
15-780: Grad AI
Lecture 6: Optimization

Geoff Gordon (this lecture)
Ziv Bar-Joseph

TAs Geoff Hollinger, Henry Lin

Admin

2

Wait list

There are still several students signed up
on the wait list for 15-780
If you are one of them, just let us know,
and we will move you to the regular
course roster

3

Review

4

FOL

Quantifiers, models of FOL expressions
Reasoning in FOL

Clause form, Skolemization
Unification and resolution
Propositionalization

Herbrand, Robinson

5

Planning

Representations of time
Planning languages like STRIPS

operators, preconditions, effects

6

Using FOL

7

Knowledge engineering

Identify relevant objects, functions, and
predicates
Encode general background knowledge
about domain (reusable)
Encode specific problem instance
Pose queries

8

Knowledge engineering

Sadly, next step is also necessary:
Debug knowledge base

Severe bug: logical contradictions
Less severe: undesired conclusions
Least severe: missing conclusions

In general, trace back chain of reasoning
until reason for failure is revealed

9

Plan search

10

Plan search

Given a planning problem (start state,
operator descriptions, goal)
Run standard search algorithms to find
plan
Decisions: search state representation,
neighborhood, search algorithm

11

Linear planner

Simplest choice: linear planner
Search state = sequence of operators
Neighbor: add an operator to end of
sequence
Bind variables as necessary

both operator and binding are choice
points

12

Linear planner

Can search forward from start or
backward from goal
Or mix the two
Goal is often incompletely specified
Example heuristic: number of open literals

13

Goal: full(M)

14

STRIPS state example

food(N)
hungry(M)
at(N, W)
at(M, X)
at(B1, Y)
at(B2, Y)

at(B3, Z)
on(B2, B1)
clear(B2)
clear(B3)
level(M, Low)
level(N, High)

15

Linear planner example

Start w/ empty plan [], initial world state
Pick an operator, e.g.,

Move(from, to)
at(M, from), level(M, Low)
at(M, to), ¬at(M, from)

16

Linear planner example

Bind variables so that preconditions match
world state

e.g., from: X, to: Y
pre: at(M, X), level(M, Low)
post: at(M, Y), ¬at(M, X)

17

Apply operator

food(N)
hungry(M)
at(N, W)

at(B1, Y)
at(B2, Y)

at(B3, Z)
on(B2, B1)
clear(B2)
clear(B3)
level(M, Low)
level(N, High)

at(M, X)at(M, Y)

18

Repeat…

Plan is now [move(X, Y)]
World state is as in previous slide
Pick another operator and binding

Climb(object, p), p: Y
at(M, p), at(object, p), level(M, Low),
clear(object)
level(M, High), ¬level(M, Low)

19

Apply operator

food(N)
hungry(M)
at(N, W)

at(B1, Y)
at(B2, Y)

at(B3, Z)
on(B2, B1)
clear(B2)
clear(B3)

level(N, High)

at(M, Y)
level(M, Low)level(M, High)

20

And so forth

Goal: full(M)
A possible plan:

move(X, Y), move(Y, Z), push(B3, Z, Y),
push(B3, Y, X), push(B3, X, W),
climb(B3, W), eat(N, W, High)

DFS will try moving XYX, climbing on
boxes unnecessarily, etc.

21

Partial-order planner

Linear planner can be wasteful: backtrack
undoes most recent action, rather than one
that might have caused failure
Partial order planner tries to fix this
Avoids committing to details of plan until
it has to (principle of least commitment)

22

Partial-order planner

Search state:
set of operators (partially bound)
ordering constraints
causal links (also called guards)
open preconditions

23

Set of operators

Might include move(X, p) “I will move
somewhere from X”, eat(target) “I will eat
something”
Also includes extra operators START,
FINISH

effects of START are initial state
preconditions of FINISH are goals

24

Partial ordering

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

25

Guards

Describe where preconditions are satisfied

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)

26

Open preconditions

All unsatisfied preconditions of any action
Unsatisfied = doesn’t have a guard

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)at(N, p)

at(M, p)

at(B3, r)
level(M, Low)

at(M, r) clear(B3)

…

27

Partial-order planner

Neighborhood: plan refinement
Add an operator, guard, or ordering
constraint

28

Adding an ordering constraint

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)at(N, p)

at(M, p)

at(B3, r)
level(M, Low)

at(M, r) clear(B3)

