

. ot e ey o g by e o e P T s P
: ¥: PG T ¥ i A Tt = e

Using FOL

Knowledge engineering

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o Identify relevant objects, functions, and
predicates

o Encode general background knowledge
about domain (reusable)

o Encode specific problem instance

o Pose queries

Knowledge engineering

NI b o, Ty g WA = e Rt £ S 2 e, PP

o Sadly, next step is also necessary:

o Debug knowledge base
o Severe bug: logical contradictions
o Less severe: undesired conclusions
o Least severe: missing conclusions

o In general, trace back chain of reasoning
until reason for failure is revealed

: i MR e by B P T s 1 e i st i B Bl s
T ¥ 1 - A Pt == e doerm iy ST

Plan search

10

sequence

points

FIOOIETERL b s &, Gt g P ot TN

Linear planner

. ot E . e i a- i = .
A gty o e et S 3 TR o s ke T IR T i e - i

o Simplest choice: linear planner
o Search state = sequence of operators

o Neighbor: add an operator to end of

o Bind variables as necessary

o both operator and binding are choice

12

And so forth

PRI ISR b B 2, Tt WA Pl s A Py N ST I iy T i PRSP = P e T

o Goal: full(M)
o A possible plan:

o move(X, Y), move(Y, Z), push(B3, Z, Y),
push(B3, Y, X), push(B3, X, W),
climb(B3, W), eat(N, W, High)

o DFS will try moving XYX, climbing on
boxes unnecessarily, etc.

21

Partial-order planner

TS e i AL G Prmmaa it Ot T8 A s it -0 3 T L L R R P PSR i i Bade e el

o Linear planner can be wasteful: backtrack
undoes most recent action, rather than one
that might have caused failure

o Partial order planner tries to fix this

o Avoids committing to details of plan until
it has to (principle of least commitment)

22

Set of operators

" v : - Pty i’ P B g ¥ ey g S i = s - h - AP
mmw.wm{lﬁ i B 1 S & e et S o .MHM“;E*“M.MQW

o Might include move(X, p) “I will move
somewhere from X, eat(target) “I will eat
something”

o Also includes extra operators START,
FINISH

o effects of START are initial state
o preconditions of FINISH are goals

24

Adding an ordering constraint

at(N, p) == Jull(M)
at(M, X) qy(M, p) X ea\t(N)
TR
START — ﬁfzove(X, p) / FINISH
level(M, Low) \

at(BS, r)/puSh(BS) r Q)
at(M, r)" clear(B3)

o Wouldn't ever add ordering on its own—but
may need to when adding operator or guard

30

Recap of nelghborhood

ORI 4+ e &, Gt oA

4'| o i " Ll m_ i e M"ﬂ;{_.' P

o Pick an open precondition

o Pick an operator and binding that can
satisfy it

o may need to add a new op
o OF can use existing op
o Add an ordering constraint and guard

o Resolve conflicts by adding more ordering

constraints or bindings
I

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

Consistency & completeness

o Consistency: no cycles in ordering,
preconditions guaranteed true throughout
guard intervals

o Completeness: no open preconditions

o Search maintains consistency, terminates
when complete

38

s = lﬂtﬂﬁt:‘:gr‘..ﬂ.u_#;ﬂ--: T“_,ﬂ‘_.”'-*:h" i iy . £ ;
R ¥ ; - A Pty S ~ T X
J I K Lot G AT e T B o i s e b

Plan Graphs

40

' # . ; L "44“;,'nmw_gm_’l‘f_gt..,-...-.M;-l--:_u___r,-rn-urs-.”"#;z_.“ o

Planning & model search

o For along time, it was thought that
SAT-style model search was a non-
starter as a planning algorithm

o More recently, people have written fast
planners that

o propositionalize the domain
o turn it into a CSP or SAT problem

o search for a model
41

Propositionalizing

" v : - Pty i’ P B g ¥ ey g S i = s - h - AP
mmw.wm{lﬁ i B 1 S & e et S o .MHM“;E*“M.MQW

o Note: this domain is fully propositional

o If we had a general STRIPS domain,
would have to pick a universe and
propositionalize

o E.g., eat(x) would become eat(Banana),
eat(Cake), eat(Fred), ...

