15-780: Graduate AI Lecture 5. Logic, Planning

Geoff Gordon (this lecture) Ziv Bar-Joseph TAs Geoff Hollinger, Henry Lin

Review

Review

- CSPs (definition, examples)
 - Sudoku, jobshop scheduling
- o Over-, under-, critically-constrained
- Basic search for SAT & CSPs

Search in SAT, CSPs

- Constraint propagation / unit resolution
- Constraint learning from conflict clauses
- Variable ordering
 - activity, most-constrained variable
- Value ordering
 - least-constraining value

Citation for MiniSAT

 http://www.cs.chalmers.se/Cs/Research/ FormalMethods/MiniSat/cgi/ MiniSat.ps.gz.cgi

 Also, the map-coloring applet that I linked last class appears to be offline

Randomization

- Random restarts for DFS-based (DPLL) search
 - avoiding doldrums
- WalkSAT

• Put the following formula in CNF:

 $(a \wedge b) \vee ((c \vee d) \wedge e)$

o Parse tree:

Introduce temporary variables

$$\circ x = (a \wedge b)$$

$$\circ$$
 $y = (c \lor d)$

$$\circ \ z = (y \land e)$$

• To ensure $x = (a \land b)$, want

$$\circ x \Rightarrow (a \land b)$$

$$\circ (a \land b) \Rightarrow x$$

$$\circ x \Rightarrow (a \land b)$$

$$\circ (\neg x \lor (a \land b))$$

$$\circ (\neg x \lor a) \land (\neg x \lor b)$$

$$\circ (a \land b) \Rightarrow x$$

$$\circ (\neg (a \land b) \lor x)$$

$$\circ (\neg a \lor \neg b \lor x)$$

• To ensure $y = (c \lor d)$, want

$$\circ y \Rightarrow (c \lor d)$$

$$\circ (c \lor d) \Rightarrow y$$

$$\circ y \Rightarrow (c \lor d)$$

$$\circ$$
 $(\neg y \lor c \lor d)$

$$\circ (c \lor d) \Rightarrow y$$

$$\circ ((\neg c \land \neg d) \lor y)$$

$$\circ (\neg c \lor y) \land (\neg d \lor y)$$

$$\circ$$
 Finally, $z = (y \land e)$

$$\circ z \Rightarrow (y \land e) \equiv (\neg z \lor y) \land (\neg z \lor e)$$

$$\circ (y \land e) \Rightarrow z \equiv (\neg y \lor \neg e \lor z)$$

Tseitin end result

$$(a \wedge b) \vee ((c \vee d) \wedge e) \equiv$$

$$(\neg x \lor a) \land (\neg x \lor b) \land (\neg a \lor \neg b \lor x) \land$$

 $(\neg y \lor c \lor d) \land (\neg c \lor y) \land (\neg d \lor y) \land$
 $(\neg z \lor y) \land (\neg z \lor e) \land (\neg y \lor \neg e \lor z) \land$
 $(x \lor z)$

HW questions

- 3(a) asks you to implement an "opaque" data structure for nodes
- This just means that there is a well-defined interface, and data structure is accessed only through interface
- E.g., definitions of pq_init, pq_set,
 pq_pop, pq_test are such an interface, so
 the priqueue we gave is opaque

State numbering in maze

1	x 1	2	3	4	5
<i>y</i> \					
1	1	6	11	16	21
2	2	7	12	17	22
3	3	8	13	18	23
4	4	9	14	19	24
5	5	10	15	20	25

• This contradicts description in the text, but matches the code—updated text on web

HW questions

• Storing backpointers in A*, BFS, etc.

Generic search

$$S = \{ start \} \ M = \emptyset$$
 $While (S \neq \emptyset)$
 $x \leftarrow some \ element \ of \ S, \ S \leftarrow S \setminus x$
 $CheckSolution(x)$
 $For \ y \in neighbors(x) \setminus M$
 $S \leftarrow S \cup \{y\}, \ backpointer(y) \leftarrow x$
 $M = M \cup \{x\}$

HW questions

• More questions?

