
15-780: Graduate AI
Lecture 4. SAT, CSPs, and FOL

Geoff Gordon (this lecture)
Ziv Bar-Joseph

TAs Geoff Hollinger, Henry Lin

Admin

Questions on HW?

Review

What you should know

Propositional logic
syntax, truth tables
models, satisfiability, validity,
entailment, etc.
equivalence rules (e.g., De Morgan)
inference rules (e.g., resolution)

What you should know

Normal forms (e.g., CNF)
Structure of a theorem prover

proof trees, knowledge bases
SAT problem

its search graph(s)
reductions (e.g., 3-coloring to SAT)

CSPs

Constraint satisfaction

Recall 3-coloring
Turned map into SAT problem (constant
factor blowup)
Did we have to do that?

CSP definition

No: represent as CSP instead
CSP = (variables, domains, constraints)
Variable: a
Domain: (R, G, B)
Constraint: a, b ∈ (RG, RB, GR, GB, BR,
BG)
Constraints usually represented compactly

Example

http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/
6-034Artificial-IntelligenceFall2002/Tools/detail/mapresalloc.htm

Appears to be offline now

Other important CSPs

Minesweeper (courtesy Andrew Moore)

“Minesweeper” CSP

V = { v1 , v2 , v3 , v4 , v5 , v6 , v7 , v8 }, D = { B (bomb) , S (space) }

C = { (v1,v2) : { (B , S) , (S,B) } ,(v1,v2,v3) : { (B,S,S) , (S,B,S) , (S,S,B)},...}

0 0

0 0

0 0

1

1

1

211

v1

v2

v3

v4

v5v6v7v8

v1

v2

v3

v4

v5
v6

v7

v8

The Waltz algorithm

One of the earliest examples of a computation posed as a CSP.

The Waltz algorithm is for interpreting line drawings of solid
polyhedra.

Adjacent intersections impose constraints on each other. Use CSP
to find a unique set of labelings. Important step to
“understanding” the image.

Look at all intersections.

What kind of intersection could this
be? A concave intersection of three

faces? Or an external convex inter
section?

Waltz Alg. on simple scenes

Assume all objects:

• Have no shadows or cracks
• Three-faced vertices
• “General position”: no junctions change with small

movements of the eye.

Then each line on image is one of the following:

• Boundary line (edge of an object) (<) with right hand of
arrow denoting “solid” and left hand denoting “space”

• Interior convex edge (+)
• Interior concave edge (-)

+

++
+

 18 legal kinds of junctions

Given a representation of the diagram, label each junction in one of the above manners.

The junctions must be labelled so that lines are labelled consistently at both ends.

Can you formulate that as a CSP? FUN FACT : Constra int Propagat ion a lways works perfec t ly .

+

+

+

++

+

+

+

++

-

-
--

--

-

-
--

-

-

Other important CSPs

Sudoku
http://www.cs.qub.ac.uk/~I.Spence/SuDoku/SuDoku.html

Other important CSPs

Job-shop scheduling
A bunch of jobs

each job is a sequence of operations
drill, polish, paint

A bunch of resources
each operation needs several resources

Is there a schedule of length ≤ k?

Solving
SAT&CSP

SAT & CSP solvers

Search algorithms routinely handle SAT or
CSP problems with 1,000,000 variables
Such a solver is a subroutine in one of the
planning algorithms we’ll discuss soon

Hard instances

SAT, CSP are NP-complete! How can we
do problems with 1,000,000 variables?!?
NP-complete doesn’t mean runtime has to
be exponential for all examples

e.g., (a ∨ b) ∧ (c ∨ d) ∧ (e ∨ f ∨ g)

Many practical examples are apparently
not all that hard

So where are the hard examples?

