
15-780: Graduate AI
Lecture 3. Logic and SAT

Geoff Gordon (this lecture)
Ziv Bar-Joseph

TAs Geoff Hollinger, Henry Lin

Admin

HW1 out today!
On course website
Due Thu 10/4

Reminder: Matlab tutorial today
NSH 1507, 5PM

Working together

Working together on HW, looking on web,
etc.: great idea!

but each person must write up and
submit his/her own solution, without
reference to written/electronic materials
from web or other students

Last year’s HWs are on course web site

Late policy

If you need to hand a HW in late: contact
us before due date
Unless agreed otherwise, HW is worth
75% credit up to 24 hrs late, 50% credit
up to 48 hrs late, 0% credit afterwards
Even if for 0% credit, must hand in all
assignments to pass

Review

Topics covered

C-space
Ways of splitting up C-space

Visibility graph
Voronoi
Exact, approximate cell decomposition
Adaptive cells (quadtree, parti-game)

RRTs

8/15 puzzle applet

http://www.cs.ualberta.ca/~aixplore/search/IDA/Applet/SearchApplet.html

Project ideas

Poker

Poker

Minimax strategy for heads-up poker =
solving linear program
1-card hands, 13-card deck: 52 vars,
instantaneous
RI Hold’Em: ~1,000,000 vars

2 weeks / 30GB (exact sol, CPLEX)
40 min / 1.5GB (approx sol)

TX Hold’Em: ??? (up to 1017 vars or so)

ScrabbleTM

Can buy a hand-tweaked, very good
computer Scrabble player for $30 or so
Can we learn to beat it?

Learning models for control

Most of this course, we’ll assume we have
a good model of the world when we’re
trying to plan
Usually not true in practice—must learn it
Project: learn a model for an interesting
system, write a planner for learned model,
make planner work on original system

Learning models for control

R/C car

Learning models for control

Model airplane

Citation

“Using Inaccurate Models in
Reinforcement Learning.” Pieter Abbeel,
Morgan Quigley, Andrew Y. Ng
http://www.icml2006.org/icml_documents/
camera-ready/001_Using_Inaccurate_Mod.pdf

Logic

Why logic?

Search: for problems like 8-puzzle, can
write compact description of rules
Reasoning: figure out consequences of the
knowledge we’ve given our agent
Foreshadowing: logical inference is a
special case of probabilistic inference
(Part II)

Propositional logic

Constants: T or F
Variables: x, y (values T or F)
Connectives: ∧, ∨, ¬

Can get by w/ just NAND
Sometimes also add others:
⊕, ⇒, ⇔, …

George Boole
1815–1864

Propositional logic

Build up expressions like ¬x ⇒ y

Precedence: ¬, ∧, ∨, ⇒

Terminology: variable or constant with or
w/o negation = literal
Whole thing = formula or sentence

Expressive variable names

Rather than variable names like x, y, may
use names like “rains” or “happy(John)”
For now, “happy(John)” is just a string
with no internal structure

there is no “John”
happy(John) ⇒ ¬happy(Jack) means
the same as x ⇒ ¬y

But what does it mean?

A formula defines a mapping
(assignment to variables) ↦ {T, F}

Assignment to variables = model
For example, formula ¬x yields mapping:

x ¬x

T F

F T

More truth tables

x y x ∧ y

T T T

T F F

F T F

F F F

x y x ∨ y

T T T

T F T

F T T

F F F

Truth table for implication

(a ⇒ b) is logically equivalent
to (¬a ∨ b)

If a is True, b must be True too

If a False, no requirement on b

E.g., “if I go to the movie I will
have popcorn”: if no movie,
may or may not have popcorn

a b a ⇒ b

T T T

T F F

F T T

F F T

Complex formulas

To evaluate a bigger formula
(x ∨ y) ∧ (x ∨ ¬y) when x = F, y = F

Build a parse tree
Fill in variables at
leaves using model
Work upwards using
truth tables for
connectives