…

29

Adding an ordering constraint

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)

at(M, p)

at(B3, r)
at(M, r) clear(B3)

…

Wouldn’t ever add ordering on its own—but
may need to when adding operator or guard

level(M, Low)

at(N, p)

30

Adding a guard

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)at(N, p)

at(M, p)

at(B3, r)
level(M, Low)

at(M, r) clear(B3)

…

31

Adding a guard

Must go forward (may need to add ordering)
Can’t cross operator that affects condition

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)at(N, p)

at(M, p)

at(B3, r)
level(M, Low)

at(M, r) clear(B3)

…

32

Adding a guard

Might involve binding a variable (may be
more than one way to do so)

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)at(N, W)

at(M, p)

at(B3, r)
level(M, Low)

at(M, r) clear(B3)

…

33

Adding an operator

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)at(N, W)

at(M, p)

at(B3, r)
level(M, Low)

at(M, r) clear(B3)

…

34

Adding an operator

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)at(N, W)

at(M, p)

at(B3, r)
level(M, Low)

at(M, r) clear(B3)

…

move(s, r)
at(M, s)

level(M, Low)

35

Resolving conflict

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)at(N, W)

at(M, p)

level(M, Low)

clear(B3)

…

move(s, r)

at(B3, r)
at(M, r)

at(M, s)
level(M, Low)

36

Recap of neighborhood

Pick an open precondition
Pick an operator and binding that can
satisfy it

may need to add a new op
or can use existing op

Add an ordering constraint and guard
Resolve conflicts by adding more ordering
constraints or bindings

37

Consistency & completeness

Consistency: no cycles in ordering,
preconditions guaranteed true throughout
guard intervals
Completeness: no open preconditions
Search maintains consistency, terminates
when complete

38

Execution

A consistent, complete plan can be
executed by linearizing it
Execute actions in any order that matches
the ordering constraints
Fill in unbound variables in any consistent
way

39

Plan Graphs

40

Planning & model search

For a long time, it was thought that
SAT-style model search was a non-
starter as a planning algorithm
More recently, people have written fast
planners that

propositionalize the domain
turn it into a CSP or SAT problem
search for a model

41

Plan graph

Tool for making good CSPs: plan graph
Encodes a subset of the constraints that
plans must satisfy
Remaining constraints are handled during
search (by rejecting solutions that violate
them)

42

Example

Start state: have(Cake)
Goal: have(Cake) ∧ eaten(Cake)

Operators: bake, eat

43

Operators

Bake
pre: ¬have(Cake)

post: have(Cake)
Eat

pre: have(Cake)
post: ¬have(Cake), eaten(Cake)

44

Propositionalizing

Note: this domain is fully propositional
If we had a general STRIPS domain,
would have to pick a universe and
propositionalize
E.g., eat(x) would become eat(Banana),
eat(Cake), eat(Fred), …

45

Plan graph

Alternating levels: states and actions
First level: initial state

have

¬eaten

46

Plan graph

First action level: all applicable actions
Linked to their preconditions

have

¬eaten
eat

47

Plan graph

Second state level: add effects of actions
to get literals that could hold at step 2

have

¬eaten
eat

have

¬eaten
eaten

¬have

48

Plan graph

Also add maintenance actions to
represent effect of doing nothing

have

¬eaten
eat

have

¬eaten
eaten

¬have

49

Plan graph

Extend another pair of levels: now bake
is a possible action

have

¬eaten
eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake

50

Plan graph

Can extend as far right as we want
Plan = subset of the actions at each action
level
Ordering unspecified within a level

51

Plan graph

In addition to the above links, add
mutex links to indicate mutually
exclusive actions or literals

have

¬eaten
eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake

52

Plan graph

Actions which assert contradictory
literals are mutex

have

¬eaten
eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake

53

Plan graph

Literals are mutex if they are
contradictory

have

¬eaten
eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake

54

Plan graph

Or if there is no non-mutex set of
actions that could achieve both

have

¬eaten
eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake

55

Plan graph

Actions are also mutex if one deletes a
precondition of the other, or if their
preconditions are mutex

have

¬eaten
eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake

56

Getting a plan

Build the plan graph out to some length k
Translate to a SAT formula or CSP
Search for a satisfying assignment
If found, read off the plan
If not, increment k and try again
There is a test to see if k is big enough

