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Admin

HW1 out today!
On course website
Due Thu 10/4

Reminder: Matlab tutorial today
NSH 1507, 5PM



Working together

Working together on HW, looking on web, 
etc.: great idea!

but each person must write up and 
submit his/her own solution, without 
reference to written/electronic materials 
from web or other students

Last year’s HWs are on course web site



Late policy

If you need to hand a HW in late: contact 
us before due date
Unless agreed otherwise, HW is worth 
75% credit up to 24 hrs late, 50% credit 
up to 48 hrs late, 0% credit afterwards
Even if for 0% credit, must hand in all 
assignments to pass



Review



Topics covered

C-space
Ways of splitting up C-space

Visibility graph
Voronoi
Exact, approximate cell decomposition
Adaptive cells (quadtree, parti-game)

RRTs



8/15 puzzle applet

http://www.cs.ualberta.ca/~aixplore/search/IDA/Applet/SearchApplet.html



Project ideas



Poker



Poker

Minimax strategy for heads-up poker = 
solving linear program
1-card hands, 13-card deck: 52 vars, 
instantaneous
RI Hold’Em: ~1,000,000 vars

2 weeks / 30GB (exact sol, CPLEX)
40 min / 1.5GB (approx sol)

TX Hold’Em: ??? (up to 1017 vars or so)



ScrabbleTM

Can buy a hand-tweaked, very good 
computer Scrabble player for $30 or so
Can we learn to beat it?



Learning models for control

Most of this course, we’ll assume we have 
a good model of the world when we’re 
trying to plan
Usually not true in practice—must learn it
Project: learn a model for an interesting 
system, write a planner for learned model, 
make planner work on original system



Learning models for control

R/C car



Learning models for control

Model airplane



Citation

“Using Inaccurate Models in 
Reinforcement Learning.” Pieter Abbeel, 
Morgan Quigley, Andrew Y. Ng
http://www.icml2006.org/icml_documents/
camera-ready/001_Using_Inaccurate_Mod.pdf



Logic



Why logic?

Search: for problems like 8-puzzle, can 
write compact description of rules
Reasoning: figure out consequences of the 
knowledge we’ve given our agent
Foreshadowing: logical inference is a 
special case of probabilistic inference 
(Part II)



Propositional logic

Constants: T or F
Variables: x, y (values T or F)
Connectives: ∧, ∨, ¬

Can get by w/ just NAND
Sometimes also add others: 
⊕, ⇒, ⇔, …

George Boole
1815–1864



Propositional logic

Build up expressions like ¬x ⇒ y

Precedence: ¬, ∧, ∨, ⇒

Terminology: variable or constant with or 
w/o negation = literal
Whole thing = formula or sentence



Expressive variable names

Rather than variable names like x, y, may 
use names like “rains” or “happy(John)”
For now, “happy(John)” is just a string 
with no internal structure

there is no “John”
happy(John) ⇒ ¬happy(Jack) means 
the same as x ⇒ ¬y



But what does it mean?

A formula defines a mapping
(assignment to variables) ↦ {T, F}

Assignment to variables = model
For example, formula ¬x yields mapping:

x ¬x

T F

F T



More truth tables

x y x ∧ y

T T T

T F F

F T F

F F F

x y x ∨ y

T T T

T F T

F T T

F F F



Truth table for implication

(a ⇒ b) is logically equivalent 
to (¬a ∨ b)

If a is True, b must be True too

If a False, no requirement on b

E.g., “if I go to the movie I will 
have popcorn”: if no movie, 
may or may not have popcorn

a b a ⇒ b

T T T

T F F

F T T

F F T



Complex formulas

To evaluate a bigger formula
(x ∨ y) ∧ (x ∨ ¬y) when x = F, y = F

Build a parse tree
Fill in variables at 
leaves using model
Work upwards using 
truth tables for 
connectives



Example

(x ∨ y) ∧ (x ∨ ¬y) when x = F, y = F



Bigger truth tables

x y z (x ∨ y) ⇒ z
T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F



Working with 
formulas



Definitions

Two sentences are equivalent, A ≡ B, if 
they have same truth value in every model

(rains ⇒ pours) ≡ (¬rains ∨ pours)

reflexive, transitive, commutative
Simplifying = transforming a formula into 
a shorter*, equivalent formula



Transformation rules
210 Chapter 7. Logical Agents

(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination

(α ⇒ β) ≡ (¬β ⇒ ¬α) contraposition

(α ⇒ β) ≡ (¬α ∨ β) implication elimination

(α ⇔ β) ≡ ((α ⇒ β) ∧ (β ⇒ α)) biconditional elimination

¬(α ∧ β) ≡ (¬α ∨ ¬β) de Morgan

¬(α ∨ β) ≡ (¬α ∧ ¬β) de Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧

Figure 7.11 Standard logical equivalences. The symbols α, β, and γ stand for arbitrary
sentences of propositional logic.

chapter, we will see algorithms that are much more efficient in practice. Unfortunately, every

known inference algorithm for propositional logic has a worst-case complexity that is expo-

nential in the size of the input. We do not expect to do better than this because propositional

entailment is co-NP-complete. (See Appendix A.)