Example

(x ∨ y) ∧ (x ∨ ¬y) when x = F, y = F

Bigger truth tables

x y z (x ∨ y) ⇒ z
T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F

Working with
formulas

Definitions

Two sentences are equivalent, A ≡ B, if
they have same truth value in every model

(rains ⇒ pours) ≡ (¬rains ∨ pours)

reflexive, transitive, commutative
Simplifying = transforming a formula into
a shorter*, equivalent formula

Transformation rules
210 Chapter 7. Logical Agents

(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination

(α ⇒ β) ≡ (¬β ⇒ ¬α) contraposition

(α ⇒ β) ≡ (¬α ∨ β) implication elimination

(α ⇔ β) ≡ ((α ⇒ β) ∧ (β ⇒ α)) biconditional elimination

¬(α ∧ β) ≡ (¬α ∨ ¬β) de Morgan

¬(α ∨ β) ≡ (¬α ∧ ¬β) de Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧

Figure 7.11 Standard logical equivalences. The symbols α, β, and γ stand for arbitrary
sentences of propositional logic.

chapter, we will see algorithms that are much more efficient in practice. Unfortunately, every

known inference algorithm for propositional logic has a worst-case complexity that is expo-

nential in the size of the input. We do not expect to do better than this because propositional

entailment is co-NP-complete. (See Appendix A.)

Equivalence, validity, and satisfiability

Before we plunge into the details of logical inference algorithms, we will need some addi-

tional concepts related to entailment. Like entailment, these concepts apply to all forms of

logic, but they are best illustrated for a particular logic, such as propositional logic.

The first concept is logical equivalence: two sentences α and β are logically equivalentLOGICAL
EQUIVALENCE

if they are true in the same set of models. We write this as α ⇔ β. For example, we
can easily show (using truth tables) that P ∧ Q and Q ∧ P are logically equivalent; other

equivalences are shown in Figure 7.11. They play much the same role in logic as arithmetic

identities do in ordinary mathematics. An alternative definition of equivalence is as follows:

for any two sentences α and β,

α ≡ β if and only if α |= β and β |= α .

(Recall that |= means entailment.)

The second concept we will need is validity. A sentence is valid if it is true in allVALIDITY

models. For example, the sentence P ∨ ¬P is valid. Valid sentences are also known as

tautologies—they are necessarily true and hence vacuous. Because the sentence True is trueTAUTOLOGY

in all models, every valid sentence is logically equivalent to True.
What good are valid sentences? From our definition of entailment, we can derive the

deduction theorem, which was known to the ancient Greeks:DEDUCTION
THEOREM

For any sentences α and β, α |= β if and only if the sentence (α ⇒ β) is valid.

(Exercise 7.4 asks for a proof.) We can think of the inference algorithm in Figure 7.10 as

α, β, γ are arbitrary formulas

210 Chapter 7. Logical Agents

(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination

(α ⇒ β) ≡ (¬β ⇒ ¬α) contraposition

(α ⇒ β) ≡ (¬α ∨ β) implication elimination

(α ⇔ β) ≡ ((α ⇒ β) ∧ (β ⇒ α)) biconditional elimination

¬(α ∧ β) ≡ (¬α ∨ ¬β) de Morgan

¬(α ∨ β) ≡ (¬α ∧ ¬β) de Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧

Figure 7.11 Standard logical equivalences. The symbols α, β, and γ stand for arbitrary
sentences of propositional logic.

chapter, we will see algorithms that are much more efficient in practice. Unfortunately, every

known inference algorithm for propositional logic has a worst-case complexity that is expo-

nential in the size of the input. We do not expect to do better than this because propositional

entailment is co-NP-complete. (See Appendix A.)

Equivalence, validity, and satisfiability

Before we plunge into the details of logical inference algorithms, we will need some addi-

tional concepts related to entailment. Like entailment, these concepts apply to all forms of

logic, but they are best illustrated for a particular logic, such as propositional logic.

