15-780: Graduate AI *Lecture 4. SAT, CSPs, and FOL*

Geoff Gordon (this lecture) Ziv Bar-Joseph TAs Geoff Hollinger, Henry Lin

Admin

Review

What you should know

Propositional logic
syntax, truth tables
models, satisfiability, validity, entailment, etc.
equivalence rules (e.g., De Morgan)
inference rules (e.g., resolution)

What you should know

Normal forms (e.g., CNF)
Structure of a theorem prover

proof trees, knowledge bases

SAT problem

its search graph(s)
reductions (e.g., 3-coloring to SAT)

Constraint satisfaction

• Recall 3-coloring

- Turned map into SAT problem (constant factor blowup)
- Did we have to do that?

CSP definition

- No: represent as CSP instead
- CSP = (variables, domains, constraints)
- Variable: a
- *Domain:* (*R*, *G*, *B*)
- *Constraint*: a, b ∈ (RG, RB, GR, GB, BR, BG)
- Constraints usually represented compactly

Example

6-034Artificial-IntelligenceFall2002/Tools/detail/mapresalloc.htm

Other important CSPs

0	0	1	v1	
0	0	1	v2	
0	0	1	٧3	
1	1	2	٧4	
v8	٧7	v6	٧5	

 $V = \{ v1, v2, v3, v4, v5, v6, v7, v8 \}, D = \{ B (bomb), S (space) \}$ $C = \{ (v1, v2) : \{ (B, S), (S,B) \}, (v1, v2, v3) : \{ (B,S,S), (S,B,S), (S,S,B) \}, ... \}$

Minesweeper (courtesy Andrew Moore)

Other important CSPs

• Sudoku

http://www.cs.qub.ac.uk/~I.Spence/SuDoku/SuDoku.html

Other important CSPs

• Job-shop scheduling • A bunch of jobs • each job is a sequence of operations • drill, polish, paint • A bunch of resources each operation needs several resources • Is there a schedule of length $\leq k$?

SAT & CSP solvers

- Search algorithms routinely handle SAT or CSP problems with 1,000,000 variables
- Such a solver is a subroutine in one of the planning algorithms we'll discuss soon

Hard instances

- SAT, CSP are NP-complete! How can we do problems with 1,000,000 variables?!?
- NP-complete doesn't mean runtime has to be exponential for all examples

• e.g., $(a \lor b) \land (c \lor d) \land (e \lor f \lor g)$

 Many practical examples are apparently not all that hard

So where are the hard examples?

Why are some practical examples easy?
They are over- or under-constrained
under-constrained ⇒ succeed quickly
over-constrained ⇒ fail quickly
Where are the hard examples?
"critically constrained"

Aside: random 3CNF formulas

- It turns out that **random** formulas can be quite hard to solve
- Randomly select variables to be in each clause, randomize +ve vs. -ve
- If we generate too few clauses, formula is under-constrained
- Too many: over-constrained

Just right

Random formulas w/ n=50 vars, m clauses
Clauses have 3 distinct literals, 50% negated

4.3

- It turns out m/n = 4.3 (and change) is the hard area, for any sufficiently large n
- What's special about 4.3? I don't know.
- Unfortunately real formulas don't look like random ones, so it's not so easy to check whether they are critically constrained

SAT & CSP as search problems

- Search space: models or partial models
- Neighbors: change assignment to one variable
- Search space may also include changes to constraints / clauses
 - add a new constraint / clause
 - simplify existing ones

Search in a CSP

b d d e f d e

Let's try DFS using partial assignments
top to bottom, RGB

DFS looks stupid

- OK, that wasn't the right way
- Blindingly obvious: consistency checking
- Don't assign a variable to a value that conflicts with a neighbor

Search in a CSP

b d d e f d e

• DFS with consistency checking

Well, that's better

 But it still doesn't notice the problem as soon as it could

 Forward checking: delete conflicting values from neighbors' domains

remember to put them back if we backtrack

• can do this with reference counts

Search in a CSP

b d d e f d e

• Try again with forward checking

Can we do even better?

- Constraint propagation
- If we notice a variable has just one consistent value, assign it immediately
- And delete from neighbors' domains, and recurse

Search in a CSP

a d e

 Constraint propagation solves it without backtracking!