57

Translation to SAT

One variable for each pair of literals in
state levels
One variable per action in action levels
Constraints implement STRIPS semantics
Solution tells us which actions are
performed at each action level, which
literals are true at each state level

58

Action constraints

Each action can only be executed if all
of its preconditions are present:

actt+1 ⇒ pre1t ∧ pre2t ∧ …

If executed, action asserts its
postconditions:

actt+1 ⇒ post1t+2 ∧ post2t+2 ∧ …

59

Literal constraints

In order to achieve a literal, we must
execute an action that achieves it

postt+2 ⇒ act1t+1 ∨ act2t+1 ∨ …

Might be a maintenance action

60

Initial & goal constraints

Goals must be satisfied at end:
goal1T ∧ goal2T ∧ …

And initial state holds at beginning:
init11 ∧ init21 ∧ …

61

Mutex constraints

Mutex constraints between actions or
literals: add clause (x ⊕ y)

Note: mutexes are redundant, but help
anyway

62

Plan search

Hand problem to SAT solver
Or, simple DFS: start from last level, fill in
last action set, compute necessary
preconditions, fill in 2nd-to-last action set,
etc.
If at some level there is no way to do any
actions, or no way to fill in consistent
preconditions, backtrack

63

Plan search

have

¬eaten
eat

have

¬eaten
eaten

¬have
eat

have

¬eaten
eaten

¬have

bake

64

Optimization
and Search

65

Search problem

Typical search problem: CSP or SAT
Description: variables, domains,
constraints
Find a solution that satisfies constraints
Any satisfying solution is OK

66

Example search problem

Factory makes widgets and doodads
Each widget takes 1 unit of wood and 2
units of steel to make
Each doodad uses 1 unit wood, 5 of steel
Have 4 units wood and 12 units steel;
design a feasible production schedule

67

Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

68

Optimization

Not all feasible solutions are equally good
Within feasible set, want to optimize an
objective function
E.g., maximize profit:

Each widget yields a profit of $1
Each doodad nets $2

69

Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

70

Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

71

Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

profit = 5

72

ILP

This is an integer linear program
Interesting related problems:

0-1 ILP: all variables in {0, 1}
SAT: 0-1 ILP, all constraints of form
x + (1-y) + (1-z) ≥ 1
LP: lift integer restriction, all
variables in ℝ
MILP: some variables in ℝ, others ℤ

73

Search

Can still use search algorithms like DFID
for optimization problems
Just remember the best objective value
seen so far
This is a fine algorithm, but we can often
do better!

74

Bounds

75

Smarter algorithms

We can build smarter algorithms by
remembering bounds on optimal value
First idea: if we have a solution with profit
3, add a constraint “profit ≥ 3”
If we then find a solution with profit 5,
replace constraint with “profit ≥ 5”

76

Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

77

Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

78

Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

79

Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

80

Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

81

Upper bounds

Suppose we’re partway finished: examined
a few nodes and found a solution

82

Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

83

Upper bounds

Have a solution of profit $4
How much profit would we lose by
stopping now?
Might we find a node with profit $73 if we
kept looking?

84

Relaxation

Idea: what if we solve an easier version of
the problem?
If we make feasible region bigger,
objective value can only get better
Bigger feasible region = relaxation
Value of relaxed problem is an upper
bound on value of original problem

85

LP relaxation

Nice way of making feasible region
bigger: drop integrality constraints
Called the LP relaxation of our problem
LPs are efficiently solvable (see below)

86

Factory LP

Widgets →

D
oo

da
ds

 →

feasible

w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

87

profit = 5 1/3

Factory LP

Widgets →

D
oo

da
ds

 →

feasible

w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

88

Upper bounds

So, we have a solution of profit $4
And we know the best solution has profit
no more than $5 1/3
If we’re lazy, we can stop now

89

More bounds

90

What if we’re really lazy?