The first concept is logical equivalence: two sentences α and β are logically equivalentLOGICAL
EQUIVALENCE

if they are true in the same set of models. We write this as α ⇔ β. For example, we
can easily show (using truth tables) that P ∧ Q and Q ∧ P are logically equivalent; other

equivalences are shown in Figure 7.11. They play much the same role in logic as arithmetic

identities do in ordinary mathematics. An alternative definition of equivalence is as follows:

for any two sentences α and β,

α ≡ β if and only if α |= β and β |= α .

(Recall that |= means entailment.)

The second concept we will need is validity. A sentence is valid if it is true in allVALIDITY

models. For example, the sentence P ∨ ¬P is valid. Valid sentences are also known as

tautologies—they are necessarily true and hence vacuous. Because the sentence True is trueTAUTOLOGY

in all models, every valid sentence is logically equivalent to True.
What good are valid sentences? From our definition of entailment, we can derive the

deduction theorem, which was known to the ancient Greeks:DEDUCTION
THEOREM

For any sentences α and β, α |= β if and only if the sentence (α ⇒ β) is valid.

(Exercise 7.4 asks for a proof.) We can think of the inference algorithm in Figure 7.10 as

More rules

210 Chapter 7. Logical Agents

(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination

(α ⇒ β) ≡ (¬β ⇒ ¬α) contraposition

(α ⇒ β) ≡ (¬α ∨ β) implication elimination

(α ⇔ β) ≡ ((α ⇒ β) ∧ (β ⇒ α)) biconditional elimination

¬(α ∧ β) ≡ (¬α ∨ ¬β) de Morgan

¬(α ∨ β) ≡ (¬α ∧ ¬β) de Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧

Figure 7.11 Standard logical equivalences. The symbols α, β, and γ stand for arbitrary
sentences of propositional logic.

chapter, we will see algorithms that are much more efficient in practice. Unfortunately, every

known inference algorithm for propositional logic has a worst-case complexity that is expo-

nential in the size of the input. We do not expect to do better than this because propositional

entailment is co-NP-complete. (See Appendix A.)

Equivalence, validity, and satisfiability

Before we plunge into the details of logical inference algorithms, we will need some addi-

tional concepts related to entailment. Like entailment, these concepts apply to all forms of

logic, but they are best illustrated for a particular logic, such as propositional logic.

The first concept is logical equivalence: two sentences α and β are logically equivalentLOGICAL
EQUIVALENCE

if they are true in the same set of models. We write this as α ⇔ β. For example, we
can easily show (using truth tables) that P ∧ Q and Q ∧ P are logically equivalent; other

equivalences are shown in Figure 7.11. They play much the same role in logic as arithmetic

identities do in ordinary mathematics. An alternative definition of equivalence is as follows:

for any two sentences α and β,

α ≡ β if and only if α |= β and β |= α .

(Recall that |= means entailment.)

The second concept we will need is validity. A sentence is valid if it is true in allVALIDITY

models. For example, the sentence P ∨ ¬P is valid. Valid sentences are also known as

tautologies—they are necessarily true and hence vacuous. Because the sentence True is trueTAUTOLOGY

in all models, every valid sentence is logically equivalent to True.
What good are valid sentences? From our definition of entailment, we can derive the

deduction theorem, which was known to the ancient Greeks:DEDUCTION
THEOREM

For any sentences α and β, α |= β if and only if the sentence (α ⇒ β) is valid.

