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Review



Review

CSPs (definition, examples)
Sudoku, jobshop scheduling

Over-, under-, critically-constrained
Basic search for SAT & CSPs



Search in SAT, CSPs

Constraint propagation / unit resolution
Constraint learning from conflict clauses
Variable ordering

activity, most-constrained variable
Value ordering

least-constraining value



Citation for MiniSAT

http://www.cs.chalmers.se/Cs/Research/
FormalMethods/MiniSat/cgi/
MiniSat.ps.gz.cgi

Also, the map-coloring applet that I linked 
last class appears to be offline



Randomization

Random restarts for DFS-based (DPLL) 
search

avoiding doldrums
WalkSAT



Tseitin transformation

Put the following formula in CNF:
(a ∧ b) ∨ ((c ∨ d) ∧ e)

Parse tree:



Tseitin transformation

Introduce temporary variables
x = (a ∧ b)

y = (c ∨ d)

z = (y ∧ e)



Tseitin transformation

To ensure x = (a ∧ b), want

x ⇒ (a ∧ b)

(a ∧ b) ⇒ x



Tseitin transformation

x ⇒ (a ∧ b)

(¬x ∨ (a ∧ b))

(¬x ∨ a) ∧ (¬x ∨ b)



Tseitin transformation

(a ∧ b) ⇒ x

(¬(a ∧ b) ∨ x)

(¬a ∨ ¬b ∨ x)



Tseitin transformation

To ensure y = (c ∨ d), want

y ⇒ (c ∨ d)

(c ∨ d) ⇒ y



Tseitin transformation

y ⇒ (c ∨ d)

(¬y ∨ c ∨ d)

(c ∨ d) ⇒ y
((¬c ∧ ¬d) ∨ y) 

(¬c ∨ y) ∧ (¬d ∨ y)



Tseitin transformation

Finally, z = (y ∧ e)

z ⇒ (y ∧ e)  ≡  (¬z ∨ y) ∧ (¬z ∨ e)

(y ∧ e) ⇒ z  ≡  (¬y ∨ ¬e ∨ z)



Tseitin end result

(a ∧ b) ∨ ((c ∨ d) ∧ e)  ≡

(¬x ∨ a) ∧ (¬x ∨ b) ∧ (¬a ∨ ¬b ∨ x) ∧

(¬y ∨ c ∨ d) ∧ (¬c ∨ y) ∧ (¬d ∨ y) ∧
(¬z ∨ y) ∧ (¬z ∨ e) ∧ (¬y ∨ ¬e ∨ z) ∧

(x ∨ z)



HW questions

3(a) asks you to implement an “opaque” 
data structure for nodes
This just means that there is a well-defined 
interface, and data structure is accessed 
only through interface
E.g., definitions of pq_init, pq_set, 
pq_pop, pq_test are such an interface, so 
the priqueue we gave is opaque



State numbering in maze

 \ x 1     2     3     4     5

y \ ___________________________

1  | 1     6    11    16    21

2  | 2     7    12    17    22

3  | 3     8    13    18    23

4  | 4     9    14    19    24

5  | 5    10    15    20    25

This contradicts description in the text, but 
matches the code—updated text on web



HW questions

Storing backpointers in A*, BFS, etc.



Generic search

S = { start }   M = ∅

While (S ≠ ∅)

x ← some element of S,  S ← S \ x
CheckSolution(x)
For y ∈ neighbors(x) \ M

S ← S ∪ {y} , backpointer(y) ← x

M = M ∪ {x}



HW questions

More questions?



First-order 
logic



Predicates and objects

Interpret happy(John) or likes(Joe, pizza) 
as a predicate applied to some objects
Object = an object in the world
Predicate = boolean-valued function of 
objects
Zero-argument predicate plays same role 
that Boolean variable did before



Functions

Functions map zero or more objects to 
another object

e.g., professor(15-780), last-common-
ancestor(John, Mary)

Zero-argument function is the same as an 
object—John v. John()



Definitions

Term = expression referring to an object
John
left-leg-of(father-of(president-of(USA)))

Atom = predicate applied to objects
happy(John)
raining
at(robot, Wean-5409, 11AM-Wed)



Definitions

Literal = possibly-negated atom
happy(John), ¬happy(John)

Sentence = literals joined by connectives 
like ∧∨¬⇒

raining
done(slides(780)) ⇒ happy(professor)



