
15-780: Graduate AI
Lecture 5. Logic, Planning

Geoff Gordon (this lecture)
Ziv Bar-Joseph

TAs Geoff Hollinger, Henry Lin

Review

Review

CSPs (definition, examples)
Sudoku, jobshop scheduling

Over-, under-, critically-constrained
Basic search for SAT & CSPs

Search in SAT, CSPs

Constraint propagation / unit resolution
Constraint learning from conflict clauses
Variable ordering

activity, most-constrained variable
Value ordering

least-constraining value

Citation for MiniSAT

http://www.cs.chalmers.se/Cs/Research/
FormalMethods/MiniSat/cgi/
MiniSat.ps.gz.cgi

Also, the map-coloring applet that I linked
last class appears to be offline

Randomization

Random restarts for DFS-based (DPLL)
search

avoiding doldrums
WalkSAT

Tseitin transformation

Put the following formula in CNF:
(a ∧ b) ∨ ((c ∨ d) ∧ e)

Parse tree:

Tseitin transformation

Introduce temporary variables
x = (a ∧ b)

y = (c ∨ d)

z = (y ∧ e)

Tseitin transformation

To ensure x = (a ∧ b), want

x ⇒ (a ∧ b)

(a ∧ b) ⇒ x

Tseitin transformation

x ⇒ (a ∧ b)

(¬x ∨ (a ∧ b))

(¬x ∨ a) ∧ (¬x ∨ b)

Tseitin transformation

(a ∧ b) ⇒ x

(¬(a ∧ b) ∨ x)

(¬a ∨ ¬b ∨ x)

Tseitin transformation

To ensure y = (c ∨ d), want

y ⇒ (c ∨ d)

(c ∨ d) ⇒ y

Tseitin transformation

y ⇒ (c ∨ d)

(¬y ∨ c ∨ d)

(c ∨ d) ⇒ y
((¬c ∧ ¬d) ∨ y)

(¬c ∨ y) ∧ (¬d ∨ y)

Tseitin transformation

Finally, z = (y ∧ e)

z ⇒ (y ∧ e) ≡ (¬z ∨ y) ∧ (¬z ∨ e)

(y ∧ e) ⇒ z ≡ (¬y ∨ ¬e ∨ z)

Tseitin end result

(a ∧ b) ∨ ((c ∨ d) ∧ e) ≡

(¬x ∨ a) ∧ (¬x ∨ b) ∧ (¬a ∨ ¬b ∨ x) ∧

(¬y ∨ c ∨ d) ∧ (¬c ∨ y) ∧ (¬d ∨ y) ∧
(¬z ∨ y) ∧ (¬z ∨ e) ∧ (¬y ∨ ¬e ∨ z) ∧

(x ∨ z)

HW questions

3(a) asks you to implement an “opaque”
data structure for nodes
This just means that there is a well-defined
interface, and data structure is accessed
only through interface
E.g., definitions of pq_init, pq_set,
pq_pop, pq_test are such an interface, so
the priqueue we gave is opaque

State numbering in maze

 \ x 1 2 3 4 5

y \ ___________________________

1 | 1 6 11 16 21

2 | 2 7 12 17 22

3 | 3 8 13 18 23

4 | 4 9 14 19 24

5 | 5 10 15 20 25

This contradicts description in the text, but
matches the code—updated text on web

HW questions

Storing backpointers in A*, BFS, etc.

Generic search

S = { start } M = ∅

While (S ≠ ∅)

x ← some element of S, S ← S \ x
CheckSolution(x)
For y ∈ neighbors(x) \ M

S ← S ∪ {y} , backpointer(y) ← x

M = M ∪ {x}

HW questions

More questions?