To get our bound: had to solve the LP
and find its exact optimum
Can we do less work—perhaps find a
suboptimal solution to LP?
Sadly, a non-optimal feasible point in
the LP relaxation gives us no useful
bound

91

A simple bound

Recall:
constraint w + d ≤ 4 (limit on wood)
profit w + 2d

Since w, d ≥ 0,
profit = w + 2d ≤ 2w + 2d

And, doubling both sides of constraint,
2w + 2d ≤ 8 ⇒ profit ≤ 8

92

The same trick works twice

Try other constraint (steel use)
2w + 5d ≤ 12

2*profit = 2w + 4d ≤ 2w + 5d ≤ 12
So profit ≤ 6

93

In fact it works infinitely often

Could take any positive-weight linear
combination of our constraints

negative weights would flip sign

a (w + d – 4) + b (2w + 5d – 12) ≤ 0
(a + 2b) w + (a + 5b) d ≤ 4a + 12b

94

Geometrically

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

95

Geometrically

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

96

Geometrically

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

97

Bound

(a + 2b) w + (a + 5b) d ≤ 4a + 12b
profit = 1w + 2d
So, if 1 ≤ (a + 2b) and 2 ≤ (a + 5b), we
know that profit ≤ 4a + 12b

98

The best bound

If we search for the tightest bound, we
have an LP:

minimize 4a + 12b such that
a + 2b ≥ 1
a + 5b ≥ 2
a, b ≥ 0

Called the dual
99

The dual LP

a →

b
→ a = b = 1/3

a + 2b ≥ 1

a + 5b ≥ 2

0.5

0.5

1 1.5

bound =
4a + 12b

feasible

100

Best bound, as primal constraint

Widgets →

D
oo

da
ds

 →
Ca: w + d ≤ 4

Cb: 2w + 5d ≤ 12

(1/3) Ca + (1/3) Cb
101

Bound from dual

a = b = 1/3 yields bound of
4a + 12b = 16/3 = 5 1/3

Same as bound from original relaxation!
No accident: dual of an LP always* has
same objective value

102

So why bother?

Reason 1: any feasible solution to dual
yields upper bound (compared with only
optimal solution to primal)
Reason 2: dual might be easier to work
with

103

Recap

Each feasible point of dual is an upper
bound on objective
Each feasible point of primal is a lower
bound on objective

for ILP, each integral feasible point

104

Recap

If search in primal finds a feasible point w/
objective 4
And approximate solution to dual has
value 6

approximate = feasible but not optimal
Then we know we’re ≥ 66% of best

105

More about
the dual

106

Dual dual

Take the dual of an LP twice, get the
original LP back (called primal)
Many LP solvers will give you both primal
and dual solutions at the same time for no
extra cost

107

Recipe

If we have an LP in
matrix form,
maximize c’x subject to

Ax ≤ b
x ≥ 0

Its dual is a similar-
looking LP:
minimize b’y subject to

A’y ≥ c

y ≥ 0

Ax ≤ b means every component of Ax is ≤
corresponding component of b

108

Recipe with equalities

If we have an LP with
equalities,
maximize c’x s.t.

Ax ≤ b
Ex = f
x ≥ 0

Its dual has some
unrestricted variables:

minimize b’y + f’z s.t.

A’y + E’z ≥ c

y ≥ 0

z unrestricted

109

Interpreting the dual variables

The primal variable variables in the
factory LP were how many widgets and
doodads to produce
We interpreted dual variables as
multipliers for primal constraints

110

Dual variables as multipliers

Widgets →

D
oo

da
ds

 →
Ca: w + d ≤ 4

Cb: 2w + 5d ≤ 12

(1/3) Ca + (1/3) Cb
111

Dual variables as prices

“Multiplier” interpretation doesn’t give
much intuition
It is often possible to interpret dual
variables as prices for primal constraints

112

Dual variables as prices

Suppose someone offered us a quantity ε
of wood, loosening constraint to

w + d ≤ 4 + ε

How much should we be willing to pay for
this wood?

113

Dual variables as prices

RHS in primal is objective in dual
So, dual constraints stay same, previous
solution a = b = 1/3 still dual feasible

still optimal if ε small enough

Bound changes to (4 + ε) a + 12 b,
difference of ε * 1/3
So we should pay up to $1/3 per unit of
wood (in small quantities)

114

Duality
example

115

Path planning LP

Find the min-cost path: variables

116

Path planning LP

117

Optimal solution

psy = pyg = 1, psx = pxg = 0, cost 3

118

Matrix form

119

Dual

120

Dual objective

To get tightest bound, maximize:

121

Whole thing

122