Models

Meaning of sentence: model ↦ {T, F}

Models are now much more complicated
List of objects
Table of function values for each 
function mentioned in formula
Table of predicate values for each 
predicate mentioned in formula



For example



KB describing example

alive(cat)
ear-of(cat) = ear
in(cat, box) ∧ in(ear, box)

¬in(box, cat) ∧ ¬in(cat, nil) …

ear-of(box) = ear-of(ear) = ear-of(nil) = nil
cat ≠ box ∧ cat ≠ ear ∧ cat ≠ nil …



Model of example

Objects: C, B, E, N
Assignments:

cat: C, box: B, ear: E, nil: N
ear-of(C): E, ear-of(B): N, ear-of(E): N, 
ear-of(N): N

Predicate values:
in(C, B), ¬in(C, C), ¬in(C, N), …



Failed model

Objects: C, E, N
Fails because there’s no way to satisfy 
inequality constraints with only 3 objects



Another possible model

Objects: C, B, E, N, X
Extra object X could have arbitrary 
properties since it’s not mentioned in KB
E.g., X could be its own ear



An embarrassment of models

In general, can be infinitely many models
unless KB limits number somehow

Job of KB is to rule out models that don’t 
match our idea of the world



Aside: typed variables

KB illustrates need for data types
Don’t want to have to specify ear-of(box) 
or ¬in(cat, nil) 

Could design a type system
argument of happy() is of type animate

Function instances which disobey type 
rules have value nil



Quantifiers

So far, still can’t say “all men are mortal”
Add quantifiers and object variables
∀x. man(x) ⇒ mortal(x)

¬∃x. lunch(x) ∧ free(x)

∀: no matter how we fill in object 
variables, formula is still true
∃: there is some way to fill in object 
variables to make formula true



Quantification

Now we have atoms with free variables
Adding quantifier for x is called binding x

In (∀x. likes(x, y)), x is bound, y is free

Can add quantifiers and apply logical 
operations like ∧∨¬ in any order

But must wind up with ground formula (no 
free variables)



Scoping rules

Portion of formula where quantifier 
applies = scope
Variable is bound by innermost enclosing 
scope with matching name
Two variables in different scopes can have 
same name—they are still different vars



Scoping examples

(∀x. happy(x)) ∨ (∃x. ¬happy(x))

Either everyone’s happy, or someone’s 
unhappy

∀x. (raining ∧ outside(x) ⇒ (∃x. wet(x)))

The x who is outside may not be the one 
who is wet



Semantics of ∀

Write (M / x: obj) for the model which is 
just like M except that variable x is 
assigned to the object obj
M / x: obj is a refinement of M
A sentence (∀x. S) is true in M if S is true 
in (M / x: obj) for any object obj in M



Example

M has objects (A, B, C) and predicate 
happy(x) which is true for A, B, C
Sentence ∀x. happy(x) is satisfied in M

since happy(A) is satisfied in M/x:A, 
happy(B) in M/x:B, happy(C) in M:x/C



Semantics of ∃

A sentence (∃x. S) is true in M if there is 
some object obj in M such that S is true in 
model (M / x: obj)



Example

M has objects (A, B, C) and predicate
happy(A) = happy(B) = True
happy(C) = False

Sentence ∃x. happy(x) is satisfied in M

Since happy(x) is satisfied in, e.g., M/x:B



Quantifier nesting

English sentence “everybody loves 
somebody” is ambiguous
Translates to logical sentences
∀x. ∃y. loves(x, y)

∃y. ∀x. loves(x, y)



Reasoning 
in FOL



Entailment, etc.

As before, entailment, unsatisfiability, 
validity, etc. refer to all possible models
So, can’t in general determine entailment 
or validity by enumerating models

since there could be infinitely many
Possible to search for satisfying 
assignment, but can’t show unsatisfiable



Propositionalization

However, people do use SAT-checkers for 
reasoning in FOL
Turn FOL KB into one or more finite, 
propositional KBs, search for models in 
each
More later



Theorem provers 

Theorem provers (formula-based search) 
also generalize to FOL
Both model-based and formula-based 
searches generally work from KB in CNF
CNF for FOL also called clause form



Generalizing CNF

All transformation rules for propositional 
logic still hold
In addition, there is a “De Morgan’s Law” 
for moving negations through quantifiers

¬∀x. S  ≡  ∃x. ¬S

¬∃x. S  ≡  ∀x. ¬S

And, rules for getting rid of quantifiers



Putting FOL KB in CNF

Eliminate ⇒, move ¬ in w/ De Morgan

but ¬ moves through quantifiers too

Get rid of quantifiers (see below)
Distribute ∧∨, or use Tseitin



Do we really need ∃?

