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Wait list

There are still several students signed up 
on the wait list for 15-780
If you are one of them, just let us know, 
and we will move you to the regular 
course roster
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Review
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FOL

Quantifiers, models of FOL expressions
Reasoning in FOL

Clause form, Skolemization
Unification and resolution
Propositionalization

Herbrand, Robinson
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Planning

Representations of time
Planning languages like STRIPS

operators, preconditions, effects
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Using FOL
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Knowledge engineering

Identify relevant objects, functions, and 
predicates
Encode general background knowledge 
about domain (reusable)
Encode specific problem instance
Pose queries
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Knowledge engineering

Sadly, next step is also necessary:
Debug knowledge base

Severe bug: logical contradictions
Less severe: undesired conclusions
Least severe: missing conclusions

In general, trace back chain of reasoning 
until reason for failure is revealed
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Plan search
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Plan search

Given a planning problem (start state, 
operator descriptions, goal)
Run standard search algorithms to find 
plan
Decisions: search state representation, 
neighborhood, search algorithm
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Linear planner

Simplest choice: linear planner 
Search state = sequence of operators
Neighbor: add an operator to end of 
sequence
Bind variables as necessary

both operator and binding are choice 
points
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Linear planner

Can search forward from start or 
backward from goal
Or mix the two
Goal is often incompletely specified
Example heuristic: number of open literals
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Goal: full(M)
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STRIPS state example

food(N)
hungry(M)
at(N, W)
at(M, X)
at(B1, Y)
at(B2, Y)

at(B3, Z)
on(B2, B1)
clear(B2)
clear(B3)
level(M, Low)
level(N, High)
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Linear planner example

Start w/ empty plan [], initial world state
Pick an operator, e.g., 

Move(from, to)
at(M, from), level(M, Low)
at(M, to), ¬at(M, from)
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Linear planner example

Bind variables so that preconditions match 
world state

e.g., from: X, to: Y
pre: at(M, X), level(M, Low)
post: at(M, Y), ¬at(M, X)
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Apply operator

food(N)
hungry(M)
at(N, W)

at(B1, Y)
at(B2, Y)

at(B3, Z)
on(B2, B1)
clear(B2)
clear(B3)
level(M, Low)
level(N, High)

at(M, X)at(M, Y)
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Repeat…

Plan is now [ move(X, Y) ]
World state is as in previous slide
Pick another operator and binding

Climb(object, p), p: Y
at(M, p), at(object, p), level(M, Low), 
clear(object)
level(M, High), ¬level(M, Low)
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Apply operator

food(N)
hungry(M)
at(N, W)

at(B1, Y)
at(B2, Y)

at(B3, Z)
on(B2, B1)
clear(B2)
clear(B3)

level(N, High)

at(M, Y)
level(M, Low)level(M, High)
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And so forth

Goal: full(M)
A possible plan:

move(X, Y), move(Y, Z), push(B3, Z, Y), 
push(B3, Y, X), push(B3, X, W),      
climb(B3, W), eat(N, W, High)

DFS will try moving XYX, climbing on 
boxes unnecessarily, etc.
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Partial-order planner

Linear planner can be wasteful: backtrack 
undoes most recent action, rather than one 
that might have caused failure
Partial order planner tries to fix this
Avoids committing to details of plan until 
it has to (principle of least commitment)
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Partial-order planner

Search state:
set of operators (partially bound)
ordering constraints
causal links (also called guards)
open preconditions
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Set of operators

Might include move(X, p) “I will move 
somewhere from X”, eat(target) “I will eat 
something”
Also includes extra operators START, 
FINISH

effects of START are initial state
preconditions of FINISH are goals
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Partial ordering

START move(X, p)

eat(N)

FINISH

push(B3, r, q)
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Guards

Describe where preconditions are satisfied

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)
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Open preconditions

All unsatisfied preconditions of any action
Unsatisfied = doesn’t have a guard

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)at(N, p)

at(M, p)

at(B3, r)
level(M, Low)

at(M, r) clear(B3)

…
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Partial-order planner

Neighborhood: plan refinement
Add an operator, guard, or ordering 
constraint
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Adding an ordering constraint

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)at(N, p)

at(M, p)

at(B3, r)
level(M, Low)

at(M, r) clear(B3)