Equivalence, validity, and satisfiability

Before we plunge into the details of logical inference algorithms, we will need some addi-

tional concepts related to entailment. Like entailment, these concepts apply to all forms of

logic, but they are best illustrated for a particular logic, such as propositional logic.

The first concept is logical equivalence: two sentences α and β are logically equivalentLOGICAL
EQUIVALENCE

if they are true in the same set of models. We write this as α ⇔ β. For example, we
can easily show (using truth tables) that P ∧ Q and Q ∧ P are logically equivalent; other

equivalences are shown in Figure 7.11. They play much the same role in logic as arithmetic

identities do in ordinary mathematics. An alternative definition of equivalence is as follows:

for any two sentences α and β,

α ≡ β if and only if α |= β and β |= α .

(Recall that |= means entailment.)

The second concept we will need is validity. A sentence is valid if it is true in allVALIDITY

models. For example, the sentence P ∨ ¬P is valid. Valid sentences are also known as

tautologies—they are necessarily true and hence vacuous. Because the sentence True is trueTAUTOLOGY

in all models, every valid sentence is logically equivalent to True.
What good are valid sentences? From our definition of entailment, we can derive the

deduction theorem, which was known to the ancient Greeks:DEDUCTION
THEOREM

For any sentences α and β, α |= β if and only if the sentence (α ⇒ β) is valid.

(Exercise 7.4 asks for a proof.) We can think of the inference algorithm in Figure 7.10 as

α, β, γ are arbitrary formulas
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chapter, we will see algorithms that are much more efficient in practice. Unfortunately, every

known inference algorithm for propositional logic has a worst-case complexity that is expo-

nential in the size of the input. We do not expect to do better than this because propositional

entailment is co-NP-complete. (See Appendix A.)

Equivalence, validity, and satisfiability

Before we plunge into the details of logical inference algorithms, we will need some addi-

tional concepts related to entailment. Like entailment, these concepts apply to all forms of

logic, but they are best illustrated for a particular logic, such as propositional logic.

The first concept is logical equivalence: two sentences α and β are logically equivalentLOGICAL
EQUIVALENCE

if they are true in the same set of models. We write this as α ⇔ β. For example, we
can easily show (using truth tables) that P ∧ Q and Q ∧ P are logically equivalent; other

equivalences are shown in Figure 7.11. They play much the same role in logic as arithmetic

identities do in ordinary mathematics. An alternative definition of equivalence is as follows:

for any two sentences α and β,

α ≡ β if and only if α |= β and β |= α .

(Recall that |= means entailment.)

The second concept we will need is validity. A sentence is valid if it is true in allVALIDITY

models. For example, the sentence P ∨ ¬P is valid. Valid sentences are also known as

tautologies—they are necessarily true and hence vacuous. Because the sentence True is trueTAUTOLOGY

in all models, every valid sentence is logically equivalent to True.
What good are valid sentences? From our definition of entailment, we can derive the

deduction theorem, which was known to the ancient Greeks:DEDUCTION
THEOREM

For any sentences α and β, α |= β if and only if the sentence (α ⇒ β) is valid.

(Exercise 7.4 asks for a proof.) We can think of the inference algorithm in Figure 7.10 as



More rules
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chapter, we will see algorithms that are much more efficient in practice. Unfortunately, every

known inference algorithm for propositional logic has a worst-case complexity that is expo-

nential in the size of the input. We do not expect to do better than this because propositional

entailment is co-NP-complete. (See Appendix A.)

Equivalence, validity, and satisfiability

Before we plunge into the details of logical inference algorithms, we will need some addi-

tional concepts related to entailment. Like entailment, these concepts apply to all forms of

logic, but they are best illustrated for a particular logic, such as propositional logic.