Why are some practical examples easy?
They are over- or under-constrained

under-constrained ⇒ succeed quickly

over-constrained ⇒ fail quickly

Where are the hard examples?
“critically constrained”

Aside: random 3CNF formulas

It turns out that random formulas can be
quite hard to solve
Randomly select variables to be in each
clause, randomize +ve vs. -ve
If we generate too few clauses, formula is
under-constrained
Too many: over-constrained

Just right

Random formulas w/ n=50 vars, m clauses
Clauses have 3 distinct literals, 50% negated

Section 7.7. Agents Based on Propositional Logic 225

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

P
(s

at
is

fi
ab

le
)

Clause/symbol ratio m/n

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 1 2 3 4 5 6 7 8

R
u
n
ti

m
e

Clause/symbol ratio m/n

DPLL
WalkSAT

(a) (b)

Figure 7.18 (a) Graph showing the probability that a random 3-CNF sentence with n =50
symbols is satisfiable, as a function of the clause/symbol ratiom/n. (b) Graph of the median
runtime of DPLL and WALKSAT on 100 satisfiable random 3-CNF sentences with n =50,
for a narrow range ofm/n around the critical point.

7.7 AGENTS BASED ON PROPOSITIONAL LOGIC

In this section, we bring together what we have learned so far in order to construct agents

that operate using propositional logic. We will look at two kinds of agents: those which

use inference algorithms and a knowledge base, like the generic knowledge-based agent in

Figure 7.1, and those which evaluate logical expressions directly in the form of circuits. We

will demonstrate both kinds of agents in the wumpus world, and will find that both suffer

from serious drawbacks.

Finding pits and wumpuses using logical inference

Let us begin with an agent that reasons logically about the location of pits, wumpuses, and

safe squares. It begins with a knowledge base that states the “physics” of the wumpus world.

It knows that [1,1] does not contain a pit or a wumpus; that is, ¬P1,1 and ¬W1,1. For every

square [x, y], it knows a sentence stating how a breeze arises:

Bx,y ⇔ (Px,y+1 ∨ Px,y−1 ∨ Px+1,y ∨ Px−1,y) . (7.1)

For every square [x, y], it knows a sentence stating how a stench arises:

Sx,y ⇔ (Wx,y+1 ∨ Wx,y−1 ∨ Wx+1,y ∨ Wx−1,y) . (7.2)

Finally, it knows that there is exactly one wumpus. This is expressed in two parts. First, we

have to say that there is at least one wumpus:

W1,1 ∨ W1,2 ∨ · · · ∨ W4,3 ∨ W4,4 .

Then, we have to say that there is at most one wumpus. One way to do this is to say that

for any two squares, one of them must be wumpus-free. With n squares, we get n(n − 1)/2

4.3

It turns out m/n = 4.3 (and change) is the
hard area, for any sufficiently large n
What’s special about 4.3? I don’t know.
Unfortunately real formulas don’t look like
random ones, so it’s not so easy to check
whether they are critically constrained

SAT & CSP as search problems

Search space: models or partial models
Neighbors: change assignment to one
variable
Search space may also include changes to
constraints / clauses

add a new constraint / clause
simplify existing ones

Search in a CSP

Let’s try DFS using partial assignments
top to bottom, RGB

DFS looks stupid

OK, that wasn’t the right way
Blindingly obvious: consistency checking
Don’t assign a variable to a value that
conflicts with a neighbor

Search in a CSP

DFS with consistency checking

Well, that’s better

But it still doesn’t notice the problem as
soon as it could
Forward checking: delete conflicting
values from neighbors’ domains

remember to put them back if we
backtrack
can do this with reference counts

Search in a CSP

Try again with forward checking

Can we do even better?

Constraint propagation
If we notice a variable has just one
consistent value, assign it immediately
And delete from neighbors’ domains, and
recurse

Search in a CSP

Constraint propagation solves it without
backtracking!

