




















Constraint satisfaction

RIS RS b B, Tt B Pl DA T 4 A Pty S OV ST I R v e VS st e PRy e

o Recall 3-coloring

o Turned map into SAT problem (constant
factor blowup)

o Did we have to do that?




CSP definition

PRI ISR b B 2, Tt WA Pl s A Py N ST I iy T i PRSP = P e T

o No: represent as CSP instead

o CSP = (variables, domains, constraints)
o Variable: a

o Domain: (R, G, B)

o Constraint: a, b € (RG, RB, GR, GB, BR,
BG)

o Constraints usually represented compactly




8eoe
Map Type Arrangement Colors Speed Help

Arrangement: Alphabetical
Constraint checks: assignments only
Color choices: 4

Current assignments: 0

Dead ends: 0

strs:to be offline
\




={vl,v2,v3,v4,v5,v6,v7,v8} D ={B (bomb), S (space) }
C={(viv2):{(B,S),(5B)},(v1v2,v3): {l(B,S,S) . (5,B,S), (S,5B)},...}
%

v2




Random Cell Hint ) ]




Other important CSPs

" v : - Pty i’ P B g ¥ ey g S i = s - h - AP
mmw.wm{lﬁ i B 1 S & e et S o .MHM“;E*“M.MQW

o Job-shop scheduling
o A bunch of jobs
o each job is a sequence of operations
o drill, polish, paint
o A bunch of resources
o each operation needs several resources

o Is there a schedule of length <k?




PRI b B 2, Tt g WA Pl s T A

Solvmg
SAT&CSP







Hard instances

" v : - Pty i’ P B g ¥ ey g S i = s - h - AP
mmw.wm{lﬁ i B 1 S & e et S o .MHM“;E*“M.MQW

o SAT, CSP are NP-complete! How can we
do problems with 1,000,000 variables?!?

o NP-complete doesn’t mean runtime has to
be exponential for all examples

o e.g,(avb)Aan(cvd)n(evfvg)

o Many practical examples are apparently
not all that hard




S0 where are the hard examples?

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o Why are some practical examples easy?
o They are over- or under-constrained
o under-constrained = succeed quickly
o over-constrained = fail quickly
o Where are the hard examples?

o “critically constrained”




Aside: random 3CNF formulas

L e Ltk & P B g Tl

o It turns out that random formulas can be
quite hard to solve

o Randomly select variables to be in each
clause, randomize +ve vs. -ve

o If we generate too few clauses, formula is
under-constrained

o Too many: over-constrained







4.3

" v : - Pty i’ P B g ¥ ey g S i = s - h - AP
mmw.wm{lﬁ i B 1 S & e et S o .MHM“;E*“M.MQW

o It turns out m/n = 4.3 (and change) is the
hard area, for any sufficiently large n

o What'’s special about 4.3? I don’t know.

o Unfortunately real formulas don’t look like
random ones, so it’s not so easy to check
whether they are critically constrained




SAT & CSP as search problems

¥ A Pty " el :!_ e e

ORI 4+ e &, Gt oA

Lot i ”""l'.:l_.' T

o Search space: models or partial models

o Neighbors: change assignment to one
variable

o Search space may also include changes to
constraints / clauses

o add a new constraint / clause

o simplify existing ones













Well, that’s better

" v : - Pty i’ P B g ¥ ey g S i = s - h - AP
mmw.wm{lﬁ i B 1 S & e et S o .MHM“;E*“M.MQW

o But it still doesn’t notice the problem as
soon as it could

o Forward checking: delete conflicting
values from neighbors’ domains

o remember to put them back if we
backtrack

o can do this with reference counts



















Intuition

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o Suppose we can learn [subset of previous
decisions| = [setting for x]

o Didn’t know how to set x on this branch,
so might not know on future branches

o Any time this same subset of decisions
appears on a future branch, won’t have to
search both values of x




Constraint learning

TS e i Fot g = ¥4 A Tty i I B '"""'-f:'i-':.*?:"-""‘-“;'":w*““""”“%agtq-mw' ST e Tl

o In reaching a dead end model
o we set some variables by propagation

o others we picked arbitrarily (decision
variables)

o Goal: find a set of decision variables that
are responsible for failure, guarantee we
won't look at their current setting again

o Might leave in some non-decision vars







Finding a new constraint

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o a.R, d:R, g:R, h:G, e:G, [:B, c:G, b:B

o Conflict set: f:B, a:R, c:G

o Setting c:G was from a:R, f:B

o And f:B was from d:R, e:G

o So, a:R, d:R, e:G is an impossible setting







Finding a new constraint

TS e i AL G Prmmaa it Ot T8 A s it -0 3 T L L R R P PSR i i Bade e el

o In general: start from the variables of a
violated constraint

o Pick a non-decision variable, replace it
with the variables that caused it to be set

o Terminate at some point; get a conflict set

o Add a new constraint forbidding current
setting of conflict set










Basic CSP or SAT search

T T i b b 4 TR

AT i 4, Tt gL
global pmblem
function search(model)
model <—|propagate{model)
if is_solution(model) then return T
if is_failed(model) then
lﬁﬁzm_constraintskmOdel )
return I
var <—|pick_var(model)
vals <—|sort_vals(var, model)
forval in vals
if search(model / var: val) then return T