The first concept is logical equivalence: two sentences α and β are logically equivalentLOGICAL
EQUIVALENCE

if they are true in the same set of models. We write this as α ⇔ β. For example, we
can easily show (using truth tables) that P ∧ Q and Q ∧ P are logically equivalent; other

equivalences are shown in Figure 7.11. They play much the same role in logic as arithmetic

identities do in ordinary mathematics. An alternative definition of equivalence is as follows:

for any two sentences α and β,

α ≡ β if and only if α |= β and β |= α .

(Recall that |= means entailment.)

The second concept we will need is validity. A sentence is valid if it is true in allVALIDITY

models. For example, the sentence P ∨ ¬P is valid. Valid sentences are also known as

tautologies—they are necessarily true and hence vacuous. Because the sentence True is trueTAUTOLOGY

in all models, every valid sentence is logically equivalent to True.
What good are valid sentences? From our definition of entailment, we can derive the

deduction theorem, which was known to the ancient Greeks:DEDUCTION
THEOREM

For any sentences α and β, α |= β if and only if the sentence (α ⇒ β) is valid.

(Exercise 7.4 asks for a proof.) We can think of the inference algorithm in Figure 7.10 as

α, β are arbitrary formulas



Still more rules…

… can be derived from truth tables
For example:

(a ∨ ¬a) ≡ True

(True ∨ a) ≡ True

(False ∧ a) ≡ False



Example



Normal 
Forms



Normal forms

A normal form is a standard way of 
writing a formula
E.g., conjunctive normal form (CNF)

conjunction of disjunctions of literals
(x ∨ y ∨ ¬z) ∧ (x ∨ ¬y) ∧ (z)

Each disjunct called a clause
Any formula can be transformed into CNF 
w/o changing meaning



CNF cont’d

Often used for storage of knowledge database
called knowledge base or KB

Can add new clauses as we find them out
Each clause in KB is separately true (if KB is)

happy(John) ∧ 
(¬happy(Bill) ∨ happy(Sue)) ∧
man(Socrates) ∧
(¬man(Socrates) ∨ mortal(Socrates))



Another normal form: DNF

DNF = disjunctive normal form = 
disjunction of conjunctions of literals
Doesn’t compose the way CNF does: can’t 
just add new conjuncts w/o changing 
meaning of KB
Example:

(rains ∨ ¬pours) ∧ fishing
≡

(rains ∧ fishing) ∨ (¬pours ∧ fishing)



Transforming to CNF or DNF

Naive algorithm:
replace all connectives with ∧∨¬

move negations inward using De 
Morgan’s laws and double-negation
repeatedly distribute over ∧ over ∨ for 
DNF (∨ over ∧ for CNF)



Example

Put the following formula in CNF

(a ∨ b ∨ ¬c) ∧ ¬(d ∨ (e ∧ f)) ∧ (c ∨ d ∨ e)



Example

Now try DNF

(a ∨ b ∨ ¬c) ∧ ¬(d ∨ (e ∧ f)) ∧ (c ∨ d ∨ e)



Discussion

Problem with naive algorithm: it’s 
exponential!  (Space, time, size of result.)
Each use of distributivity can almost 
double the size of a subformula



A smarter transformation

Can we avoid exponential blowup in 
CNF?
Yes, if we’re willing to introduce new 
variables
G. Tseitin.  On the complexity of 
derivation in propositional calculus.  
Studies in Constrained Mathematics and 
Mathematical Logic, 1968.



Example

Put the following formula in CNF:

(a ∧ b) ∨ (c ∧ d)



Proofs



Entailment

Sentence A entails sentence B, A ⊨ B, if B 
is True in every model where A is

same as saying that (A ⇒ B) is valid



Proof tree

A tree with a formula at each node
At each internal node, children ⊨ parent

Leaves: assumptions or premises
Root: consequence
If we believe assumptions, we should also 
believe consequence



Proof tree example



Proof tree example



Proof tree example



Proof by contradiction

Assume opposite of what we want to 
prove, show it leads to a contradiction 
Suppose we want to show KB ⊨ S

Write KB’ for (KB ∧ ¬S)

Build a proof tree with
assumptions drawn from clauses of KB’
conclusion = F
so, (KB ∧ ¬S) ⊨ F (contradiction)



Proof by contradiction



Proof by contradiction



Inference 
rules



Inference rule

To make a proof tree, we need to be able to 
figure out new formulas entailed by KB
Method for finding entailed formulas = 
inference rule
We’ve implicitly been using one already



Modus ponens

Probably most famous inference rule: all 
men are mortal, Socrates is a man, 
therefore Socrates is mortal
Quantifier-free version: 
man(Socrates) ∧ 