(Exercise 7.4 asks for a proof.) We can think of the inference algorithm in Figure 7.10 as

α, β are arbitrary formulas

Still more rules…

… can be derived from truth tables
For example:

(a ∨ ¬a) ≡ True

(True ∨ a) ≡ True

(False ∧ a) ≡ False

Example

Normal
Forms

Normal forms

A normal form is a standard way of
writing a formula
E.g., conjunctive normal form (CNF)

conjunction of disjunctions of literals
(x ∨ y ∨ ¬z) ∧ (x ∨ ¬y) ∧ (z)

Each disjunct called a clause
Any formula can be transformed into CNF
w/o changing meaning

CNF cont’d

Often used for storage of knowledge database
called knowledge base or KB

Can add new clauses as we find them out
Each clause in KB is separately true (if KB is)

happy(John) ∧
(¬happy(Bill) ∨ happy(Sue)) ∧
man(Socrates) ∧
(¬man(Socrates) ∨ mortal(Socrates))

Another normal form: DNF

DNF = disjunctive normal form =
disjunction of conjunctions of literals
Doesn’t compose the way CNF does: can’t
just add new conjuncts w/o changing
meaning of KB
Example:

(rains ∨ ¬pours) ∧ fishing
≡

(rains ∧ fishing) ∨ (¬pours ∧ fishing)

Transforming to CNF or DNF

Naive algorithm:
replace all connectives with ∧∨¬

move negations inward using De
Morgan’s laws and double-negation
repeatedly distribute over ∧ over ∨ for
DNF (∨ over ∧ for CNF)

Example

Put the following formula in CNF

(a ∨ b ∨ ¬c) ∧ ¬(d ∨ (e ∧ f)) ∧ (c ∨ d ∨ e)

Example

Now try DNF

(a ∨ b ∨ ¬c) ∧ ¬(d ∨ (e ∧ f)) ∧ (c ∨ d ∨ e)

Discussion

Problem with naive algorithm: it’s
exponential! (Space, time, size of result.)
Each use of distributivity can almost
double the size of a subformula

A smarter transformation

Can we avoid exponential blowup in
CNF?
Yes, if we’re willing to introduce new
variables
G. Tseitin. On the complexity of
derivation in propositional calculus.
Studies in Constrained Mathematics and
Mathematical Logic, 1968.

Example

Put the following formula in CNF:

(a ∧ b) ∨ (c ∧ d)

Proofs

Entailment

Sentence A entails sentence B, A ⊨ B, if B
is True in every model where A is

same as saying that (A ⇒ B) is valid

Proof tree

A tree with a formula at each node
At each internal node, children ⊨ parent

Leaves: assumptions or premises
Root: consequence
If we believe assumptions, we should also
believe consequence

Proof tree example

Proof tree example

Proof tree example

Proof by contradiction

Assume opposite of what we want to
prove, show it leads to a contradiction
Suppose we want to show KB ⊨ S

Write KB’ for (KB ∧ ¬S)

Build a proof tree with
assumptions drawn from clauses of KB’
conclusion = F
so, (KB ∧ ¬S) ⊨ F (contradiction)

Proof by contradiction

Proof by contradiction

Inference
rules

Inference rule

To make a proof tree, we need to be able to
figure out new formulas entailed by KB
Method for finding entailed formulas =
inference rule
We’ve implicitly been using one already

Modus ponens

Probably most famous inference rule: all
men are mortal, Socrates is a man,
therefore Socrates is mortal
Quantifier-free version:
man(Socrates) ∧

(man(Socrates) ⇒ mortal(Socrates))

d
(a ∧ b ∧ c ⇒ d) a b c

Another inference rule

Modus tollens
If it’s raining the grass is wet; the grass is
not wet, so it’s not raining

¬a
(a ⇒ b) ¬b

One more…

(a ∨ b ∨ c) (¬c ∨ d ∨ e)
a ∨ b ∨ d ∨ e

Resolution
Combines two sentences that contain a
literal and its negation
Not as commonly known as modus
ponens / tollens

Resolution example

Modus ponens / tollens are special cases
Modus tollens:
(¬raining ∨ grass-wet) ∧ ¬grass-wet ⊨
¬raining

Resolution

Simple proof by case analysis
Consider separately cases where we
assign c = True and c = False

(a ∨ b ∨ c) (¬c ∨ d ∨ e)
a ∨ b ∨ d ∨ e

Resolution

Case c = True
(a ∨ b ∨ T) ∧ (F ∨ d ∨ e)

= (T) ∧ (d ∨ e)