=T 4 S T M'\lq_;l.' i T













Fancier propagate()

" v : - Pty i’ P B g ¥ ey g S i = s - h - AP
mmw.wm{lﬁ i B 1 S & e et S o .MHM“;E*“M.MQW

o In general, could put any inference rule in
propagate()—usually search-free, though

o But must be fast, so we will always have to
miss some inferences

o E.g, Sudoku requires no search, but most
propagate() implementations won't solve it













Deleting learned constraints

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o Learned constraints make problem bigger

o So, if they fail to reduce backtracking, we
want to get rid of them

o Increment constraint’s activity level when
we use it, decay all activities over time

o Delete low-activity constraints







. ot e ey o g by e o e P T s P
: ¥: PG T ¥ i A Tt = e

SAT Solvers







DPLL
RO ENE b A 4 G oo A A 9% L IR w5Vl it MR oo e ey iR
global problem
function search(model)
model <— propagate(model)
if is_solution(model) then return T
if is_failed(model) then
learn_constraints(model)
return I
var <— pick_var(model)
vals < sort_vals(var, model)

forval in vals
if search(model / var: val) then return T




propagate()

o Constramt pmpagatzon becames unit
resolution:

e L anke L PYRT PR T

If a clause w/ one remaining variable 1s
unsatisfied, set variable to satisty clause

o In(av bv —c):
o model (a: F, b: F) leaves (—c), set c: F
o model (a: F, c: T) leaves (b), set b: T
o model (a: F, c: F) leaves (T), do nothing




Other deduction rules

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o Pure literal rule becomes

It a literal appears with only one sign in
all remaining unsatisfied clauses, set it
based on that sign

o In(avb)a(av -b), setsa: T
o RN recommends it

o But Chaff paper says it is too slow




ple Var()

ORI 4+ e &, Gt oA T e fanae b L L T R L anke L PYRT PR T

o Can’t use most-constrained-variable
heuristic from above

o This seems like a real pity

o Could imagine allowing clauses like
exactly-one-of(a, b, c, d)
at-most-k-of(3, a, b, c, d)

o Not sure why it isn’t implemented more
often




ple Var()

ORI 4+ e &, Gt oA T e fanae b L L T R L anke L PYRT PR T

o One possibility: MOMS (maximum
occurrence in minimum-sized clauses)

o Want to satisfy lots of clauses immediately
o Failing that, want lots of length-1 clauses
o Find smallest clause (say, 3 vars)

o Pick a variable which occurs maximally
often in size-3 clauses




MOMS discussion

mmmﬁ!mm A iy oo’ P Bl ey ¥ gy 1--.______._'1-“.-.-' M"lﬂ;‘_.' A o - ”ﬁm

o Chaff authors say: MOMS doesn’t choose
good variables on non-random problems

o Recommend activity heuristics instead

o Chalff also prefers literals in most recently
added clause













. ot e ey o g by e o e P T s P
: ¥: PG T ¥ i A Tt = e

ther
tricks







WalkS AT

PRSI b B 2, Tt B ol DA 4 Pty S OV TR v e Nt s B e e e

function WALKS AT (clauses, p, max_flips) returns a satisfying model or failure
inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a “random walk” move, typically around 0.5
max_flips, number of flips allowed before giving up

model < a random assignment of true/false to the symbols in clauses
for i = 1 to max_flips do
if model satisfies clauses then return model
clause < a randomly selected clause from clauses that is false in model
with probability p flip the value in model of a randomly selected symbol from clause
else flip whichever symbol in clause maximizes the number of satisfied clauses
return failure













The GW YD YR CASTILE i the Dokfrarss, while sharks hang arund bév, swaitiig b nend affering of paiiey rlops




Simple 1dea

- . : . = G " e - - = -
OISO b A 4 Gt g2 ST a A Tty S e B e s Y i e = BINCR ot i s S i s S ol

o Try multiple random seeds

o influences order of expanding neighbors
(when ordering heuristics are tied)

o influences starting point in WalkSAT

o Interleave computation (or iterative
lengthening)

o When does this work?










FIOIETERL b A &, Tt g A oot mr DA 04

First-order
logic




First-order logic

WWWu{’H e L 13 L A ST e g ¥ MR b I o

Bertrand Russell
1872-1970

o So far we’ve been using opaque
vars like rains or happy(John)

o Limits us to statements like “it’s raining” or
“if John is happy then Mary is happy”

o Can’t say “all men are mortal” or “if John
is happy then someone else is happy too”




Predicates and objects

TS e i At gAY ol Ot ¥4 A Tty i I B '"""'-f:'i-':.ff?:"-""‘-";'"":-u-—r—"““"“"”"'“hugupw o et Tl

o Interpret happy(John) or likes(Joe, pizza)
as a predicate applied to some objects

o Object = an object in the world

o Predicate = boolean-valued function of
objects

o Lero-argument predicate plays same role
that Boolean variable did before



















Models

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mul--_w-fn-nrs-.”"ﬂ;z_.u 28

o Meaning of sentence: model - {1, F}

o Models are now much more complicated
o List of objects

o Table of function values for each
function mentioned in formula

o Table of predicate values for each
predicate mentioned in formula