…
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Adding an ordering constraint

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)

at(M, p)

at(B3, r)
at(M, r) clear(B3)

…

Wouldn’t ever add ordering on its own—but 
may need to when adding operator or guard

level(M, Low)

at(N, p)
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Adding a guard

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)at(N, p)

at(M, p)

at(B3, r)
level(M, Low)

at(M, r) clear(B3)

…
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Adding a guard

Must go forward (may need to add ordering)
Can’t cross operator that affects condition

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)at(N, p)

at(M, p)

at(B3, r)
level(M, Low)

at(M, r) clear(B3)

…
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Adding a guard

Might involve binding a variable (may be 
more than one way to do so)

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)at(N, W)

at(M, p)

at(B3, r)
level(M, Low)

at(M, r) clear(B3)

…
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Adding an operator

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)at(N, W)

at(M, p)

at(B3, r)
level(M, Low)

at(M, r) clear(B3)

…
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Adding an operator

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)at(N, W)

at(M, p)

at(B3, r)
level(M, Low)

at(M, r) clear(B3)

…

move(s, r)
at(M, s)

level(M, Low)
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Resolving conflict

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)at(N, W)

at(M, p)

level(M, Low)

clear(B3)

…

move(s, r)

at(B3, r)
at(M, r)

at(M, s)
level(M, Low)
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Recap of neighborhood

Pick an open precondition
Pick an operator and binding that can 
satisfy it

may need to add a new op
or can use existing op

Add an ordering constraint and guard
Resolve conflicts by adding more ordering 
constraints or bindings
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Consistency & completeness

Consistency: no cycles in ordering, 
preconditions guaranteed true throughout 
guard intervals
Completeness: no open preconditions
Search maintains consistency, terminates 
when complete
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Execution

A consistent, complete plan can be 
executed by linearizing it
Execute actions in any order that matches 
the ordering constraints
Fill in unbound variables in any consistent 
way
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Plan Graphs
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Planning & model search

For a long time, it was thought that 
SAT-style model search was a non-
starter as a planning algorithm
More recently, people have written fast 
planners that

propositionalize the domain
turn it into a CSP or SAT problem
search for a model
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Plan graph

Tool for making good CSPs: plan graph
Encodes a subset of the constraints that 
plans must satisfy
Remaining constraints are handled during 
search (by rejecting solutions that violate 
them)
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Example

Start state: have(Cake)
Goal: have(Cake) ∧ eaten(Cake)

Operators: bake, eat
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Operators

Bake
pre: ¬have(Cake)

post: have(Cake)
Eat

pre: have(Cake)
post: ¬have(Cake), eaten(Cake)
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Propositionalizing

Note: this domain is fully propositional
If we had a general STRIPS domain, 
would have to pick a universe and 
propositionalize
E.g., eat(x) would become eat(Banana), 
eat(Cake), eat(Fred), …
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Plan graph

Alternating levels: states and actions
First level: initial state

have

¬eaten
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Plan graph

First action level: all applicable actions
Linked to their preconditions

have

¬eaten
eat
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Plan graph

Second state level: add effects of actions 
to get literals that could hold at step 2

have

¬eaten
eat

have

¬eaten
eaten

¬have
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Plan graph

Also add maintenance actions to 
represent effect of doing nothing

have

¬eaten
eat

have

¬eaten
eaten

¬have
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Plan graph

Extend another pair of levels: now bake 
is a possible action

have

¬eaten
eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake
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Plan graph

Can extend as far right as we want
Plan = subset of the actions at each action 
level
Ordering unspecified within a level
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Plan graph

In addition to the above links, add 
mutex links to indicate mutually 
exclusive actions or literals

have

¬eaten
eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake
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Plan graph

Actions which assert contradictory 
literals are mutex

have

¬eaten
eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake
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Plan graph

Literals are mutex if they are 
contradictory

have

¬eaten
eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake
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Plan graph

Or if there is no non-mutex set of 
actions that could achieve both

have

¬eaten
eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake
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Plan graph

Actions are also mutex if one deletes a 
precondition of the other, or if their 
preconditions are mutex

have

¬eaten
eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake
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Getting a plan

Build the plan graph out to some length k
Translate to a SAT formula or CSP
Search for a satisfying assignment
If found, read off the plan
If not, increment k and try again
There is a test to see if k is big enough
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Translation to SAT