First-order logic

Predicates and objects

- Interpret happy(John) or likes(Joe, pizza)
 as a predicate applied to some objects
- Object = an object in the world
- Predicate = boolean-valued function of objects
- Zero-argument predicate plays same role that Boolean variable did before

Functions

- Functions map zero or more objects to another object
 - e.g., professor(15-780), last-commonancestor(John, Mary)
- Zero-argument function is the same as an object—John v. John()

Definitions

- Term = expression referring to an object
 - o John
 - left-leg-of(father-of(president-of(USA)))
- Atom = predicate applied to objects
 - happy(John)
 - raining
 - o at(robot, Wean-5409, 11AM-Wed)

Definitions

- Literal = possibly-negated atom
 - \circ happy(John), \neg happy(John)
- Sentence = literals joined by connectives
 like ∧∨¬⇒
 - raining
 - \circ done(slides(780)) \Rightarrow happy(professor)

Models

- Meaning of sentence: model $\mapsto \{T, F\}$
- Models are now much more complicated
 - List of objects
 - Table of function values for each function mentioned in formula
 - Table of predicate values for each predicate mentioned in formula

For example

KB describing example

- alive(cat)
- \circ ear-of(cat) = ear
- \circ in(cat, box) \land in(ear, box)
- $\circ \neg in(box, cat) \land \neg in(cat, nil) \dots$
- \circ ear-of(box) = ear-of(ear) = ear-of(nil) = nil
- \circ cat \neq box \land cat \neq ear \land cat \neq nil ...

Model of example

- o Objects: C, B, E, N
- Assignments:
 - o cat: C, box: B, ear: E, nil: N
 - ear-of(C): E, ear-of(B): N, ear-of(E): N,
 ear-of(N): N
- Predicate values:
 - \circ in(C, B), \neg in(C, C), \neg in(C, N), ...

Failed model

- Objects: C, E, N
- Fails because there's no way to satisfy inequality constraints with only 3 objects

Another possible model

- Objects: C, B, E, N, X
- Extra object X could have arbitrary properties since it's not mentioned in KB
- E.g., X could be its own ear

An embarrassment of models

- o In general, can be infinitely many models
 - unless KB limits number somehow
- Job of KB is to rule out models that don't match our idea of the world

Aside: typed variables

- KB illustrates need for data types
- Don't want to have to specify ear-of(box)
 or ¬in(cat, nil)
- Could design a type system
 - argument of happy() is of type animate
- Function instances which disobey type rules have value nil

Quantifiers

- o So far, still can't say "all men are mortal"
- Add quantifiers and object variables
 - $\circ \ \forall x. man(x) \Rightarrow mortal(x)$
 - $\circ \neg \exists x. lunch(x) \land free(x)$
- ∘ ∀: no matter how we fill in object variables, formula is still true
- ∘ ∃: there is some way to fill in object variables to make formula true

Quantification

- Now we have atoms with free variables
- Adding quantifier for x is called binding x
 - In $(\forall x. likes(x, y))$, x is bound, y is free
- Can add quantifiers and apply logical operations like ∧∨¬ in any order
- But must wind up with ground formula (no free variables)

Scoping rules

- Portion of formula where quantifier
 applies = scope
- Variable is bound by innermost enclosing scope with matching name
- Two variables in different scopes can have same name—they are still different vars

Scoping examples

- \circ $(\forall x. happy(x)) \lor (\exists x. \neg happy(x))$
 - Either everyone's happy, or someone's unhappy
- ∘ $\forall x. (raining \land outside(x) \Rightarrow (\exists x. wet(x)))$
 - The x who is outside may not be the one who is wet

Semantics of \(\forall \)

- Write (M / x: obj) for the model which is just like M except that variable x is assigned to the object obj
- M/x: obj is a refinement of M
- A sentence $(\forall x. S)$ is true in M if S is true in $(M \mid x: obj)$ for any object obj in M

Example

- M has objects (A, B, C) and predicate happy(x) which is true for A, B, C
- Sentence $\forall x$. happy(x) is satisfied in M
 - since happy(A) is satisfied in M/x:A,
 happy(B) in M/x:B, happy(C) in M:x/C

Semantics of 3

 A sentence (∃x. S) is true in M if there is some object obj in M such that S is true in model (M / x: obj)

Example

- M has objects (A, B, C) and predicate
 - \circ happy(A) = happy(B) = True
 - \circ happy(C) = False
- Sentence $\exists x$. happy(x) is satisfied in M
- Since happy(x) is satisfied in, e.g., M/x:B

Quantifier nesting

- English sentence "everybody loves somebody" is ambiguous
- o Translates to logical sentences
 - $\circ \forall x. \exists y. loves(x, y)$
 - \circ $\exists y. \ \forall x. \ loves(x, y)$

Reasoning in FOL

Entailment, etc.

- As before, entailment, unsatisfiability, validity, etc. refer to all possible models
- So, can't in general determine entailment or validity by enumerating models
 - since there could be infinitely many
- Possible to search for satisfying assignment, but can't show unsatisfiable

Propositionalization

- However, people do use SAT-checkers for reasoning in FOL
- Turn FOL KB into one or more finite, propositional KBs, search for models in each
- More later

Theorem provers

- Theorem provers (formula-based search)
 also generalize to FOL
- Both model-based and formula-based searches generally work from KB in CNF
- CNF for FOL also called clause form

Generalizing CNF

- All transformation rules for propositional logic still hold
- In addition, there is a "De Morgan's Law" for moving negations through quantifiers

$$\neg \forall x. S \equiv \exists x. \neg S$$

$$\neg \exists x. S \equiv \forall x. \neg S$$

o And, rules for getting rid of quantifiers

Putting FOL KB in CNF

- ∘ Eliminate ⇒, move ¬ in w/ De Morgan
 - ∘ but ¬ moves through quantifiers too
- o Get rid of quantifiers (see below)
- Distribute AV, or use Tseitin

Do we really need 3?