First-order
logic

Predicates and objects

Interpret happy(John) or likes(Joe, pizza)
as a predicate applied to some objects
Object = an object in the world
Predicate = boolean-valued function of
objects
Zero-argument predicate plays same role
that Boolean variable did before

Functions

Functions map zero or more objects to
another object

e.g., professor(15-780), last-common-
ancestor(John, Mary)

Zero-argument function is the same as an
object—John v. John()

Definitions

Term = expression referring to an object
John
left-leg-of(father-of(president-of(USA)))

Atom = predicate applied to objects
happy(John)
raining
at(robot, Wean-5409, 11AM-Wed)

Definitions

Literal = possibly-negated atom
happy(John), ¬happy(John)

Sentence = literals joined by connectives
like ∧∨¬⇒

raining
done(slides(780)) ⇒ happy(professor)

Models

Meaning of sentence: model ↦ {T, F}

Models are now much more complicated
List of objects
Table of function values for each
function mentioned in formula
Table of predicate values for each
predicate mentioned in formula

For example

KB describing example

alive(cat)
ear-of(cat) = ear
in(cat, box) ∧ in(ear, box)

¬in(box, cat) ∧ ¬in(cat, nil) …

ear-of(box) = ear-of(ear) = ear-of(nil) = nil
cat ≠ box ∧ cat ≠ ear ∧ cat ≠ nil …

Model of example

Objects: C, B, E, N
Assignments:

cat: C, box: B, ear: E, nil: N
ear-of(C): E, ear-of(B): N, ear-of(E): N,
ear-of(N): N

Predicate values:
in(C, B), ¬in(C, C), ¬in(C, N), …

Failed model

Objects: C, E, N
Fails because there’s no way to satisfy
inequality constraints with only 3 objects

Another possible model

Objects: C, B, E, N, X
Extra object X could have arbitrary
properties since it’s not mentioned in KB
E.g., X could be its own ear

An embarrassment of models

In general, can be infinitely many models
unless KB limits number somehow

Job of KB is to rule out models that don’t
match our idea of the world

Aside: typed variables

KB illustrates need for data types
Don’t want to have to specify ear-of(box)
or ¬in(cat, nil)

Could design a type system
argument of happy() is of type animate

Function instances which disobey type
rules have value nil

Quantifiers

So far, still can’t say “all men are mortal”
Add quantifiers and object variables
∀x. man(x) ⇒ mortal(x)

¬∃x. lunch(x) ∧ free(x)

∀: no matter how we fill in object
variables, formula is still true
∃: there is some way to fill in object
variables to make formula true

Quantification

Now we have atoms with free variables
Adding quantifier for x is called binding x

In (∀x. likes(x, y)), x is bound, y is free

Can add quantifiers and apply logical
operations like ∧∨¬ in any order

But must wind up with ground formula (no
free variables)

Scoping rules

Portion of formula where quantifier
applies = scope
Variable is bound by innermost enclosing
scope with matching name
Two variables in different scopes can have
same name—they are still different vars

Scoping examples

(∀x. happy(x)) ∨ (∃x. ¬happy(x))

Either everyone’s happy, or someone’s
unhappy

∀x. (raining ∧ outside(x) ⇒ (∃x. wet(x)))

The x who is outside may not be the one
who is wet

Semantics of ∀

Write (M / x: obj) for the model which is
just like M except that variable x is
assigned to the object obj
M / x: obj is a refinement of M
A sentence (∀x. S) is true in M if S is true
in (M / x: obj) for any object obj in M

Example

M has objects (A, B, C) and predicate
happy(x) which is true for A, B, C
Sentence ∀x. happy(x) is satisfied in M

since happy(A) is satisfied in M/x:A,
happy(B) in M/x:B, happy(C) in M:x/C

Semantics of ∃

A sentence (∃x. S) is true in M if there is
some object obj in M such that S is true in
model (M / x: obj)

Example

M has objects (A, B, C) and predicate
happy(A) = happy(B) = True
happy(C) = False

Sentence ∃x. happy(x) is satisfied in M

Since happy(x) is satisfied in, e.g., M/x:B

Quantifier nesting

English sentence “everybody loves
somebody” is ambiguous
Translates to logical sentences
∀x. ∃y. loves(x, y)

∃y. ∀x. loves(x, y)

Reasoning
in FOL

Entailment, etc.

As before, entailment, unsatisfiability,
validity, etc. refer to all possible models
So, can’t in general determine entailment
or validity by enumerating models

since there could be infinitely many
Possible to search for satisfying
assignment, but can’t show unsatisfiable

Propositionalization

However, people do use SAT-checkers for
reasoning in FOL
Turn FOL KB into one or more finite,
propositional KBs, search for models in
each
More later

Theorem provers

Theorem provers (formula-based search)
also generalize to FOL
Both model-based and formula-based
searches generally work from KB in CNF
CNF for FOL also called clause form

Generalizing CNF

All transformation rules for propositional
logic still hold
In addition, there is a “De Morgan’s Law”
for moving negations through quantifiers

¬∀x. S ≡ ∃x. ¬S

¬∃x. S ≡ ∀x. ¬S

And, rules for getting rid of quantifiers

Putting FOL KB in CNF

Eliminate ⇒, move ¬ in w/ De Morgan

but ¬ moves through quantifiers too

Get rid of quantifiers (see below)
Distribute ∧∨, or use Tseitin

Do we really need ∃?