= (d ∨ e)

(a ∨ b ∨ c) ∧ (¬c ∨ d ∨ e)

Resolution

Case c = False
(a ∨ b ∨ F) ∧ (T ∨ d ∨ e)

= (a ∨ b) ∧ (T)

= (a ∨ b)

(a ∨ b ∨ c) ∧ (¬c ∨ d ∨ e)

Resolution

Since c must be True or False, conclude
(d ∨ e) ∨ (a ∨ b)

as desired

(a ∨ b ∨ c) ∧ (¬c ∨ d ∨ e)

Theorem
provers

Theorem prover

Theorem prover = mechanical system for
finding a proof tree
An application of search techniques from
earlier lecture

Search node = KB (including whatever
we’ve proven so far)
Neighbor: (KB ∧ S) if KB ⊨ S

A basic theorem prover

Given KB, want to conclude S
Let KB’ = CNF(KB ∧ ¬S)

Repeat:
add new clause to KB’ using resolution

Until we add empty clause (False) and
conclude KB ⊨ S

Or run out of new clauses and conclude
KB ⊭ S

Soundness and completeness

An inference procedure is sound if it can
only conclude things entailed by KB

common sense; haven’t discussed
anything unsound

A set of rules is complete if it can
conclude everything entailed by KB

Completeness

Theorem provers based on modus ponens
by itself are incomplete
Simple resolution theorem prover from
above is complete for propositional logic

Variations

Later

Horn clause inference (faster)
Ways of handling uncertainty (slower)
CSPs (sometimes more convenient)
Quantifiers / first-order logic

Horn clauses

Horn clause: (a ∧ b ∧ c ⇒ d)

Equivalently, (¬a ∨ ¬b ∨ ¬c ∨ d)

Disjunction of literals, at most one of
which is positive
Positive literal = head, rest = body

Use of Horn clauses

People find it easy to write Horn clauses
(listing out conditions under which we can
conclude head)

happy(John) ∧ happy(Mary) ⇒
happy(Sue)

No negative literals in above formula;
again, easier to think about

Why are Horn clauses important

Inference in a KB of propositional Horn
clauses is linear
E.g., by forward chaining

Forward chaining

Look for a clause with all body literals
satisfied
Add its head to KB
Repeat
See RN for more details

Handling uncertainty

Fuzzy logic / certainty factors
simple, but don’t scale

Nonmonotonic logic
also doesn’t scale

Probabilities
may or may not scale—more in Part II

Certainty factors

KB assigns a certainty factor in [0, 1] to
each proposition
Interpret as “degree of belief”
When applying an inference rule, certainty
factor for consequent is a function of
certainty factors for antecedents (e.g.,
minimum)

Problems w/ certainty factors

Hard to separate a large KB into mostly-
independent chunks that interact only
through a well-defined interface
Certainty factors are not probabilities
(i.e., do not obey Bayes’ Rule)

Nonmonotonic logic

Suppose we believe all birds can fly
Might add a set of sentences to KB

bird(Polly) ⇒ flies(Polly)

bird(Tweety) ⇒ flies(Tweety)

bird(Tux) ⇒ flies(Tux)
bird(John) ⇒ flies(John)

…

Nonmonotonic logic

Fails if there are penguins in the KB
Fix: instead, add

bird(Polly) ∧ ¬ab(Polly) ⇒ flies(Polly)

bird(Tux) ∧ ¬ab(Tux) ⇒ flies(Tux)

…
ab(Tux) is an “abnormality predicate”
Need separate abi(x) for each type of rule

Nonmonotonic logic

Now set as few abnormality predicates as
possible
Can prove flies(Polly) or flies(Tux) with no
ab(x) assumptions
If we assert ¬flies(Tux), must now assume
ab(Tux) to maintain consistency
Can’t prove flies(Tux) any more, but can
still prove flies(Polly)