Search in a CSP

Now let’s make it harder

Constraint learning

When we reach a dead end, can spend
time analyzing why it is dead
If there’s a simple reason, distill it into a
constraint and add it to problem
Saves backtracking later

Intuition

Suppose we can learn [subset of previous
decisions] ⇒ [setting for x]

Didn’t know how to set x on this branch,
so might not know on future branches
Any time this same subset of decisions
appears on a future branch, won’t have to
search both values of x

Constraint learning

In reaching a dead end model
we set some variables by propagation
others we picked arbitrarily (decision
variables)

Goal: find a set of decision variables that
are responsible for failure, guarantee we
won’t look at their current setting again
Might leave in some non-decision vars

Finding a new constraint

a:R, d:R, g:R, h:G, e:G, f:B, c:G, b:B
Conflict set: f:B, b:B
We set b:B because of a:R, c:G
So, f:B, a:R, c:G is a conflict set too

Finding a new constraint

a:R, d:R, g:R, h:G, e:G, f:B, c:G, b:B
Conflict set: f:B, a:R, c:G
Setting c:G was from a:R, f:B
And f:B was from d:R, e:G
So, a:R, d:R, e:G is an impossible setting

Search in a CSP

Rule out a:R, d:R, e:G

Finding a new constraint

In general: start from the variables of a
violated constraint
Pick a non-decision variable, replace it
with the variables that caused it to be set
Terminate at some point; get a conflict set
Add a new constraint forbidding current
setting of conflict set

When should we stop?

Process variables in reverse chronological
order
Eventually, will hit a decision variable x
Could skip x, continue with next variable
But literature recommends stopping at x

Why is this a good idea?

Next backtrack will unset x
Learned clause will have x as its only
unsatisfied literal
Will immediately set x via a unit resolution

global problem
function search(model)

model ← propagate(model)
if is_solution(model) then return T
if is_failed(model) then

learn_constraints(model)
return F

var ← pick_var(model)
vals ← sort_vals(var, model)
for val in vals

if search(model / var: val) then return T

Basic CSP or SAT search

Choices

Main choices

Fancier propagate()
Ordering heuristics
Deleting learned constraints

Fancier propagate()

Pure literal rule
If setting variable x to value Y doesn’t
reduce range of any group of vars
Then go ahead and set x
E.g., if all neighbors already can’t be
blue but I can, set me blue

Fancier propagate()

In general, could put any inference rule in
propagate()—usually search-free, though
But must be fast, so we will always have to
miss some inferences
E.g, Sudoku requires no search, but most
propagate() implementations won’t solve it

Variable ordering

Most constrained variable first
natural generalization of propagation
tends to find inconsistencies quickly
cheap to do, often a big win

Variable ordering

Activity rules
Each time a literal seems important,
increment its score; decay all scores at a
constant rate over time
“Important” literals are

ones in learned constraints
ones in conflict sets

Value ordering

Least-constraining value first
Natural generalization of pure literal
Give ourselves more flexibility later on
Delay decisions

Less important, but sometimes helpful

Deleting learned constraints

Learned constraints make problem bigger
So, if they fail to reduce backtracking, we
want to get rid of them
Increment constraint’s activity level when
we use it, decay all activities over time
Delete low-activity constraints

Example from book

Be able to simulate variants of basic
search

138 Chapter 5. Constraint Satisfaction Problems

So what does all this mean? Suppose that, having tired of Romania, we are looking

at a map of Australia showing each of its states and territories, as in Figure 5.1(a), and that

we are given the task of coloring each region either red, green, or blue in such a way that no

neighboring regions have the same color. To formulate this as a CSP, we define the variables

to be the regions: WA, NT , Q, NSW , V , SA, and T . The domain of each variable is the set
{red , green, blue}. The constraints require neighboring regions to have distinct colors; for
example, the allowable combinations forWA and NT are the pairs

{(red , green), (red , blue), (green, red), (green, blue), (blue, red), (blue, green)} .

