








Search in SAT, CSPs

mmmﬁmm 5 A gty i P Lot s vy € gy L ) o, g #“M%w

o Constraint propagation / unit resolution
o Constraint learning from conflict clauses
o Variable ordering

o activity, most-constrained variable
o Value ordering

o least-constraining value




Citation for MiniSAT

mmmﬁ!mm A iy oo’ P Bl ey ¥ gy 1--.______._'1-“.-.-' M"lﬂ;‘_.' A o - ”ﬁm

o http://www.cs.chalmers.se/Cs/Research/
FormalMethods/MiniSat/cgi/
MiniSat.ps.gz.cgi

o Also, the map-coloring applet that I linked
last class appears to be offline


































HW questlons

" el = . iz
QHH :!. 14 a0 i i M'\lq_;l.' =

o 3(a) asks you to implement an “opaque’
data structure for nodes

o This just means that there is a well-defined
interface, and data structure is accessed
only through interface

o E.g., definitions of pq_init, pq_set,
pPq_pop, pq_test are such an interface, so
the priqueue we gave is opaque
















FIOIETERL b A &, Tt g A oot mr DA 04

First-order
logic




Predicates and objects

TS e i At gAY ol Ot ¥4 A Tty i I B '"""'-f:'i-':.ff?:"-""‘-";'"":-u-—r—"““"“"”"'“hugupw o et Tl

o Interpret happy(John) or likes(Joe, pizza)
as a predicate applied to some objects

o Object = an object in the world

o Predicate = boolean-valued function of
objects

o Lero-argument predicate plays same role
that Boolean variable did before













Models

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mul--_w-fn-nrs-.”"ﬂ;z_.u 28

o Meaning of sentence: model - {1, F}

o Models are now much more complicated
o List of objects

o Table of function values for each
function mentioned in formula

o Table of predicate values for each
predicate mentioned in formula






















Aside: typed variables

A Py o W Bl o T

ORI 4+ e &, Gt oA

oguent? e s e+ R e e I

o KB illustrates need for data types

o Don’t want to have to specify ear-of(box)
or —in(cat, nil)

o Could design a type system
o argument of happy() is of type animate

o Function instances which disobey type
rules have value nil




Quantifiers

TS e i Fot g = ¥4 A Tty i I B '"""'-f:'i-':.*?:"-""‘-“;'":w*““""”“%agtq-mw' ST e Tl

o So far, still can’t say “all men are mortal”
o Add quantifiers and object variables
o Vx. man(x) = mortal(x)

o =3dx. lunch(x) A free(x)

o V: no matter how we fill in object
variables, formula is still true

o d: there is some way to fill in object
variables to make formula true




Quantification

TS e i AL G Prmmaa it Ot T8 A s et 2 '"""'-f:'i-':.*?:"-""‘-“;'":w*““""”“%agtq-mw' ST e Tl

o Now we have atoms with free variables
o Adding quantifier for x is called binding x
o In (Vx. likes(x, y)), x is bound, y is free

o Can add quantifiers and apply logical
operations like Av— in any order

o But must wind up with ground formula (no
free variables)




Scoping rules

" v : - Pty i’ P B g ¥ ey g S i = s - h - AP
mmw.wm{lﬁ i B 1 S & e et S o .MHM“;E*“M.MQW

o Portion of formula where quantifier
applies = scope

o Variable is bound by innermost enclosing
scope with matching name

o Two variables in different scopes can have
same name—they are still different vars







Semantics of V

T R o L e i E L Dl PP =2 PSRt T S

o Write (M / x: obj) for the model which is
just like M except that variable x is
assigned to the object obj

o M/ x: objis a refinement of M

o A sentence (Vx. S) is true in M if S is true
in (M / x: obj) for any object obj in M
















PRI b B 2, Tt g WA Pl s T A

Reasomng
in FOL




Entailment, etc.

TS e i AL G Prmmaa it Ot T8 A s it -0 3 T L L R R P PSR i i Bade e el

o As before, entailment, unsatisfiability,
validity, etc. refer to all possible models

o So, can'’t in general determine entailment
or validity by enumerating models

o since there could be infinitely many

o Possible to search for satisfying
assignment, but can’t show unsatisfiable







Theorem provers

e o e i i tanie PRSP =2 PRt T

o Theorem provers (formula-based search)
also generalize to FOL

o Both model-based and formula-based
searches generally work from KB in CNF

o CNF for FOL also called clause form




Generahzlng CNF

T e b £ b 3 TR

ORI 4+ e &, Gt oA

z e
g E Rdaa 2 0

o . 2l

o All transformation rules for propositional
logic still hold

o In addition, there is a “De Morgan’s Law”
for moving negations through quantifiers