Search in a CSP

A CONTRACT OF THE STATE OF THE

• Now let's make it harder

Constraint learning

- When we reach a dead end, can spend time analyzing why it is dead
- If there's a simple reason, distill it into a constraint and add it to problem
- Saves backtracking later

Intuition

- Suppose we can learn [subset of previous decisions] ⇒ [setting for x]
- Didn't know how to set x on this branch, so might not know on future branches
- Any time this same subset of decisions appears on a future branch, won't have to search both values of x

Constraint learning

• In reaching a dead end model

- we set some variables by propagation
- others we picked arbitrarily (decision variables)
- Goal: find a set of decision variables that are responsible for failure, guarantee we won't look at their current setting again
- Might leave in some non-decision vars

Finding a new constraint

- <u>a:R</u>, <u>d:R</u>, <u>g:R</u>, <u>h:G</u>, <u>e:G</u>, f:B, c:G, b:B
- Conflict set: f:B, b:B
- We set b: B because of <u>a:R</u>, c:G
- So, f:B, <u>a:R</u>, c:G is a conflict set too

Finding a new constraint

a:R, d:R, g:R, h:G, e:G, f:B, c:G, b:B
Conflict set: f:B, a:R, c:G
Setting c:G was from a:R, f:B
And f:B was from d:R, e:G
So, a:R, d:R, e:G is an impossible setting

Search in a CSP

A CONTRACT OF THE STATE OF THE

• Rule out $\underline{a:R}$, $\underline{d:R}$, $\underline{e:G}$

Finding a new constraint

- In general: start from the variables of a violated constraint
- Pick a non-decision variable, replace it with the variables that caused it to be set
- Terminate at some point; get a conflict set
- Add a new constraint forbidding current setting of conflict set
When should we stop?

- Process variables in reverse chronological order
- Eventually, will hit a decision variable x
- Could skip x, continue with next variable
- But literature recommends stopping at x

Why is this a good idea?

- Next backtrack will unset x
- Learned clause will have x as its only unsatisfied literal
- Will immediately set x via a unit resolution

Basic CSP or SAT search

global problem function search(model) $model \leftarrow propagate(model)$ if is solution(model) then return T if is_failed(model) then learn_constraints(model) return F $var \leftarrow pick_var(model)$ vals ← sort_vals(var, model) for val in vals if search(model / var: val) then return T

Choices

Main choices

Fancier propagate()
Ordering heuristics
Deleting learned constraints

Fancier propagate()

• Pure literal rule

- If setting variable x to value Y doesn't reduce range of any group of vars
- Then go ahead and set x
- E.g., if all neighbors already can't be blue but I can, set me blue

Fancier propagate()

- In general, could put any inference rule in propagate()—usually search-free, though
- But must be fast, so we will always have to miss some inferences
- E.g, Sudoku requires no search, but most propagate() implementations won't solve it

Variable ordering

Most constrained variable first
 natural generalization of propagation
 tends to find inconsistencies quickly
 cheap to do, often a big win

Variable ordering

- Activity rules
- Each time a literal seems important, increment its score; decay all scores at a constant rate over time
- "Important" literals are
 - ones in learned constraints
 - ones in conflict sets

Value ordering

Least-constraining value first
Natural generalization of pure literal
Give ourselves more flexibility later on
Delay decisions

• Less important, but sometimes helpful

Deleting learned constraints

- Learned constraints make problem bigger
- So, if they fail to reduce backtracking, we want to get rid of them
- Increment constraint's activity level when we use it, decay all activities over time
- Delete low-activity constraints

Example from book

they is ton way

Be able to simulate variants of basic search

SAT Solvers

DPLL

- Basic search from above is called DPLL when used for CNF-SAT
- DPLL stands for Davis, Putnam, Logemann, and Loveland
- Modern implementations: Chaff, MINISAT

DPLL

global problem function search(model) $model \leftarrow propagate(model)$ if is_solution(model) then return T if is_failed(model) then *learn_constraints(model)* return F $var \leftarrow pick_var(model)$ vals ← sort_vals(var, model) for val in vals if search(model / var: val) then return T

propagate()

• Constraint propagation becomes unit resolution:

If a clause w/ one remaining variable is unsatisfied, set variable to satisfy clause *In* (*a* ∨ *b* ∨ ¬*c*):

model (a: F, b: F) leaves (¬c), set c: F
model (a: F, c: T) leaves (b), set b: T
model (a: F, c: F) leaves (T), do nothing

Other deduction rules

• Pure literal rule becomes

If a literal appears with only one sign in all remaining unsatisfied clauses, set it based on that sign

- In $(a \lor b) \land (a \lor \neg b)$, sets a: T
- RN recommends it
- But Chaff paper says it is too slow

pick_var()

• Can't use most-constrained-variable heuristic from above • This seems like a real pity • Could imagine allowing clauses like exactly-one-of(a, b, c, d) at-most-k-of(3, a, b, c, d)• Not sure why it isn't implemented more often

pick_var()

- One possibility: MOMS (maximum occurrence in minimum-sized clauses)
- Want to satisfy lots of clauses immediately
- Failing that, want lots of length-1 clauses
- Find smallest clause (say, 3 vars)
- Pick a variable which occurs maximally often in size-3 clauses

