulas

(av (bac)) A (bnne

ai) A (av D) A (Tbved

-y S edeay : . > s el
5 . 8 L o 'ftn..a...-_#;-'l--: o e i - m“&ﬁ#ﬂwm
R e T ¥ G T ¥ A Ty 2 L
J N K Tt A

Normal
Forms

Normal forms

TS e i Fot g = ¥4 A Tty i I B '"""'-f:'i-':.*?:"-""‘-“;'":w*““""”“%agtq-mw' ST e Tl

o A normal form is a standard way of
writing a formula

o E.g., conjunctive normal form (CNF)
o conjunction of disjunctions of literals
o (XVYV Z)A(XxV Yy)A(2Z)
o Each disjunct called a clause

o Any formula can be transformed into CNF
w/o changing meaning

CNF cont’d

£ i Tty i P BTt o K vy s Y

=Lk . PR =0 SPEC SRR B S

happy(John) A

(- happy(Bill) v happy(Sue)) A
man(Socrates) A

(—man(Socrates) v mortal(Socrates))

o Often used for storage of knowledge database
o called knowledge base or KB
o Can add new clauses as we find them out

o Each clause in KB is separately true (if KB is)

Another normal form: DNF

" v : - Pty i’ P B g ¥ ey g S i = s - h - AP
mmw.wm{lﬁ i B 1 S & e et S o .MHM“;E*“M.MQW

o DNF = disjunctive normal form =
disjunction of conjunctions of literals

o Doesn’t compose the way CNF does: can’t
just add new conjuncts w/o changing
meaning of KB

o Example:

(rains v —pours) A fishing

(rains A fishing) v (=pours A fishing)

T ransformmg to CNF or DNF

mmmﬁ!mm A iy oo’ P Bl ey ¥ gy b L g ¥ S M"lﬂ;‘_.' A o - ”ﬁm

o Naive algorithm:

o replace all connectives with AV -

o move negations inward using De
Morgan’s laws and double-negation

o repeatedly distribute over A over Vv for
DNF (v over A for CNF)

A smarter transformation

: - ! .)] ¥ = . .y e
DN T IR A3 4 St A P AT AR Ty "9 B S v WVl emest o fobw, e

o Can we avoid exponential blowup in
CNEF’?

o Yes, if we're willing to introduce new
variables

o G. Tseitin. On the complexity of
derivation in propositional calculus.
Studies in Constrained Mathematics and
Mathematical Logic, 1968.

Proof tree

. . : o . St P i S E g LT it Z : : ; 3 T
mmwmm"‘mﬂ Lad B 1 S & e et S o .MHM“;E*“M.MQW

o A tree with a formula at each node

o At each internal node, children & parent

o Leaves: assumptions or premises
o Root: consequence

o If we believe assumptions, we should also
believe consequence

Proof by contradiction

' # . ; L "44“;,'nmw_gm_’l‘f_gt..,-...-.M;-l--:_u___r,-rn-urs-.”"#;z_.“ o

o Assume opposite of what we want to
prove, show it leads to a contradiction

o Suppose we want to show KB = §
o Write KB’ for (KB A —S)
o Build a proof tree with

o assumptions drawn from clauses of KB’

o conclusion = F

o S0, (KB A =S) = F (contradiction)

;-aw;:i? ¥ o
DA A O \
" /f‘\" i

I =

FIOIETERL b A &, Tt g A oot mr DA 04

Inference

rules

s el

Modus ponens

" v : - Pty i’ P B g ¥ ey g S i = s - h - AP
mmw.wm{lﬁ i B 1 S & e et S o .MHM“;E*“M.MQW

(aANbANc=d) a b c
d

o Probably most famous inference rule: all
men are mortal, Socrates is a man,
therefore Socrates is mortal

o Quantifier-free version:

man(Socrates) A

(man(Socrates) = mortal(Socrates))

FIOIETERL b A &, Tt g A oot mr DA 04

Theorem
provers

g e T i e e s W

Theorem prover

. . : o . St P i S E g LT it Z : : ; 3 T
mmwmm"‘mﬂ Lad B 1 S & e et S o .MHM“;E*“M.MQW

o Theorem prover = mechanical system for
finding a proof tree

o An application of search techniques from
earlier lecture

o Search node = KB (including whatever
we’ve proven so far)

o Neighbor: (KB A S)if KB = S

A basic theorem prover

b s op - T i K Tt g - ¥4 A Tty i I B "-'-'.tl!.',f_t!:n-'--~=="i"--:...,__..-"ﬂ-i'"‘--“""":l..,“d-_--.,“ P e vl

o Given KB, want to conclude S
o Let KB’ = CNF(KB A =§)
o Repeat:
o add new clause to KB’ using resolution

o Until we add empty clause (False) and
conclude KB = S

o Or run out of new clauses and conclude
KB ¥ S

Soundness and completeness

TS e i At gAY ol Ot ¥4 A Tty i I B '"""'-f:'i-':.ff?:"-""‘-";'"":-u-—r—"““"“"”"'“hugupw o et Tl

o An inference procedure is sound if it can
only conclude things entailed by KB

o common sense; haven'’t discussed
anything unsound

o A set of rules is complete if it can
conclude everything entailed by KB

Use of Horn clauses

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o People find it easy to write Horn clauses
(listing out conditions under which we can
conclude head)

happy(John) A happy(Mary) =
happy(Sue)

o No negative literals in above formula;
again, easier to think about

Certainty factors

" v : - Pty i’ P B g ¥ ey g S i = s - h - AP
mmw.wm{lﬁ i B 1 S & e et S o .MHM“;E*“M.MQW

o KB assigns a certainty factor in [0, 1] to
each proposition

o Interpret as “degree of belief”

o When applying an inference rule, certainty
factor for consequent is a function of
certainty factors for antecedents (e.g.,
minimum)