(The constraint can also be represented more succinctly as the inequality WA != NT , pro-
vided the constraint satisfaction algorithm has some way to evaluate such expressions.) There

are many possible solutions, such as

{WA= red ,NT = green, Q= red ,NSW = green, V = red ,SA= blue, T = red }.
It is helpful to visualize a CSP as a constraint graph, as shown in Figure 5.1(b). The nodesCONSTRAINT GRAPH

of the graph correspond to variables of the problem and the arcs correspond to constraints.

Treating a problem as a CSP confers several important benefits. Because the representa-

tion of states in a CSP conforms to a standard pattern—that is, a set of variables with assigned

values—the successor function and goal test can written in a generic way that applies to all

CSPs. Furthermore, we can develop effective, generic heuristics that require no additional,

domain-specific expertise. Finally, the structure of the constraint graph can be used to sim-

plify the solution process, in some cases giving an exponential reduction in complexity. The

CSP representation is the first, and simplest, in a series of representation schemes that will be

developed throughout the book.

Western
Australia

Northern
Territory

South
Australia

Queensland

New

South

Wales

Victoria

Tasmania

WA

NT

SA

Q

NSW

V

T

(a) (b)

Figure 5.1 (a) The principal states and territories of Australia. Coloring this map can be

viewed as a constraint satisfaction problem. The goal is to assign colors to each region so

that no neighboring regions have the same color. (b) The map-coloring problem represented

as a constraint graph.

SAT Solvers

DPLL

Basic search from above is called DPLL
when used for CNF-SAT
DPLL stands for Davis, Putnam,
Logemann, and Loveland
Modern implementations: Chaff, MINISAT

global problem
function search(model)

model ← propagate(model)
if is_solution(model) then return T
if is_failed(model) then

learn_constraints(model)
return F

var ← pick_var(model)
vals ← sort_vals(var, model)
for val in vals

if search(model / var: val) then return T

DPLL

propagate()

Constraint propagation becomes unit
resolution:

If a clause w/ one remaining variable is
unsatisfied, set variable to satisfy clause

In (a ∨ b ∨ ¬c):

model (a: F, b: F) leaves (¬c), set c: F

model (a: F, c: T) leaves (b), set b: T
model (a: F, c: F) leaves (T), do nothing

Other deduction rules

Pure literal rule becomes
If a literal appears with only one sign in
all remaining unsatisfied clauses, set it
based on that sign

In (a ∨ b) ∧ (a ∨ ¬b), sets a: T

RN recommends it
But Chaff paper says it is too slow

pick_var()

Can’t use most-constrained-variable
heuristic from above
This seems like a real pity
Could imagine allowing clauses like

exactly-one-of(a, b, c, d)
at-most-k-of(3, a, b, c, d)

Not sure why it isn’t implemented more
often

pick_var()

One possibility: MOMS (maximum
occurrence in minimum-sized clauses)
Want to satisfy lots of clauses immediately
Failing that, want lots of length-1 clauses
Find smallest clause (say, 3 vars)
Pick a variable which occurs maximally
often in size-3 clauses

MOMS discussion

Chaff authors say: MOMS doesn’t choose
good variables on non-random problems
Recommend activity heuristics instead
Chaff also prefers literals in most recently
added clause

Clause learning

New-clause learning rule is an example of
resolution-based theorem proving
Uses conflict cause to focus resolution

Clause learning

Conflict clause has all unsatisfied literals
(a ∨ b ∨ ¬c), model (a:F, b:F, c:T, d:F)

Say c is most recent non-decision variable
from clause (b ∨ c ∨ d)

b and d must be in conflict too

Clause learning

So, resolving these two clauses yields
another conflict clause

in this case (a ∨ b ∨ d)

Keep doing resolutions for all implied
variables, in reverse chronological order

Other
tricks

WalkSAT

Very simple randomized search algorithm
State space: complete models
No formula changes (except perhaps
initial simplification)