Nonmonotonic logic

Works well as long as we don’t have to
choose between big sets of abnormalities

is it better to have 3 flightless birds or 5
professors that don’t wear jackets with
elbow-patches?
even worse with nested abnormalities:
birds fly, but penguins don’t, but
superhero penguins do, but …

SAT

Definitions

A sentence is satisfiable if it is True in
some model
If not satisfiable, it is a contradiction
(False in every model)
A sentence is valid if it is True in every
model (a valid sentence is a tautology)

Satisfiability

SAT is the problem of determining whether
a given propositional logic sentence is
satisfiable
A decision problem: given an instance,
answer yes or no
A fundamental problem in CS

SAT is a search problem

(At least) two ways to write it
search nodes are (full or partial)
models, neighbors differ in assignment
for a single variable
search nodes are formulas, neighbors
by entailment

And hybrids (node = model + formula)

SAT is a general search problem

Many other search problems reduce to
SAT
Informally, if we can solve SAT, can solve
these other problems
So a good SAT solver is a good AI
building block

Example search problem

3-coloring: can we color a map using only
3 colors in a way that keeps neighboring
regions from being the same color?

Reduction

Loosely, “A reduces to B” means that if
we can solve B then we can solve A
More formally, A, B are decision problems
(instances ↦ truth values)

A reduction is a poly-time function f such
that, given an instance a of A

f(a) is an instance of B, and
A(a) = B(f(a))

Reduction picture

Reduction picture

Reduction picture

Example reduction

Each square must be red, green, or blue
Adjacent squares can’t both be red
(similarly, green or blue)

Example reduction

(ar ∨ ag ∨ ab) ∧ (br ∨ bg ∨ bb) ∧ (cr ∨ cg ∨
cb) ∧ (dr ∨ dg ∨ db) ∧ (er ∨ eg ∨ eb) ∧ (zr ∨
zg ∨ zb)
(¬ar ∨ ¬br) ∧ (¬ag ∨ ¬bg) ∧ (¬ab ∨ ¬bb)

(¬ar ∨ ¬zr) ∧ (¬ag ∨ ¬zg) ∧ (¬ab ∨ ¬zb)

…

Search and reduction

S. A. Cook in 1971 proved that many
useful search problems reduce back and
forth to SAT

showed how to simulate poly-size-
memory computer w/ (very complicated,
but still poly-size) SAT problem

Equivalently, SAT is exactly as hard (in
theory at least) as these other problems

Cost of reduction

Complexity theorists often ignore little
things like constant factors (or even
polynomial factors!)
So, is it a good idea to reduce your search
problem to SAT?
Answer: sometimes…

Cost of reduction

SAT is well studied ⇒ fast solvers
So, if there is an efficient reduction, ability
to use fast SAT solvers can be a win

e.g., 3-coloring
another example later (SATplan)

Other times, cost of reduction is too high
usu. because instance gets bigger
will also see example later (MILP)

Choosing a reduction

May be many reductions from problem A
to problem B
May have wildly different properties

e.g., search on transformed instance
may take seconds vs. days

Direction of reduction

If A reduces to B then
if we can solve B, we can solve A
so B must be at least as hard as A

Trivially, can take an easy problem and
reduce it to a hard one

Not-so-useful reduction

Path planning reduces to SAT
Variables: is edge e in path?
Constraints:

exactly 1 path-edge touches start
exactly 1 path-edge touches goal
either 0 or 2 touch each other node

Reduction to 3SAT

We saw that search problems can be
reduced to SAT

is CNF formula satisfiable?
Can reduce even further, to 3SAT

is 3CNF formula satisfiable?
Useful if reducing SAT/3SAT to another
problem (to show other problem hard)

Reduction to 3SAT

Must get rid of long clauses
E.g., (a ∨ ¬b ∨ c ∨ d ∨ e ∨ ¬f)

Replace with
(a ∨ ¬b ∨ x) ∧ (¬x ∨ c ∨ y) ∧
(¬y ∨ d ∨ z) ∧ (¬z ∨ e ∨ ¬f)