One variable for each pair of literals in 
state levels
One variable per action in action levels
Constraints implement STRIPS semantics
Solution tells us which actions are 
performed at each action level, which 
literals are true at each state level
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Action constraints

Each action can only be executed if all 
of its preconditions are present:

actt+1 ⇒ pre1t ∧ pre2t ∧ …

If executed, action asserts its 
postconditions:

actt+1 ⇒ post1t+2 ∧ post2t+2 ∧ …
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Literal constraints

In order to achieve a literal, we must 
execute an action that achieves it

postt+2 ⇒ act1t+1 ∨ act2t+1 ∨ …

Might be a maintenance action
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Initial & goal constraints

Goals must be satisfied at end: 
goal1T ∧ goal2T ∧ …

And initial state holds at beginning:
init11 ∧ init21 ∧ …
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Mutex constraints

Mutex constraints between actions or 
literals: add clause (x ⊕ y)

Note: mutexes are redundant, but help 
anyway
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Plan search

Hand problem to SAT solver
Or, simple DFS: start from last level, fill in 
last action set, compute necessary 
preconditions, fill in 2nd-to-last action set, 
etc.
If at some level there is no way to do any 
actions, or no way to fill in consistent 
preconditions, backtrack
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Plan search

have

¬eaten
eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake
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Optimization 
and Search
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Search problem

Typical search problem: CSP or SAT
Description: variables, domains, 
constraints
Find a solution that satisfies constraints
Any satisfying solution is OK
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Example search problem

Factory makes widgets and doodads
Each widget takes 1 unit of wood and 2 
units of steel to make
Each doodad uses 1 unit wood, 5 of steel
Have 4 units wood and 12 units steel; 
design a feasible production schedule
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Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12
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Optimization

Not all feasible solutions are equally good
Within feasible set, want to optimize an 
objective function
E.g., maximize profit:

Each widget yields a profit of $1
Each doodad nets $2

69



Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d
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Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d

71



Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d

profit = 5
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ILP

This is an integer linear program
Interesting related problems:

0-1 ILP: all variables in {0, 1}
SAT: 0-1 ILP, all constraints of form
x + (1-y) + (1-z) ≥ 1
LP: lift integer restriction, all 
variables in ℝ
MILP: some variables in ℝ, others ℤ
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Search

Can still use search algorithms like DFID 
for optimization problems
Just remember the best objective value 
seen so far
This is a fine algorithm, but we can often 
do better!
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Bounds
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Smarter algorithms

We can build smarter algorithms by 
remembering bounds on optimal value
First idea: if we have a solution with profit 
3, add a constraint “profit ≥ 3”
If we then find a solution with profit 5, 
replace constraint with “profit ≥ 5”
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Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d
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Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d
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Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d
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Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d
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Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d
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Upper bounds

Suppose we’re partway finished: examined 
a few nodes and found a solution
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Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d
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Upper bounds

Have a solution of profit $4
How much profit would we lose by 
stopping now?
Might we find a node with profit $73 if we 
kept looking?
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Relaxation

Idea: what if we solve an easier version of 
the problem?
If we make feasible region bigger, 
objective value can only get better
Bigger feasible region = relaxation
Value of relaxed problem is an upper 
bound on value of original problem
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LP relaxation

Nice way of making feasible region 
bigger: drop integrality constraints
Called the LP relaxation of our problem
LPs are efficiently solvable (see below)
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Factory LP

Widgets →

D
oo

da
ds

 →

feasible

w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d
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profit = 5 1/3

Factory LP

Widgets →

D
oo

da
ds

 →

feasible

w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d
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Upper bounds

So, we have a solution of profit $4
And we know the best solution has profit 
no more than $5 1/3
If we’re lazy, we can stop now
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More bounds
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What if we’re really lazy?