-Vx. § = dx. =S
-dx. § = Vx. =§
o And, rules for getting rid of quantifiers










Skolemization

o Called Skolemization
(after Thoraf Albert
Skolem)

all enclosing Y quantifiers

SR EL R b i L, Tt BT Prmmrai MDA S Tty S 9% ST IRy e VSV b mest i

Thoraf Albert kolem |

1887-1963

o Eliminate 3 using function of arguments of




Getting rid of quantifiers

mmmﬁ-mm A Pty o P L i vy % e et B o, ST SR

o Standardize apart (avoid name collisions)

o Skolemize

o Drop V (free variables implicitly
universally quantified)

o Terminology: still called “free” even
though quantification is implicit













FIOIETERL b A &, Tt g A oot mr DA 04

T heorem
provers

g e T i e e s W
















Unification examples

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o loves(x, x), loves(John, y) unify using
x=y=John

o loves(x, x), loves(John, Mary) can’t unify
o loves(uncle(x), y), loves(z, aunt(z)):
o z = uncle(x), y = aunt(uncle(x))

o loves(uncle(x), aunt(uncle(x)))




Most general unifier

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o May be many substitutions that unify two
formulas

o MGU is unique (up to renaming)
o Finding it takes quadratic time
o because of “occur check”

o does a variable occur inside the
formula that it’s trying to unify with?







-y S edeay : . > s el
5 . 8 L o 'ftn..a...-_#;-'l--: o e i - m“&ﬁ#ﬂwm
R e T ¥ G T ¥ A Ty 2 L
J N K Tt A

Proot by
SAT




Prooft by SAT

PRI ISR b B 2, Tt WA Pl s A Py N ST I i PRSP = P e T

o 1o prove S, put KB A =S in clause form
o Turn FOL KB into propositional KBs

o Iin general, infinitely many
o Check each one in order

o Will turn out that, if any one is
unsatisfiable, we have our proof




Propositionalization

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o Given a FOL KB in clause form
o And a set of objects U (for universe)

o We can propositionalize KB under U by
substituting elements of U for free
variables in all combinations







Propositionalization example

' # . ; L "44“;,'nmw_gm_’l‘f_gt..,-...-.M;-l--:_u___r,-rn-urs-.”"#;z_.“ o

o (—man(Socrates) v mortal(Socrates))
(—man(Fred) v mortal(Fred))
(—man(hemlock) v mortal(hemlock))

o drinks(Socrates, favorite_drink(Socrates))

drinks(hemlock, favorite_drink(hemlock))
drinks(Fred, favorite_drink(Fred))

o mortal(Socrates) A favorite_drink
(Socrates, hemlock)







Herbrand Universe

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o Herbrand universe H of formula S
o Start with all objects mentioned in §
o or synthetic object X if none mentioned

o apply all functions mentioned in S to all
combinations of objects in H, add to H

o repeat










Converse of Herbrand

"':w"“-‘fi-u“*"ﬂ%“;q-’“

PRAETESRE b s 4, Tt o B Prrmalit DA Y 4 A Pty I T v e

o A.J. Robinson proved “lifting lemma”

o Write PKB for a propositionalization of
KB

o Any resolution proof in PKB corresponds
to a resolution proof in KB

o ...S80, if PKB is unsatisfiable, so is KB







Proofs w/ Herbrand & Robinson

il i L :,(_ b anw s S b i N"'-I';z_._ P
X el a2, Ll

ORI A Ak Tt g A

o To prove S, put KB A =S in clause form

o Build subsets of Herbrand universe in
increasing order of size: Uj, U, ...

o Propositionalize KB with U;, check SAT

o If U; unsatisfiable, we have our
contradiction

o If U; satisfiable, move on to Ui




feasible

Makmg it faster

A Py o W Bl o T el Tl

DotV e b - by, i T

o Restrict semantics so we only need to
check one finite propositional KB

o Unique names: objects with different
names are different (John = Mary)

o Domain closure: objects without names
given in KB don’t exist

o Restrictions also make entailment, validity










Operators

NI b o, Ty g WA = L ettt e N s, TV S Ject -y s
o Given a representation like this, can define
operators that change state

o E.g., given

o at(Robot, Wean5409, 17)

o moves(Robot, Wean5409, corridor, 17)
o could define an operator that implies

o at(Robot, corridor, 18)

o =at(Robot, Wean5409, 18)







Complications

NI b o, Ty g WA = e Rt £ S 2 e, PP

o This strategy yields lots of complications

o need axioms describing natural
numbers (for time)

o frame axioms (facts don’t appear or
disappear unless we used an operator)

o unique names, exactly one action per
step, ...

o Result is slow inference
















STRIPS operators

mmmﬁmm 5 A gty i P Lot s vy € gy o, - #“M%w

o Operator = { preconditions }, { effects }
o If preconditions are true at time t,

o can apply operator at time t

o effects will be true at time t+1

o rest of state unaffected

o Basic STRIPS: one operator per step




Quantification 1n operators

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o Preconditions of operator may contain
variables (implicit V)

o Operator can apply if preconditions unify
with state t (using binding X)

o state t+1 has e / X for each e in effects







Operator example

NI b o, Ty g WA = e Rt £ S 2 e, PP

o Move(from, to)
o at(M, from), level(M, Low)
o at(M, to), ~at(M, from)
o Push(object, from, to)
o at(object, from), at(M, from), clear(object)

o at(M, to), at(object, to), ~at(object, from),
—at(M, from)







T T . 2 - 2 o ¥ A ety o’ W Sl g N A e e ,Tn-aﬂs-.‘d"*;z_."‘;,:"“ s T g e D A N

Plan search