(∃x) happy(x)

happy(happy_person())

(∀y) (∃x) loves(y, x)

(∀y) loves(y, loved_one_of(y))



Skolemization

Eliminate ∃ using function of arguments of 
all enclosing ∀ quantifiers

Called Skolemization 
(after Thoraf Albert 
Skolem) Thoraf Albert Skolem

1887–1963



Getting rid of quantifiers

Standardize apart (avoid name collisions)
Skolemize
Drop ∀ (free variables implicitly 
universally quantified)
Terminology: still called “free” even 
though quantification is implicit



For example

(∀x) man(x) ⇒ mortal(x)

(¬man(x) ∨ mortal(x))

(∀x) (honest(x) ⇒ happy(Diogenes))
(¬honest(x) ∨ happy(Diogenes))

(∀y) (∃x) loves(y, x)

loves(y, f(y))



Exercise

((∀x) honest(x)) ⇒ happy(Diogenes)



Exercise

((∀x) honest(x)) ⇒ happy(Diogenes)

¬((∀x) honest(x)) ∨ happy(Diogenes)

((∃x) ¬honest(x)) ∨ happy(Diogenes)
¬honest(foo()) ∨ happy(Diogenes)

foo() = “the guy who might not be honest”



Theorem 
provers



Theorem provers

Theorem provers work as before:
add ¬S to KB

put in CNF
run resolution
if we get an empty clause, we’ve proven 
S by contradiction

But, CNF and resolution have changed



Generalizing resolution

Propositional: (¬a ∨ b) ∧ a ⊨ b

FOL: 
(¬man(x) ∨ mortal(x)) ∧ man(Socrates)

⊨ mortal(Socrates)

Difference: had to substitute x = Socrates



Unification

Two FOL sentences unify with each other 
if there is a way to set their variables so 
that they are identical
man(x), man(Socrates) unify using the 
substitution x = Socrates



Unification examples

loves(x, x), loves(John, y) unify using        
x = y = John
loves(x, x), loves(John, Mary) can’t unify
loves(uncle(x), y), loves(z, aunt(z)):



Unification examples

loves(x, x), loves(John, y) unify using        
x = y = John
loves(x, x), loves(John, Mary) can’t unify
loves(uncle(x), y), loves(z, aunt(z)):

z = uncle(x), y = aunt(uncle(x))
loves(uncle(x), aunt(uncle(x)))



Most general unifier

May be many substitutions that unify two 
formulas
MGU is unique (up to renaming)
Finding it takes quadratic time

because of “occur check”
does a variable occur inside the 
formula that it’s trying to unify with?



First-order resolution

Given clauses (a ∨ b ∨ c),  (¬c’ ∨ d ∨ e)

And a variable substitution V
If c / V and c’ / V are the same
Then we can conclude
(a ∨ b ∨ d ∨ e) / V



Proof by 
SAT



Proof by SAT

To prove S, put KB ∧ ¬S in clause form

Turn FOL KB into propositional KBs
in general, infinitely many

Check each one in order
Will turn out that, if any one is 
unsatisfiable, we have our proof



Propositionalization

Given a FOL KB in clause form
And a set of objects U (for universe)
We can propositionalize KB under U by 
substituting elements of U for free 
variables in all combinations



Propositionalization example

(¬man(x) ∨ mortal(x))

mortal(Socrates)
favorite_drink(Socrates, hemlock)
drinks(x, favorite_drink(x))

U = (Socrates, hemlock, Fred)



Propositionalization example

(¬man(Socrates) ∨ mortal(Socrates)) 
(¬man(Fred) ∨ mortal(Fred))          
(¬man(hemlock) ∨ mortal(hemlock))
drinks(Socrates, favorite_drink(Socrates)) 
drinks(hemlock, favorite_drink(hemlock)) 
drinks(Fred, favorite_drink(Fred))
mortal(Socrates) ∧ favorite_drink
(Socrates, hemlock)



Choosing a universe

To check a FOL KB, propositionalize it 
using some universe U
Which universe?