- \circ ($\exists x$) happy(x)
- happy(happy_person())

- \circ ($\forall y$) ($\exists x$) loves(y, x)
- \circ ($\forall y$) loves(y, loved_one_of(y))

Skolemization

Called Skolemization

 (after Thoraf Albert
 Skolem)

Thoraf Albert Skolem 1887–1963

 Eliminate ∃ using function of arguments of all enclosing ∀ quantifiers

Getting rid of quantifiers

- Standardize apart (avoid name collisions)
- Skolemize
- Drop ∀ (free variables implicitly universally quantified)
- Terminology: still called "free" even though quantification is implicit

For example

- $\circ (\forall x) man(x) \Rightarrow mortal(x)$
 - \circ $(\neg man(x) \lor mortal(x))$
- \circ $(\forall x)$ $(honest(x) \Rightarrow happy(Diogenes))$
 - \circ ($\neg honest(x) \lor happy(Diogenes)$)
- \circ $(\forall y) (\exists x) loves(y, x)$
 - \circ loves(y, f(y))

Exercise

 $\circ ((\forall x) honest(x)) \Rightarrow happy(Diogenes)$

Exercise

- $\circ ((\forall x) honest(x)) \Rightarrow happy(Diogenes)$
- $\circ \neg ((\forall x) \ honest(x)) \lor happy(Diogenes)$
- \circ $((\exists x) \neg honest(x)) \lor happy(Diogenes)$
- ∘ ¬honest(foo()) ∨ happy(Diogenes)
- foo() = "the guy who might not be honest"

Theorem

provers

Theorem provers

- Theorem provers work as before:
 - \circ add $\neg S$ to KB
 - put in CNF
 - run resolution
 - if we get an empty clause, we've proven
 S by contradiction
- But, CNF and resolution have changed

Generalizing resolution

- Propositional: $(\neg a \lor b) \land a \models b$
- FOL:

 $(\neg man(x) \lor mortal(x)) \land man(Socrates)$

 $\models mortal(Socrates)$

 \circ Difference: had to substitute x = Socrates

Unification

- Two FOL sentences unify with each other if there is a way to set their variables so that they are identical
- man(x), man(Socrates) unify using the substitution x = Socrates

Unification examples

- loves(x, x), loves(John, y) unify using x = y = John
- loves(x, x), loves(John, Mary) can't unify
- loves(uncle(x), y), loves(z, aunt(z)):

Unification examples

- loves(x, x), loves(John, y) unify using x = y = John
- loves(x, x), loves(John, Mary) can't unify
- loves(uncle(x), y), loves(z, aunt(z)):
 - \circ z = uncle(x), y = aunt(uncle(x))
 - loves(uncle(x), aunt(uncle(x)))

Most general unifier

- May be many substitutions that unify two formulas
- MGU is unique (up to renaming)
- o Finding it takes quadratic time
 - because of "occur check"
 - does a variable occur inside the formula that it's trying to unify with?

First-order resolution

- ∘ Given clauses (a v b v c), (¬c' v d v e)
- And a variable substitution V
- If c / V and c' / V are the same
- Then we can conclude
- $\circ (a \lor b \lor d \lor e) / V$

Proof by SAT

Proof by SAT

- To prove S, put $KB \land \neg S$ in clause form
- Turn FOL KB into propositional KBs
 - o in general, infinitely many
- Check each one in order
- Will turn out that, if any one is unsatisfiable, we have our proof

Propositionalization

- Given a FOL KB in clause form
- And a set of objects U (for universe)
- We can propositionalize KB under U by substituting elements of U for free variables in all combinations

Propositionalization example

- \circ $(\neg man(x) \lor mortal(x))$
- mortal(Socrates)
- favorite_drink(Socrates, hemlock)
- drinks(x, favorite_drink(x))

 \circ U = (Socrates, hemlock, Fred)

Propositionalization example

- (¬man(Socrates) ∨ mortal(Socrates))
 (¬man(Fred) ∨ mortal(Fred))
 (¬man(hemlock) ∨ mortal(hemlock))
- drinks(Socrates, favorite_drink(Socrates))
 drinks(hemlock, favorite_drink(hemlock))
 drinks(Fred, favorite_drink(Fred))
- o mortal(Socrates) ∧ favorite_drink (Socrates, hemlock)

Choosing a universe

- To check a FOL KB, propositionalize it using some universe U
- Which universe?