MOMS discussion

- Chaff authors say: MOMS doesn't choose good variables on non-random problems
- Recommend activity heuristics instead
- Chaff also prefers literals in most recently added clause

Clause learning

 New-clause learning rule is an example of resolution-based theorem proving

• Uses conflict cause to focus resolution

Clause learning

Conflict clause has all unsatisfied literals

(a ∨ b ∨ ¬c), model (a:F, b:F, c:T, d:F)

Say c is most recent non-decision variable

from clause (b ∨ c ∨ d)
b and d must be in conflict too

Clause learning

 So, resolving these two clauses yields another conflict clause

• in this case $(a \lor b \lor d)$

• Keep doing resolutions for all implied variables, in reverse chronological order

WalkSAT

• Very simple randomized search algorithm

- State space: complete models
- No formula changes (except perhaps initial simplification)

WalkSAT

function WALKSAT(*clauses*, *p*, *max_flips*) **returns** a satisfying model or *failure* **inputs**: *clauses*, a set of clauses in propositional logic

p, the probability of choosing to do a "random walk" move, typically around 0.5 max_flips , number of flips allowed before giving up

 $model \leftarrow$ a random assignment of true/false to the symbols in *clauses*

for i = 1 to max_flips do

if model satisfies clauses then return model

clause ← a randomly selected clause from clauses that is false in model
with probability p flip the value in model of a randomly selected symbol from clause
else flip whichever symbol in clause maximizes the number of satisfied clauses
return failure

- satisfiable formulas
- Cons: can't ever prove unsatisfiable

Randomness

• Both WalkSAT and DPLL are random

 Result is a significant variance in solution times for same formula (Chaff authors report seconds vs. days)

We can be very lucky or unlucky

COLUMN A TOT WAS STORED AT A STAND TO A CONTRACT OF THE STORE AND A STAND AND

The GWYDYR CASTLE in the Doldrums, while sharks hang around her, anaiting the next offering of galley slops

Doldrums: One Of Murphy's Yarns http://oldpoetry.com/opoem/56157 Cicely Fox Smith

"I heard onst of a barque," said Murphy. "Becalmed, that couldn't get a breath, Till all the crowd was sick with scurvy An' the skipper drunk himself to death."

Simple idea

- Try multiple random seeds
 - influences order of expanding neighbors (when ordering heuristics are tied)
 - influences starting point in WalkSAT
- Interleave computation (or iterative lengthening)
- When does this work?

Randomization cont'd

• Randomization works well if search times are sometimes short but have heavy tail

Randomness and clause learning

 For DPLL-style algorithms, if clause learning was active, random restarts don't totally lose effort from previous tries

First-order logic

Bertrand Russell 1872-1970

 So far we've been using opaque vars like rains or happy(John)

- Limits us to statements like "it's raining" or "if John is happy then Mary is happy"
- Can't say "all men are mortal" or "if John is happy then someone else is happy too"

Predicates and objects

- Interpret happy(John) or likes(Joe, pizza) as a predicate applied to some objects
- Object = an object in the world
- Predicate = boolean-valued function of objects
- Zero-argument predicate plays same role that Boolean variable did before
Distinguished predicates

- We will assume three distinguished predicates with fixed meanings:
 - True, False
 - Equal(x, y)
- We will also write (x = y) and $(x \neq y)$
- Equality satisfies usual axioms

Functions

- Functions map zero or more objects to another object
 - e.g., professor(15-780), last-commonancestor(John, Mary)
- Zero-argument function is the same as an object—John v. John()

The nil object

- Functions are untyped: must have a value for **any** set of arguments
- Typically add a **nil** object to use as value when other answers don't make sense

Definitions

- *Term* = expression referring to an object *John*
 - left-leg-of(father-of(president-of(USA)))
- Atom = predicate applied to objects
 - happy(John)
 - raining
 - at(robot, Wean-5409, 11AM-Wed)

Definitions

- Literal = possibly-negated atom
 happy(John), ¬happy(John)
- Sentence = literals joined by connectives like ∧∨¬⇒
 - raining
 - $done(slides(780)) \Rightarrow happy(professor)$

Models

- Meaning of sentence: model \mapsto {*T*, *F*}
- Models are now much more complicated
 - List of objects
 - Table of function values for each function mentioned in formula
 - Table of predicate values for each predicate mentioned in formula

Models

- Function table includes referent for each object
- Predicate table includes value of each boolean-valued variable

KB describing example

- alive(cat)
- \circ ear-of(cat) = ear
- $in(cat, box) \land in(ear, box)$
- $\neg in(box, cat) \land \neg in(cat, nil) \dots$
- ear-of(box) = ear-of(ear) = ear-of(nil) = nil
- $cat \neq box \land cat \neq ear \land cat \neq nil ...$