WalkSAT
Section 7.6. Effective propositional inference 223

functionWALKSAT(clauses ,p,max flips) returns a satisfying model or failure
inputs: clauses , a set of clauses in propositional logic

p, the probability of choosing to do a “random walk” move, typically around 0.5
max flips , number of flips allowed before giving up

model ← a random assignment of true/false to the symbols in clauses
for i = 1 to max flips do
if model satisfies clauses then returnmodel
clause ← a randomly selected clause from clauses that is false in model
with probability p flip the value inmodel of a randomly selected symbol from clause
else flip whichever symbol in clause maximizes the number of satisfied clauses

return failure

Figure 7.17 The WALKSAT algorithm for checking satisfiability by randomly flipping

the values of variables. Many versions of the algorithm exist.

used by the MIN-CONFLICTS algorithm for CSPs (page 151). All these algorithms take steps

in the space of complete assignments, flipping the truth value of one symbol at a time. The

space usually contains many local minima, to escape from which various forms of random-

ness are required. In recent years, there has been a great deal of experimentation to find a

good balance between greediness and randomness.

One of the simplest and most effective algorithms to emerge from all this work is called

WALKSAT (Figure 7.17). On every iteration, the algorithm picks an unsatisfied clause and

picks a symbol in the clause to flip. It chooses randomly between two ways to pick which

symbol to flip: (1) a “min-conflicts” step that minimizes the number of unsatisfied clauses in

the new state, and (2) a “random walk” step that picks the symbol randomly.

Does WALKSAT actually work? Clearly, if it returns a model, then the input sentence

is indeed satisfiable. What if it returns failure? Unfortunately, in that case we cannot tell
whether the sentence is unsatisfiable or we need to give the algorithm more time. We could

try settingmax flips to infinity. In that case, it is easy to show that WALKSATwill eventually
return a model (if one exists), provided that the probability p > 0. This is because there is
always a sequence of flips leading to a satisfying assignment, and eventually the random

walk steps will generate that sequence. Alas, if max flips is infinity and the sentence is
unsatisfiable, then the algorithm never terminates!

What this suggests is that local-search algorithms such as WALKSAT are most useful

when we expect a solution to exist—for example, the problems discussed in Chapters 3 and 5

usually have solutions. On the other hand, local search cannot always detect unsatisfiability,

which is required for deciding entailment. For example, an agent cannot reliably use local

search to prove that a square is safe in the wumpus world. Instead, it can say, “I thought about

it for an hour and couldn’t come up with a possible world in which the square isn’t safe.” If

the local-search algorithm is usually really fast at finding a model when one exists, the agent

might be justified in assuming that failure to find a model indicates unsatisfiability. This isn’t

the same as a proof, of course, and the agent should think twice before staking its life on it.

Discussion

Pros: easy to implement, very fast on
satisfiable formulas
Cons: can’t ever prove unsatisfiable

Section 7.7. Agents Based on Propositional Logic 225

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

P
(s

at
is

fi
ab

le
)

Clause/symbol ratio m/n

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 1 2 3 4 5 6 7 8

R
u
n
ti

m
e

Clause/symbol ratio m/n

DPLL
WalkSAT

(a) (b)

Figure 7.18 (a) Graph showing the probability that a random 3-CNF sentence with n =50
symbols is satisfiable, as a function of the clause/symbol ratiom/n. (b) Graph of the median
runtime of DPLL and WALKSAT on 100 satisfiable random 3-CNF sentences with n =50,
for a narrow range ofm/n around the critical point.

7.7 AGENTS BASED ON PROPOSITIONAL LOGIC

In this section, we bring together what we have learned so far in order to construct agents

that operate using propositional logic. We will look at two kinds of agents: those which

use inference algorithms and a knowledge base, like the generic knowledge-based agent in

Figure 7.1, and those which evaluate logical expressions directly in the form of circuits. We

will demonstrate both kinds of agents in the wumpus world, and will find that both suffer

from serious drawbacks.

Finding pits and wumpuses using logical inference

Let us begin with an agent that reasons logically about the location of pits, wumpuses, and

safe squares. It begins with a knowledge base that states the “physics” of the wumpus world.

