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Using FOL




Knowledge engineering
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o Identify relevant objects, functions, and
predicates

o Encode general background knowledge
about domain (reusable)

o Encode specific problem instance

o Pose queries




Knowledge engineering
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o Sadly, next step is also necessary:

o Debug knowledge base
o Severe bug: logical contradictions
o Less severe: undesired conclusions
o Least severe: missing conclusions

o In general, trace back chain of reasoning
until reason for failure is revealed
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Plan search
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sequence

points
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Linear planner
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o Simplest choice: linear planner
o Search state = sequence of operators

o Neighbor: add an operator to end of

o Bind variables as necessary

o both operator and binding are choice
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And so forth
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o Goal: full(M)
o A possible plan:

o move(X, Y), move(Y, Z), push(B3, Z, Y),
push(B3, Y, X), push(B3, X, W),
climb(B3, W), eat(N, W, High)

o DFS will try moving XYX, climbing on
boxes unnecessarily, etc.
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Partial-order planner
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o Linear planner can be wasteful: backtrack
undoes most recent action, rather than one
that might have caused failure

o Partial order planner tries to fix this

o Avoids committing to details of plan until
it has to (principle of least commitment)
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Set of operators
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o Might include move(X, p) “I will move
somewhere from X, eat(target) “I will eat
something”

o Also includes extra operators START,
FINISH

o effects of START are initial state
o preconditions of FINISH are goals
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Adding an ordering constraint

at(N, p) == Jull(M)
at(M, X)  qy(M, p) X ea\t(N)
TR
START — ﬁfzove(X, p) / FINISH
level(M, Low) \

at(BS, r)/puSh(BS) r Q)
at(M, r)" clear(B3)

o Wouldn't ever add ordering on its own—but
may need to when adding operator or guard
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Recap of nelghborhood
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o Pick an open precondition

o Pick an operator and binding that can
satisfy it

o may need to add a new op
o OF can use existing op
o Add an ordering constraint and guard

o Resolve conflicts by adding more ordering

constraints or bindings
I
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Consistency & completeness

o Consistency: no cycles in ordering,
preconditions guaranteed true throughout
guard intervals

o Completeness: no open preconditions

o Search maintains consistency, terminates
when complete
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Plan Graphs
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Planning & model search

o For along time, it was thought that
SAT-style model search was a non-
starter as a planning algorithm

o More recently, people have written fast
planners that

o propositionalize the domain
o turn it into a CSP or SAT problem

o search for a model
41













Propositionalizing
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o Note: this domain is fully propositional

o If we had a general STRIPS domain,
would have to pick a universe and
propositionalize

o E.g., eat(x) would become eat(Banana),
eat(Cake), eat(Fred), ...
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Gettmg a plan
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o Build the plan graph out to some length k
o Translate to a SAT formula or CSP

o Search for a satisfying assignment

o If found, read off the plan

o If not, increment k and try again

o There is a test to see if k is big enough
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Translation to SAT
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o One variable for each pair of literals in
state levels

o One variable per action in action levels
o Constraints implement STRIPS semantics

o Solution tells us which actions are
performed at each action level, which
literals are true at each state level
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Plan search
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o Hand problem to SAT solver

o Or, simple DFS: start from last level, fill in
last action set, compute necessary
preconditions, fill in 2nd-to-last action set,
etc.

o If at some level there is no way to do any
actions, or no way to fill in consistent
preconditions, backtrack
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Optmnzatlon
and Search







Example search problem
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o Factory makes widgets and doodads

o Each widget takes I unit of wood and 2
units of steel to make

o Each doodad uses 1 unit wood, 5 of steel

o Have 4 units wood and 12 units steel;
design a feasible production schedule
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ILP
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ol hzs is an mteger lmear program

o Interesting related problems:
o 0-1 ILP: all variables in {0, 1}
o SAT: O0-1 ILP, all constraints of form
X+ (1-y) + (1-z) =1

o LP: lift integer restriction, all
variables in R

o MILP: some variables in R, others Z
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Smarter algorithms
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o We can build smarter algorithms by
remembering bounds on optimal value

o Firstidea: if we have a solution with profit
3, add a constraint “profit = 3”

o If we then find a solution with profit 3,
replace constraint with “profit = 5"

76




























Relaxation
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o Idea: what if we solve an easier version of

the problem?

o If we make feasible region bigger,
objective value can only get better

o Bigger feasible region = relaxation

o Value of relaxed problem is an upper
bound on value of original problem
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More bounds
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What 1f we’re really 1azy‘7

o 1o get our bound: had to solve the LP
and find its exact optimum

o Can we do less work—perhaps find a
suboptimal solution to LP?

o Sadly, a non-optimal feasible point in
the LP relaxation gives us no useful
bound
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More about
the dual













Interpreting the dual variables
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o The primal variable variables in the
factory LP were how many widgets and
doodads to produce

o We interpreted dual variables as
multipliers for primal constraints
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Dual variables as prices
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o RHS in primal is objective in dual

o So, dual constraints stay same, previous
solution a = b = 1/3 still dual feasible

o Still optimal if € small enough

o Bound changes to (4 + €)a + 12 b,
difference of € * 1/3

o So we should pay up to $1/3 per unit of
wood (in small quantities)
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Duality
example
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