(∃x) happy(x)

happy(happy_person())

(∀y) (∃x) loves(y, x)

(∀y) loves(y, loved_one_of(y))

Skolemization

Eliminate ∃ using function of arguments of
all enclosing ∀ quantifiers

Called Skolemization
(after Thoraf Albert
Skolem) Thoraf Albert Skolem

1887–1963

Getting rid of quantifiers

Standardize apart (avoid name collisions)
Skolemize
Drop ∀ (free variables implicitly
universally quantified)
Terminology: still called “free” even
though quantification is implicit

For example

(∀x) man(x) ⇒ mortal(x)

(¬man(x) ∨ mortal(x))

(∀x) (honest(x) ⇒ happy(Diogenes))
(¬honest(x) ∨ happy(Diogenes))

(∀y) (∃x) loves(y, x)

loves(y, f(y))

Exercise

((∀x) honest(x)) ⇒ happy(Diogenes)

Exercise

((∀x) honest(x)) ⇒ happy(Diogenes)

¬((∀x) honest(x)) ∨ happy(Diogenes)

((∃x) ¬honest(x)) ∨ happy(Diogenes)
¬honest(foo()) ∨ happy(Diogenes)

foo() = “the guy who might not be honest”

Theorem
provers

Theorem provers

Theorem provers work as before:
add ¬S to KB

put in CNF
run resolution
if we get an empty clause, we’ve proven
S by contradiction

But, CNF and resolution have changed

Generalizing resolution

Propositional: (¬a ∨ b) ∧ a ⊨ b

FOL:
(¬man(x) ∨ mortal(x)) ∧ man(Socrates)

⊨ mortal(Socrates)

Difference: had to substitute x = Socrates

Unification

Two FOL sentences unify with each other
if there is a way to set their variables so
that they are identical
man(x), man(Socrates) unify using the
substitution x = Socrates

Unification examples

loves(x, x), loves(John, y) unify using
x = y = John
loves(x, x), loves(John, Mary) can’t unify
loves(uncle(x), y), loves(z, aunt(z)):

Unification examples

loves(x, x), loves(John, y) unify using
x = y = John
loves(x, x), loves(John, Mary) can’t unify
loves(uncle(x), y), loves(z, aunt(z)):

z = uncle(x), y = aunt(uncle(x))
loves(uncle(x), aunt(uncle(x)))

Most general unifier

May be many substitutions that unify two
formulas
MGU is unique (up to renaming)
Finding it takes quadratic time

because of “occur check”
does a variable occur inside the
formula that it’s trying to unify with?

First-order resolution

Given clauses (a ∨ b ∨ c), (¬c’ ∨ d ∨ e)

And a variable substitution V
If c / V and c’ / V are the same
Then we can conclude
(a ∨ b ∨ d ∨ e) / V

Proof by
SAT

Proof by SAT

To prove S, put KB ∧ ¬S in clause form

Turn FOL KB into propositional KBs
in general, infinitely many

Check each one in order
Will turn out that, if any one is
unsatisfiable, we have our proof

Propositionalization

Given a FOL KB in clause form
And a set of objects U (for universe)
We can propositionalize KB under U by
substituting elements of U for free
variables in all combinations

Propositionalization example

(¬man(x) ∨ mortal(x))

mortal(Socrates)
favorite_drink(Socrates, hemlock)
drinks(x, favorite_drink(x))

U = (Socrates, hemlock, Fred)

Propositionalization example

(¬man(Socrates) ∨ mortal(Socrates))
(¬man(Fred) ∨ mortal(Fred))
(¬man(hemlock) ∨ mortal(hemlock))
drinks(Socrates, favorite_drink(Socrates))
drinks(hemlock, favorite_drink(hemlock))
drinks(Fred, favorite_drink(Fred))
mortal(Socrates) ∧ favorite_drink
(Socrates, hemlock)

Choosing a universe

To check a FOL KB, propositionalize it
using some universe U
Which universe?