It knows that [1,1] does not contain a pit or a wumpus; that is, ¬P1,1 and ¬W1,1. For every

square [x, y], it knows a sentence stating how a breeze arises:

Bx,y ⇔ (Px,y+1 ∨ Px,y−1 ∨ Px+1,y ∨ Px−1,y) . (7.1)

For every square [x, y], it knows a sentence stating how a stench arises:

Sx,y ⇔ (Wx,y+1 ∨ Wx,y−1 ∨ Wx+1,y ∨ Wx−1,y) . (7.2)

Finally, it knows that there is exactly one wumpus. This is expressed in two parts. First, we

have to say that there is at least one wumpus:

W1,1 ∨ W1,2 ∨ · · · ∨ W4,3 ∨ W4,4 .

Then, we have to say that there is at most one wumpus. One way to do this is to say that

for any two squares, one of them must be wumpus-free. With n squares, we get n(n − 1)/2

Randomness

Both WalkSAT and DPLL are random
Result is a significant variance in solution
times for same formula (Chaff authors
report seconds vs. days)

We can be very lucky or unlucky

“I heard onst of a barque,” said Murphy.
“Becalmed, that couldn’t get a breath,
Till all the crowd was sick with scurvy
An’ the skipper drunk himself to death.”

Doldrums: One Of Murphy's Yarns
http://oldpoetry.com/opoem/56157 Cicely Fox Smith

Simple idea

Try multiple random seeds
influences order of expanding neighbors
(when ordering heuristics are tied)
influences starting point in WalkSAT

Interleave computation (or iterative
lengthening)
When does this work?

Randomization cont’d

Randomization works well if search times
are sometimes short but have heavy tail

Randomness and clause learning

For DPLL-style algorithms, if clause
learning was active, random restarts don’t
totally lose effort from previous tries

First-order
logic

First-order logic

So far we’ve been using opaque
vars like rains or happy(John)
Limits us to statements like “it’s raining” or
“if John is happy then Mary is happy”
Can’t say “all men are mortal” or “if John
is happy then someone else is happy too”

Bertrand Russell
1872-1970

Predicates and objects

Interpret happy(John) or likes(Joe, pizza)
as a predicate applied to some objects
Object = an object in the world
Predicate = boolean-valued function of
objects
Zero-argument predicate plays same role
that Boolean variable did before

Distinguished predicates

We will assume three distinguished
predicates with fixed meanings:

True, False
Equal(x, y)

We will also write (x = y) and (x ≠ y)
Equality satisfies usual axioms

Functions

Functions map zero or more objects to
another object

e.g., professor(15-780), last-common-
ancestor(John, Mary)

Zero-argument function is the same as an
object—John v. John()

The nil object

Functions are untyped: must have a value
for any set of arguments
Typically add a nil object to use as value
when other answers don’t make sense

Definitions

Term = expression referring to an object
John
left-leg-of(father-of(president-of(USA)))

Atom = predicate applied to objects
happy(John)
raining
at(robot, Wean-5409, 11AM-Wed)

Definitions

Literal = possibly-negated atom
happy(John), ¬happy(John)

Sentence = literals joined by connectives
like ∧∨¬⇒

raining
done(slides(780)) ⇒ happy(professor)

Models

Meaning of sentence: model ↦ {T, F}

Models are now much more complicated
List of objects
Table of function values for each
function mentioned in formula
Table of predicate values for each
predicate mentioned in formula

Models

Function table includes referent for each
object
Predicate table includes value of each
boolean-valued variable

For example

KB describing example

alive(cat)
ear-of(cat) = ear
in(cat, box) ∧ in(ear, box)

¬in(box, cat) ∧ ¬in(cat, nil) …

ear-of(box) = ear-of(ear) = ear-of(nil) = nil
cat ≠ box ∧ cat ≠ ear ∧ cat ≠ nil …