(man(Socrates) ⇒ mortal(Socrates))

d
(a ∧ b ∧ c ⇒ d)  a  b  c



Another inference rule

Modus tollens
If it’s raining the grass is wet; the grass is 
not wet, so it’s not raining

¬a
(a ⇒ b)  ¬b



One more…

(a ∨ b ∨ c)  (¬c ∨ d ∨ e)
a ∨ b ∨ d ∨ e

Resolution
Combines two sentences that contain a 
literal and its negation
Not as commonly known as modus 
ponens / tollens



Resolution example

Modus ponens / tollens are special cases
Modus tollens:
(¬raining ∨ grass-wet) ∧ ¬grass-wet  ⊨ 
¬raining



Resolution

Simple proof by case analysis
Consider separately cases where we 
assign c = True and c = False

(a ∨ b ∨ c)  (¬c ∨ d ∨ e)
a ∨ b ∨ d ∨ e



Resolution

Case c = True
(a ∨ b ∨ T) ∧ (F ∨ d ∨ e)

= (T) ∧ (d ∨ e)

= (d ∨ e)

(a ∨ b ∨ c) ∧ (¬c ∨ d ∨ e)



Resolution

Case c = False
(a ∨ b ∨ F) ∧ (T ∨ d ∨ e)

= (a ∨ b) ∧ (T)

= (a ∨ b)

(a ∨ b ∨ c) ∧ (¬c ∨ d ∨ e)



Resolution

Since c must be True or False, conclude
(d ∨ e) ∨ (a ∨ b)

as desired

(a ∨ b ∨ c) ∧ (¬c ∨ d ∨ e)



Theorem 
provers



Theorem prover

Theorem prover = mechanical system for 
finding a proof tree
An application of search techniques from 
earlier lecture

Search node = KB (including whatever 
we’ve proven so far)
Neighbor: (KB ∧ S) if KB ⊨ S



A basic theorem prover

Given KB, want to conclude S
Let KB’ = CNF(KB ∧ ¬S)

Repeat:
add new clause to KB’ using resolution

Until we add empty clause (False) and 
conclude KB ⊨ S 

Or run out of new clauses and conclude 
KB ⊭ S



Soundness and completeness

An inference procedure is sound if it can 
only conclude things entailed by KB

common sense; haven’t discussed 
anything unsound

A set of rules is complete if it can 
conclude everything entailed by KB



Completeness

Theorem provers based on modus ponens 
by itself are incomplete
Simple resolution theorem prover from 
above is complete for propositional logic



Variations

Later

Horn clause inference (faster)
Ways of handling uncertainty (slower)
CSPs (sometimes more convenient)
Quantifiers / first-order logic



Horn clauses

Horn clause: (a ∧ b ∧ c ⇒ d)

Equivalently, (¬a ∨ ¬b ∨ ¬c ∨ d)

Disjunction of literals, at most one of 
which is positive
Positive literal = head, rest = body



Use of Horn clauses

People find it easy to write Horn clauses 
(listing out conditions under which we can 
conclude head)

happy(John) ∧ happy(Mary) ⇒ 
happy(Sue)

No negative literals in above formula; 
again, easier to think about



Why are Horn clauses important

Inference in a KB of propositional Horn 
clauses is linear
E.g., by forward chaining



Forward chaining

Look for a clause with all body literals 
satisfied
Add its head to KB
Repeat
See RN for more details



Handling uncertainty

Fuzzy logic / certainty factors
simple, but don’t scale

Nonmonotonic logic
also doesn’t scale

Probabilities
may or may not scale—more in Part II



Certainty factors

KB assigns a certainty factor in [0, 1] to 
each proposition
Interpret as “degree of belief”
When applying an inference rule, certainty 
factor for consequent is a function of 
certainty factors for antecedents (e.g., 
minimum)



Problems w/ certainty factors

Hard to separate a large KB into mostly-
independent chunks that interact only 
through a well-defined interface
Certainty factors are not probabilities 
(i.e., do not obey Bayes’ Rule)



Nonmonotonic logic

Suppose we believe all birds can fly
Might add a set of sentences to KB

bird(Polly) ⇒ flies(Polly) 

bird(Tweety) ⇒ flies(Tweety)

bird(Tux) ⇒ flies(Tux)
bird(John) ⇒ flies(John)

…



Nonmonotonic logic

Fails if there are penguins in the KB
Fix: instead, add

bird(Polly) ∧ ¬ab(Polly) ⇒ flies(Polly) 

bird(Tux) ∧ ¬ab(Tux) ⇒ flies(Tux)