45

Gettmg a plan

PRI ISR b B 2, Tt WA Pl s A Py N ST I L™ i PRSP = P e T

o Build the plan graph out to some length k
o Translate to a SAT formula or CSP

o Search for a satisfying assignment

o If found, read off the plan

o If not, increment k and try again

o There is a test to see if k is big enough

57

Translation to SAT

" v : - Pty i’ P B g ¥ ey g S i = s - h - AP
mmw.wm{lﬁ i B 1 S & e et S o .MHM“;E*“M.MQW

o One variable for each pair of literals in
state levels

o One variable per action in action levels
o Constraints implement STRIPS semantics

o Solution tells us which actions are
performed at each action level, which
literals are true at each state level

58

Plan search

- . : . = G " e - - = -
OISO b A 4 Gt g2 ST a A Tty S e B e s Y i e = BINCR ot i s S i s S ol

o Hand problem to SAT solver

o Or, simple DFS: start from last level, fill in
last action set, compute necessary
preconditions, fill in 2nd-to-last action set,
etc.

o If at some level there is no way to do any
actions, or no way to fill in consistent
preconditions, backtrack

63

PRI b B 2, Tt g WA Pl s T A

Optmnzatlon
and Search

Example search problem

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o Factory makes widgets and doodads

o Each widget takes I unit of wood and 2
units of steel to make

o Each doodad uses 1 unit wood, 5 of steel

o Have 4 units wood and 12 units steel;
design a feasible production schedule

67

ILP

AT TK b, Ao A, Tt g Tty O S I s N s et B R 1 o s AL i TR

ol hzs is an mteger lmear program

o Interesting related problems:
o 0-1 ILP: all variables in {0, 1}
o SAT: O0-1 ILP, all constraints of form
X+ (1-y) + (1-z) =1

o LP: lift integer restriction, all
variables in R

o MILP: some variables in R, others Z

73

Smarter algorithms

" v : - Pty i’ P B g ¥ ey g S i = s - h - AP
mmw.wm{lﬁ i B 1 S & e et S o .MHM“;E*“M.MQW

o We can build smarter algorithms by
remembering bounds on optimal value

o Firstidea: if we have a solution with profit
3, add a constraint “profit = 3”

o If we then find a solution with profit 3,
replace constraint with “profit = 5"

76

Relaxation

PIPORST IR b el 4, Tt AT Prmaliots AT 4 A Tty 5 2N TS AN v v St R BN g o B PRy Bl s
o Idea: what if we solve an easier version of

the problem?

o If we make feasible region bigger,
objective value can only get better

o Bigger feasible region = relaxation

o Value of relaxed problem is an upper
bound on value of original problem

85

TR b i e e ¥4 A Tty i I B "-'-'.t:(.‘:_t!:nn-u-“;'1--:.,__,#--"’#--““*11.._“;",““.._‘-1" ST e e el

More bounds

90

mmmﬁ!mm A iy oo’ P Bl ey ¥ gy 1--:_____._'1-“.-.-' M"!I'_:l_.' i T

What 1f we’re really 1azy‘7

o 1o get our bound: had to solve the LP
and find its exact optimum

o Can we do less work—perhaps find a
suboptimal solution to LP?

o Sadly, a non-optimal feasible point in
the LP relaxation gives us no useful
bound

91

e e L e b, R DL L T PR,

PRI b B 2, Tt g WA Pl s T A

More about
the dual

Interpreting the dual variables

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o The primal variable variables in the
factory LP were how many widgets and
doodads to produce

o We interpreted dual variables as
multipliers for primal constraints

110

Dual variables as prices

' # . ; L "44“;,'nmw_gm_’l‘f_gt..,-...-.M;-l--:_u___r,-rn-urs-.”"#;z_.“ o

o RHS in primal is objective in dual

o So, dual constraints stay same, previous
solution a = b = 1/3 still dual feasible

o Still optimal if € small enough

o Bound changes to (4 + €)a + 12 b,
difference of € * 1/3

o So we should pay up to $1/3 per unit of
wood (in small quantities)

114

RIS b s 2, Tt B ool DA T 4 A Pty S OV AT I I R v e VS st e B PR e e g il g O

Duality
example

115