To get our bound: had to solve the LP 
and find its exact optimum
Can we do less work—perhaps find a 
suboptimal solution to LP?
Sadly, a non-optimal feasible point in 
the LP relaxation gives us no useful 
bound
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A simple bound

Recall: 
constraint w + d ≤ 4 (limit on wood)
profit w + 2d

Since w, d ≥ 0, 
profit = w + 2d ≤ 2w + 2d

And, doubling both sides of constraint,
2w + 2d ≤ 8   ⇒   profit ≤ 8
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The same trick works twice

Try other constraint (steel use)
2w + 5d ≤ 12

2*profit = 2w + 4d ≤ 2w + 5d ≤ 12
So profit ≤ 6
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In fact it works infinitely often

Could take any positive-weight linear 
combination of our constraints

negative weights would flip sign

a (w + d – 4) + b (2w + 5d – 12) ≤ 0
(a + 2b) w + (a + 5b) d ≤ 4a + 12b
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Geometrically

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d
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Geometrically

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d

96



Geometrically

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d
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Bound

(a + 2b) w + (a + 5b) d ≤ 4a + 12b
profit = 1w + 2d
So, if 1 ≤ (a + 2b) and 2 ≤ (a + 5b), we 
know that profit ≤ 4a + 12b
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The best bound

If we search for the tightest bound, we 
have an LP:

minimize 4a + 12b such that
a + 2b ≥ 1
a + 5b ≥ 2
a, b ≥ 0

Called the dual
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The dual LP

a →

b 
→ a = b = 1/3

a + 2b ≥ 1

a + 5b ≥ 2

0.5

0.5

1 1.5

bound = 
4a + 12b

feasible
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Best bound, as primal constraint

Widgets →

D
oo

da
ds

 →
Ca: w + d ≤ 4

Cb: 2w + 5d ≤ 12

(1/3) Ca + (1/3) Cb
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Bound from dual

a = b = 1/3 yields bound of 
4a + 12b = 16/3 = 5 1/3

Same as bound from original relaxation!
No accident: dual of an LP always* has 
same objective value
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So why bother?

Reason 1: any feasible solution to dual 
yields upper bound (compared with only 
optimal solution to primal)
Reason 2: dual might be easier to work 
with
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Recap

Each feasible point of dual is an upper 
bound on objective
Each feasible point of primal is a lower 
bound on objective

for ILP, each integral feasible point
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Recap

If search in primal finds a feasible point w/ 
objective 4
And approximate solution to dual has 
value 6

approximate = feasible but not optimal
Then we know we’re ≥ 66% of best
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More about 
the dual
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Dual dual

Take the dual of an LP twice, get the 
original LP back (called primal)
Many LP solvers will give you both primal 
and dual solutions at the same time for no 
extra cost
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Recipe

If we have an LP in 
matrix form,
maximize c’x subject to

Ax ≤ b
x ≥ 0

Its dual is a similar-
looking LP:
minimize b’y subject to

A’y ≥ c

y ≥ 0

Ax ≤ b means every component of Ax is ≤ 
corresponding component of b
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Recipe with equalities

If we have an LP with 
equalities,
maximize c’x s.t.

Ax ≤ b
Ex = f
x ≥ 0

Its dual has some 
unrestricted variables:

minimize b’y + f’z s.t.

A’y + E’z ≥ c

y ≥ 0

z unrestricted
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Interpreting the dual variables

The primal variable variables in the 
factory LP were how many widgets and 
doodads to produce
We interpreted dual variables as 
multipliers for primal constraints
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Dual variables as multipliers

Widgets →

D
oo

da
ds

 →
Ca: w + d ≤ 4

Cb: 2w + 5d ≤ 12

(1/3) Ca + (1/3) Cb
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Dual variables as prices

“Multiplier” interpretation doesn’t give 
much intuition
It is often possible to interpret dual 
variables as prices for primal constraints
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Dual variables as prices

Suppose someone offered us a quantity ε 
of wood, loosening constraint to 

w + d ≤ 4 + ε

How much should we be willing to pay for 
this wood?
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Dual variables as prices

RHS in primal is objective in dual
So, dual constraints stay same, previous 
solution a = b = 1/3 still dual feasible

still optimal if ε small enough

Bound changes to (4 + ε) a + 12 b, 
difference of ε * 1/3
So we should pay up to $1/3 per unit of 
wood (in small quantities)
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Duality 
example
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Path planning LP

Find the min-cost path: variables

116



Path planning LP
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Optimal solution

psy = pyg = 1,     psx = pxg = 0,     cost 3
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Matrix form
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Dual
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Dual objective

To get tightest bound, maximize:
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Whole thing
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