Herbrand Universe

Herbrand universe H of formula S:
start with all objects mentioned in S
or synthetic object X if none mentioned
apply all functions mentioned in S to all
combinations of objects in H, add to H
repeat

Herbrand Universe

E.g., loves(uncle(John), Mary)
H = {John, Mary, uncle(John), uncle
(Mary), uncle(uncle(John)), uncle(uncle
(Mary)), … }

Herbrand’s theorem

If a FOL KB in clause form is unsatisfiable
And H is its Herbrand universe
Then the propositionalized KB is
unsatisfiable for some finite U ⊆ H

Converse of Herbrand

A. J. Robinson proved “lifting lemma”
Write PKB for a propositionalization of
KB
Any resolution proof in PKB corresponds
to a resolution proof in KB
… so, if PKB is unsatisfiable, so is KB

Proofs w/ Herbrand & Robinson

So, FOL KB is unsatisfiable if and only if
there is a subset of Herbrand universe
making PKB unsatisfiable

Proofs w/ Herbrand & Robinson

To prove S, put KB ∧ ¬S in clause form

Build subsets of Herbrand universe in
increasing order of size: U1, U2, …
Propositionalize KB with Ui, check SAT
If Ui unsatisfiable, we have our
contradiction
If Ui satisfiable, move on to Ui+1

Making it faster

Restrict semantics so we only need to
check one finite propositional KB
Unique names: objects with different
names are different (John ≠ Mary)

Domain closure: objects without names
given in KB don’t exist
Restrictions also make entailment, validity
feasible

Planning

Time

So far, have not modeled a changing world
For KBs that evolve, add extra argument
to each predicate saying when it was true

at(Robot, Wean5409)
at(Robot, Wean5409, 17)

Operators

Given a representation like this, can define
operators that change state
E.g., given

at(Robot, Wean5409, 17)
moves(Robot, Wean5409, corridor, 17)

could define an operator that implies
at(Robot, corridor, 18)
¬at(Robot, Wean5409, 18)

Goals

Want our robot to, e.g., get sandwich
Search for proof of has(Geoff, Sandwich, t)
Analyze proof tree to find sequence of
operators that make goal true

Complications

This strategy yields lots of complications
need axioms describing natural
numbers (for time)
frame axioms (facts don’t appear or
disappear unless we used an operator)
unique names, exactly one action per
step, …

Result is slow inference

Planning

Alternate solution: define a subset of FOL
especially for planning
E.g., STRIPS language

no functions, limited quantification, …
STanford Research Institute Problem
Solver

STRIPS

State of world at each time =
{ propositions }
Each proposition is ground literal
For brevity, list only true literals
Time is implicit

STRIPS state example

STRIPS state example

food(N)
hungry(M)
at(N, W)
at(M, X)
at(B1, Y)
at(B2, Y)

at(B3, Z)
on(B2, B1)
clear(B2)
clear(B3)
height(M, Low)
height(N, High)

STRIPS operators

Operator = { preconditions }, { effects }
If preconditions are true at time t,

can apply operator at time t
effects will be true at time t+1
rest of state unaffected

Basic STRIPS: one operator per step

Quantification in operators

Preconditions of operator may contain
variables (implicit ∀)

Operator can apply if preconditions unify
with state t (using binding X)
state t+1 has e / X for each e in effects

Operator example

Eat(target, p, l)
hungry(M), food(target), at(M, p),
at(target, p), level(M, l), level(target, l)
¬hungry(M), full(M), ¬at(target, p),
¬level(target, l)

Operator example

Move(from, to)
at(M, from), level(M, Low)
at(M, to), ¬at(M, from)

Push(object, from, to)
at(object, from), at(M, from), clear(object)
at(M, to), at(object, to), ¬at(object, from),
¬at(M, from)

Operator example

Climb(object, p)
at(M, p), at(object, p), level(M, Low),
clear(object)
level(M, High), ¬level(M, Low)

ClimbDown()
level(M, High)
¬level(M, High), level(M, Low)

Plan search

Plan search

Given a planning problem (start state,
operator descriptions, goal)
Run standard search algorithms to find
plan
Decisions: search state representation,
neighborhood, search algorithm