Herbrand Universe

Herbrand universe H of formula S:
start with all objects mentioned in S
or synthetic object X if none mentioned
apply all functions mentioned in S to all 
combinations of objects in H, add to H
repeat



Herbrand Universe

E.g., loves(uncle(John), Mary)
H = {John, Mary, uncle(John), uncle
(Mary), uncle(uncle(John)), uncle(uncle
(Mary)), … }



Herbrand’s theorem

If a FOL KB in clause form is unsatisfiable
And H is its Herbrand universe
Then the propositionalized KB is 
unsatisfiable for some finite U ⊆ H



Converse of Herbrand

A. J. Robinson proved “lifting lemma”
Write PKB for a propositionalization of 
KB
Any resolution proof in PKB corresponds 
to a resolution proof in KB
… so, if PKB is unsatisfiable, so is KB



Proofs w/ Herbrand & Robinson

So, FOL KB is unsatisfiable if and only if 
there is a subset of Herbrand universe 
making PKB unsatisfiable



Proofs w/ Herbrand & Robinson

To prove S, put KB ∧ ¬S in clause form

Build subsets of Herbrand universe in 
increasing order of size: U1, U2, …
Propositionalize KB with Ui, check SAT
If Ui unsatisfiable, we have our 
contradiction
If Ui satisfiable, move on to Ui+1



Making it faster

Restrict semantics so we only need to 
check one finite propositional KB
Unique names: objects with different 
names are different (John ≠ Mary)

Domain closure: objects without names 
given in KB don’t exist
Restrictions also make entailment, validity 
feasible



Planning



Time

So far, have not modeled a changing world
For KBs that evolve, add extra argument 
to each predicate saying when it was true

at(Robot, Wean5409) 
at(Robot, Wean5409, 17)



Operators

Given a representation like this, can define 
operators that change state
E.g., given

at(Robot, Wean5409, 17)
moves(Robot, Wean5409, corridor, 17)

could define an operator that implies
at(Robot, corridor, 18)
¬at(Robot, Wean5409, 18)



Goals

Want our robot to, e.g., get sandwich
Search for proof of has(Geoff, Sandwich, t)
Analyze proof tree to find sequence of 
operators that make goal true



Complications

This strategy yields lots of complications
need axioms describing natural 
numbers (for time)
frame axioms (facts don’t appear or 
disappear unless we used an operator)
unique names, exactly one action per 
step, …

Result is slow inference



Planning

Alternate solution: define a subset of FOL 
especially for planning
E.g., STRIPS language

no functions, limited quantification, …
STanford Research Institute Problem 
Solver



STRIPS

State of world at each time = 
{ propositions }
Each proposition is ground literal
For brevity, list only true literals
Time is implicit



STRIPS state example



STRIPS state example

food(N)
hungry(M)
at(N, W)
at(M, X)
at(B1, Y)
at(B2, Y)

at(B3, Z)
on(B2, B1)
clear(B2)
clear(B3)
height(M, Low)
height(N, High)



STRIPS operators

Operator = { preconditions }, { effects }
If preconditions are true at time t,

can apply operator at time t
effects will be true at time t+1
rest of state unaffected

Basic STRIPS: one operator per step



Quantification in operators

Preconditions of operator may contain 
variables (implicit ∀)

Operator can apply if preconditions unify 
with state t (using binding X)
state t+1 has e / X for each e in effects



Operator example

Eat(target, p, l)
hungry(M), food(target), at(M, p),       
at(target, p), level(M, l), level(target, l)
¬hungry(M), full(M), ¬at(target, p),       
¬level(target, l)



Operator example

Move(from, to)
at(M, from), level(M, Low)
at(M, to), ¬at(M, from)

Push(object, from, to)
at(object, from), at(M, from), clear(object)
at(M, to), at(object, to), ¬at(object, from), 
¬at(M, from)



Operator example

Climb(object, p)
at(M, p), at(object, p), level(M, Low), 
clear(object)
level(M, High), ¬level(M, Low)

ClimbDown()
level(M, High)
¬level(M, High), level(M, Low)



Plan search



Plan search

Given a planning problem (start state, 
operator descriptions, goal)
Run standard search algorithms to find 
plan
Decisions: search state representation, 
neighborhood, search algorithm


