15-780: Grad AI Lecture 7: Optimization, Games

Geoff Gordon (this lecture) Ziv Bar-Joseph TAs Geoff Hollinger, Henry Lin

Admin

• Questions on HW1?

Review

Linear and PO planners

- Linear planners
 - forward and backward chaining
- o Partial-order planning
 - action orderings, open preconditions, guard intervals, plan refinement
- Monkey & bananas example

Plan graphs

- Plan graphs for propositional planning
- How to build them
 - mutex conditions for literals, actions
- How to use them
 - direct search, conversion to SAT

Optimization & Search

- Classes of optimization problem
 - LP, ILP, MILP
 - linear constraints, objective, integrality
- Using search for optimization
 - pruning w/ lower bounds on objective
 - o stopping early w/ upper bounds

Relaxation

- Relaxation = increase feasible region
- Good way to get upper bounds on max
- Particularly, LP relaxation of an ILP
- And its dual

Duality

- How to find dual of an LP or ILP
- Interpretations of dual
 - linearly combine constraints to get a new constraint orthogonal to objective
 - find best prices for scarce resources

Duality w/ equality

Recall duality w/ inequality

 Take a linear combination of constraints to bound objective

$$\circ$$
 $(a+2b)$ $w + (a+5b)$ $d \le 4a + 12b$

$$\circ profit = 1w + 2d$$

• So, if $1 \le (a + 2b)$ and $2 \le (a + 5b)$, we know that profit $\le 4a + 12b$

Equality example

o minimize y subject to

$$\circ x + y = 1$$

$$\circ 2y - z = 1$$

$$\circ x, y, z \ge 0$$

Equality example

- Want to prove bound $y \ge ...$
- Look at 2nd constraint:

$$2y - z = 1 \implies$$

$$y - z/2 = 1/2$$

Since z ≥ 0, dropping -z/2 can only increase LHS ⇒

$$\circ$$
 $y \ge 1/2$

Duality w/ equalities

- In general, could start from any linear combination of equality constraints
 - no need to restrict to +ve combination

$$\circ \ a(x+y-1) + b(2y-z-1) = 0$$

$$ax + (a + 2b)y - bz = a + b$$

Duality w/ equalities

$$ax + (a + 2b)y - bz = a + b$$

- As long as coefficients on LHS \leq (0, 1, 0),
 - \circ objective = $0x + 1y + 0z \ge a + b$
- So, maximize a + b subject to
 - $\circ a \leq 0$
 - $\circ a + 2b \le 1$
 - $\circ -b \leq 0$

Duality example

Path planning LP

• Find the min-cost path: variables

Psx, Psy, Pxg, Pyg >0

Path planning LP

win
$$Psx + 3 pxg + 2 psy + pyg$$

$$st$$

$$Psx$$

$$+ Psy$$

$$- Psx + Pxg$$

$$- Psy + pyg = 0$$

$$- Pxg$$

$$- Pyg = -1$$

Optimal solution

$$p_{sy} = p_{yg} = 1$$
, $p_{sx} = p_{xg} = 0$, $cost 3$

Matrix form

Min
$$(1377)P$$

St
$$\lambda_{s} \begin{pmatrix} 1 & 0 & 1 & 0 \\ \lambda_{s} & -1 & 1 & 0 & 0 \\ \lambda_{s} & 0 & 0 & -1 & 1 \\ \lambda_{g} & 0 & -1 & 0 & -1 \end{pmatrix} P = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & -1 & 0 & -1 \\ 0 & 0 & -1 & 0 & -1 \end{bmatrix}$$

Dual

Optimal dual solution

Any solution which adds a constant to all λs also works; $\lambda_x = 2$ also works

Interpretation

- Dual variables are prices on nodes: how much does it cost to start there?
- Dual constraints are local price constraints: edge xg (cost 3) means that node x can't cost more than 3 + price of node g

Search in ILPs

Simple search algorithm

- Run DFS
 - node = partial assignment
 - neighbor = set one variable
- o Prune if a constraint is unsatisfiable
 - E.g., in 0/1 prob, setting y = 0 in $x + 3y \ge 4$
- If we reach a feasible full assignment,
 calculate its value, keep best

More pruning

- Constraint from best solution so far: $objective \ge M$ (for maximization problem)
- Constraint from optimal dual solution:
 objective ≤ M
- Can we find more pruning to do?