Problems w/ certainty factors

PRAETESE b B L, Tt BT Pl s T A P N TR v vt

-“‘-.”‘.R""A;"Fﬂ

o Hard to separate a large KB into mostly-
independent chunks that interact only
through a well-defined interface

o Certainty factors are not probabilities
(i.e., do not obey Bayes’ Rule)

Nonmonotonic logic

E * - L . =i Lt L e -,
HBIS LRt Mt A St g 2 e s d o L fem el Lkl PRSI

o Suppose we believe all birds can fly

o Might add a set of sentences to KB
bird(Polly) = flies(Polly)
bird(Tweety) = flies(Tweety)
bird(Tux) = flies(Tux)
bird(John) = flies(John)

Nonmonotonic logic

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o Fails if there are penguins in the KB

o Fix: instead, add
bird(Polly) n —ab(Polly) = flies(Polly)
bird(Tux) A —ab(Tux) = flies(Tux)

o ab(Tux) is an “abnormality predicate”

o Need separate abi(x) for each type of rule

Nonmonotonic logic

b s op - T i K Tt g - ¥4 A Tty i I B "-'-'.tl!.',f_t!:n-'--~=="i"--:...,__..-"ﬂ-i'"‘--“""":l..,“d-_--.,“ P e vl

o Now set as few abnormality predicates as
possible

o Can prove flies(Polly) or flies(Tux) with no
ab(x) assumptions

o If we assert —flies(Tux), must now assume
ab(Tux) to maintain consistency

o Can't prove flies(Tux) any more, but can
still prove flies(Polly)

Nonmonotonic logic

TS e i AL G Prmmaa it Ot T8 A s it -0 3 T L L R R P PSR i i Bade e el

o Works well as long as we don’t have to
choose between big sets of abnormalities

o IS it better to have 3 flightless birds or 5
professors that don’t wear jackets with
elbow-patches?

o even worse with nested abnormalities:
birds fly, but penguins don’t, but
superhero penguins do, but ...

Definitions

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

: -

o A sentence is satisfiable if it is True in
some model

o If not satisfiable, it is a contradiction
(False in every model)

o A sentence is valid if it is True in every
model (a valid sentence is a tautology)

SAT 1s a search problem

mmmﬁ!mm A iy oo’ P Bl ey ¥ gy b L g ¥ S M"!I'_:l_.' i T

o (At least) two ways to write it

o search nodes are (full or partial)
models, neighbors differ in assignment
for a single variable

o search nodes are formulas, neighbors
by entailment

o And hybrids (node = model + formula)

SAT 1s a general search problem

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o Many other search problems reduce to
SAT

o Informally, if we can solve SAT, can solve
these other problems

o So a good SAT solver is a good Al
building block

Example search problem

SRTIOT TR b s 4, et G A oo DA SRy SO B L I v e VSl itk s SR e i et P e el

o 3-coloring: can we color a map using only
3 colors in a way that keeps neighboring
regions from being the same color?

Reduction

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o Loosely, “A reduces to B” means that if
we can solve B then we can solve A

o More formally, A, B are decision problems
(instances ~ truth values)

o A reduction is a poly-time function f such
that, given an instance a of A

o f(a) is an instance of B, and

o A(a) = B(f(a))

Example reduction

Lt “ : . *_.. z ¥ A Pty o W B w e oy Wty i S ey & S g . iy gy L0 e = g

APPSR

o Each square must be red, green, or blue

o Adjacent squares can’t both be red
(similarly, green or blue)

Search and reduction

' # . ; L "44“;,'nmw_gm_’l‘f_gt..,-...-.M;-l--:_u___r,-rn-urs-.”"#;z_.“ o

o S.A. Cookin 1971 proved that many

useful search problems reduce back and
forth to SAT

o showed how to simulate poly-size-
memory computer w/ (very complicated,
but still poly-size) SAT problem

o Equivalently, SAT is exactly as hard (in
theory at least) as these other problems

Cost of reduction

TS e i At gAY ol Ot ¥4 A Tty i I B '"""'-f:'i-':.ff?:"-""‘-";'"":-u-—r—"““"“"”"'“hugupw o et Tl

o SAT is well studied = fast solvers

o So, if there is an efficient reduction, ability
to use fast SAT solvers can be a win

o e.g., 3-coloring
o another example later (SATplan)

o Other times, cost of reduction is too high
o usu. because instance gets bigger

o will also see example later (MILP)

Not-so-useful reduction

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o Path planning reduces to SAT

o Variables: is edge e in path?

o Constraints:
o exactly I path-edge touches start
o exactly I path-edge touches goal

o either O or 2 touch each other node

Reduction to 3SAT

T Pty " P B M 0 s S

NI b o, Ty g WA

Lk PGPSR B R SRR

o We saw that search problems can be
reduced to SAT

o 18 CNF formula satisfiable?
o Can reduce even further, to 3SAT
o 18 3CNF formula satisfiable?

o Useful if reducing SAT/3SAT to another
problem (to show other problem hard)