…
ab(Tux) is an “abnormality predicate”
Need separate abi(x) for each type of rule



Nonmonotonic logic

Now set as few abnormality predicates as 
possible
Can prove flies(Polly) or flies(Tux) with no 
ab(x) assumptions
If we assert ¬flies(Tux), must now assume 
ab(Tux) to maintain consistency
Can’t prove flies(Tux) any more, but can 
still prove flies(Polly)



Nonmonotonic logic

Works well as long as we don’t have to 
choose between big sets of abnormalities

is it better to have 3 flightless birds or 5 
professors that don’t wear jackets with 
elbow-patches?
even worse with nested abnormalities: 
birds fly, but penguins don’t, but 
superhero penguins do, but …



SAT



Definitions

A sentence is satisfiable if it is True in 
some model
If not satisfiable, it is a contradiction 
(False in every model)
A sentence is valid if it is True in every 
model (a valid sentence is a tautology)



Satisfiability

SAT is the problem of determining whether 
a given propositional logic sentence is 
satisfiable
A decision problem: given an instance, 
answer yes or no
A fundamental problem in CS



SAT is a search problem

(At least) two ways to write it
search nodes are (full or partial) 
models, neighbors differ in assignment 
for a single variable
search nodes are formulas, neighbors 
by entailment

And hybrids (node = model + formula)



SAT is a general search problem

Many other search problems reduce to 
SAT
Informally, if we can solve SAT, can solve 
these other problems
So a good SAT solver is a good AI 
building block



Example search problem

3-coloring: can we color a map using only 
3 colors in a way that keeps neighboring 
regions from being the same color?



Reduction

Loosely, “A reduces to B” means that if 
we can solve B then we can solve A
More formally, A, B are decision problems 
(instances ↦ truth values)

A reduction is a poly-time function f such 
that, given an instance a of A

f(a) is an instance of B, and 
A(a) = B(f(a))



Reduction picture



Reduction picture



Reduction picture



Example reduction

Each square must be red, green, or blue
Adjacent squares can’t both be red 
(similarly, green or blue)



Example reduction

(ar ∨ ag ∨ ab) ∧ (br ∨ bg ∨ bb) ∧ (cr ∨ cg ∨ 
cb) ∧ (dr ∨ dg ∨ db) ∧ (er ∨ eg ∨ eb) ∧ (zr ∨ 
zg ∨ zb)
(¬ar ∨ ¬br) ∧ (¬ag ∨ ¬bg) ∧ (¬ab ∨ ¬bb)

(¬ar ∨ ¬zr) ∧ (¬ag ∨ ¬zg) ∧ (¬ab ∨ ¬zb)

…



Search and reduction

S. A. Cook in 1971 proved that many 
useful search problems reduce back and 
forth to SAT

showed how to simulate poly-size-
memory computer w/ (very complicated, 
but still poly-size) SAT problem

Equivalently, SAT is exactly as hard (in 
theory at least) as these other problems



Cost of reduction

Complexity theorists often ignore little 
things like constant factors (or even 
polynomial factors!)
So, is it a good idea to reduce your search 
problem to SAT?
Answer: sometimes…



Cost of reduction

SAT is well studied ⇒ fast solvers
So, if there is an efficient reduction, ability 
to use fast SAT solvers can be a win

e.g., 3-coloring
another example later (SATplan)

Other times, cost of reduction is too high
usu. because instance gets bigger
will also see example later (MILP)



Choosing a reduction

May be many reductions from problem A 
to problem B
May have wildly different properties

e.g., search on transformed instance 
may take seconds vs. days



Direction of reduction

If A reduces to B then
if we can solve B, we can solve A
so B must be at least as hard as A

Trivially, can take an easy problem and 
reduce it to a hard one



Not-so-useful reduction

Path planning reduces to SAT
Variables: is edge e in path?
Constraints:

exactly 1 path-edge touches start
exactly 1 path-edge touches goal
either 0 or 2 touch each other node



Reduction to 3SAT

We saw that search problems can be 
reduced to SAT

is CNF formula satisfiable?
Can reduce even further, to 3SAT

is 3CNF formula satisfiable?
Useful if reducing SAT/3SAT to another 
problem (to show other problem hard)



Reduction to 3SAT

Must get rid of long clauses
E.g., (a ∨ ¬b ∨ c ∨ d ∨ e ∨ ¬f)

Replace with
(a ∨ ¬b ∨ x) ∧ (¬x ∨ c ∨ y) ∧ 
(¬y ∨ d ∨ z) ∧ (¬z ∨ e ∨ ¬f)