Herbrand Universe

- Herbrand universe H of formula S:
 - start with all objects mentioned in S
 - o or synthetic object X if none mentioned
 - apply all functions mentioned in S to all combinations of objects in H, add to H
 - o repeat

Herbrand Universe

- E.g., loves(uncle(John), Mary)
- H = {John, Mary, uncle(John), uncle
 (Mary), uncle(uncle(John)), uncle(uncle
 (Mary)), ...}

Herbrand's theorem

- If a FOL KB in clause form is unsatisfiable
- And H is its Herbrand universe
- Then the propositionalized KB is unsatisfiable for some **finite** $U \subseteq H$

Converse of Herbrand

- o A. J. Robinson proved "lifting lemma"
- Write PKB for a propositionalization of KB
- Any resolution proof in PKB corresponds to a resolution proof in KB
- ... so, if PKB is unsatisfiable, so is KB

Proofs w/ Herbrand & Robinson

 So, FOL KB is unsatisfiable if and only if there is a subset of Herbrand universe making PKB unsatisfiable

Proofs w/ Herbrand & Robinson

- To prove S, put $KB \land \neg S$ in clause form
- Build subsets of Herbrand universe in increasing order of size: $U_1, U_2, ...$
- Propositionalize KB with Ui, check SAT
- \circ If U_i unsatisfiable, we have our contradiction
- \circ If U_i satisfiable, move on to U_{i+1}

Making it faster

- Restrict semantics so we only need to check one finite propositional KB
- Unique names: objects with different names are different (John ≠ Mary)
- **Domain closure**: objects without names given in KB don't exist
- Restrictions also make entailment, validity feasible

Planning

Time

- o So far, have not modeled a changing world
- For KBs that evolve, add extra argument to each predicate saying when it was true
 - o at(Robot, Wean5409)
 - o at(Robot, Wean5409, 17)

Operators

- Given a representation like this, can define operators that change state
- E.g., given
 - o at(Robot, Wean5409, 17)
 - moves(Robot, Wean5409, corridor, 17)
- could define an operator that implies
 - at(Robot, corridor, 18)
 - ∘ ¬at(Robot, Wean5409, 18)

Goals

- Want our robot to, e.g., get sandwich
- Search for proof of has(Geoff, Sandwich, t)
- Analyze proof tree to find sequence of operators that make goal true

Complications

- This strategy yields lots of complications
 - need axioms describing natural numbers (for time)
 - frame axioms (facts don't appear or disappear unless we used an operator)
 - unique names, exactly one action per step, ...
- Result is slow inference

Planning

- Alternate solution: define a subset of FOL especially for planning
- E.g., STRIPS language
 - o no functions, limited quantification, ...
- STanford Research Institute Problem Solver

STRIPS

- o State of world at each time =
 { propositions }
- Each proposition is ground literal
- o For brevity, list only true literals
- Time is implicit

STRIPS state example

STRIPS state example

- *food(N)*
- hungry(M)
- \circ at(N, W)
- \circ at(M, X)
- \circ at(B1, Y)
- \circ at(B2, Y)

- \circ at(B3, Z)
- \circ on(B2, B1)
- clear(B2)
- clear(B3)
- height(M, Low)
- height(N, High)

STRIPS operators

- Operator = { preconditions }, { effects }
- o If preconditions are true at time t,
 - o can apply operator at time t
 - effects will be true at time t+1
 - rest of state unaffected
- o Basic STRIPS: one operator per step

Quantification in operators

- Preconditions of operator may contain variables (implicit ∀)
- Operator can apply if preconditions unify with state t (using binding X)
- state t+1 has e / X for each e in effects

Operator example

- Eat(target, p, l)
 - hungry(M), food(target), at(M, p),
 at(target, p), level(M, l), level(target, l)
 - ¬hungry(M), full(M), ¬at(target, p),
 ¬level(target, l)

Operator example

- Move(from, to)
 - at(M, from), level(M, Low)
 - \circ at(M, to), \neg at(M, from)
- Push(object, from, to)
 - at(object, from), at(M, from), clear(object)
 - at(M, to), at(object, to), ¬at(object, from),
 ¬at(M, from)

Operator example

- Climb(object, p)
 - at(M, p), at(object, p), level(M, Low), clear(object)
 - ∘ level(M, High), ¬level(M, Low)
- ClimbDown()
 - level(M, High)
 - ∘ ¬level(M, High), level(M, Low)

Plan search

Plan search

- Given a planning problem (start state, operator descriptions, goal)
- Run standard search algorithms to find plan
- Decisions: search state representation, neighborhood, search algorithm