First idea

- Analog of constraint propagation or unit resolution
- When we set x, check constraints w/ x in them to see if they restrict the domain of another variable y
- E.g., setting x to 1 in implication constraint $(1-x) + y \ge 1$

Example

- o 0/1 variables x, y, z
- maximize x subject to

$$2x + 2y - z \le 2$$

$$2x - y + z \le 2$$

$$-x + 2y - z \le 0$$

Problem w/ constraint propagation

 Constraint propagation doesn't prune as early as it could:

$$2x + 2y - z \le 2$$

$$2x - y + z \le 2$$

$$-x + 2y - z \le 0$$

 \circ Consider z = 1

Generalizing constraint propagation

Try adding two constraints, then propagating

$$2x + 2y \le 3$$

$$(2x - y \le 1) * 2$$

$$6x \le 5$$

 $\circ \Rightarrow objective = x = 0$

Using the dual

- We just applied the duality trick to the LP after fixing z = 1
- Used a linear combination of two constraints to get a bound on the objective
- Leads to an algorithm called branch and bound

Branch and bound

- Each time we fix a variable, solve the resulting LP
- Gives a tighter upper bound on value of objective in this branch
- If this upper bound < value of a previous solution, we can prune
- Called fathoming the branch

Can we do more?

• Yes: we can make bounds tighter by looking at the...

Duality gap

Factory LP

Duality gap

- We got bound of 5 1/3 either from primal LP relaxation or from dual LP
- Compare to actual best profit of 5
 (respecting integrality constraints)
- Difference of 1/3 is duality gap
 - Term is also used for ratio 5 / (5 1/3)
- Pretty close to optimal, right?

Unfortunately...

Bad gap

- In this example, duality gap is 3 vs 8.5, or about a ratio of 0.35
- Ratio can be arbitrarily bad

Aside: bounding the gap

- Can often bound gap for classes of ILPs
- E.g., straightforward ILP from MAX SAT
 - MAX SAT: satisfy as many clauses as possible in a CNF formula
- *Gap no worse than* 1-1/e = 0.632...

Early stopping

- A duality gap this large won't let us prune or stop our search early
- To fix this problem: cutting planes

Cutting plane

- A cutting plane is a new linear constraint that
 - cuts off some of the non-integral points in the LP relaxation
 - while leaving all integral points feasible

Cutting plane Doodads constraint from dual optimum cutting plane $Widgets \rightarrow$

Cutting plane method

- Solve the LP relaxation
- Use solution to find a cutting plane
- Add cutting plane to LP
 - LP is now a stronger relaxation
- Repeat
 - o until solution to LP is integral

How can we find a cutting plane?

- o One suggestion: Gomory cuts
 - o R. E. Gomory, 1963
- First to guarantee finite termination of cutting plane method
- Example above was a Gomory cut

Gomory cut example

• A linear combination of constraints:

$$w + 2d \le 51/3$$

- Since w, d are integers, so is w + 2d
- So we also have

$$w + 2d \leq 5$$

o Can (but won't) generalize recipe

Cutting planes

- How good is the Gomory cut in general?
- Sadly, not so great.
- Other general cuts have been proposed, but best cuts are often problem-specific

Branch and Cut

Branch and cut

- Cutting planes recipe doesn't use branching
- What if we try to interleave search with cut generation?
- Resulting branch and cut methods are some of the most popular algorithms for solving ILPs and MILPs

Recipe

- o DFS as for branch and bound
- Every so often, solve LP relaxation
 - prune if bound shows branch useless
 - while not bored, use solution to generate cut, re-solve
- Branch on next variable, repeat

Tension of cutting v. branching

- After a branch it may become easier to generate more cuts
 - o so easier as we go down the tree
- Cuts at a node N are valid at N's children
 - so it's worth spending more effort higher in the search tree

Example: robot task assignment

Team of robots must explore unknown area

Points of interest

Exploration plan

ILP

- Variables (all 0/1):
 - \circ $z_{ij} = robot i does task j$
 - $\circ x_{ijkt} = robot i uses edge jk at step t$
- \circ Cost = path cost task bonus
 - $\circ \sum x_{ijkt} c_{ijkt} \sum z_{ij} t_{ij}$

Constraints

- Assigned tasks: $\forall i, j, \sum_{kt} x_{ikjt} \geq z_{ij}$
- One edge per step: $\forall i, t, \sum_{jk} x_{ijkt} = 1$
 - o self-loops @ base to allow idling
- For each i, x_{ijkt} forms a tour from base:
 - $\circ \forall i, j, t, \sum_{k} x_{ikjt} = \sum_{k} x_{ijk(t+1)}$
 - edges used into node = edges used out

More on duality, search, optimization

General optimization

 \circ minimize f(x) over region defined by pieces

$$g_i(x) = 0$$
 or $g_i(x) \le 0$

 \circ assume f(x) convex, so difficulty is g

Minimization

- Unconstrained: set $\nabla f(x) = 0$
- E.g., minimize

$$f(x, y) = x^2 + y^2 + 6x - 4y + 5$$

$$\nabla f(x, y) = (2x + 6, 2y - 4)$$

$$(x, y) = (-3, 2)$$

Equality constraints

• Equality constraint:

minimize
$$f(x)$$
 s.t. $g(x) = 0$

- can't just set $\nabla f = 0$ (might violate g(x) = 0)
- Instead, objective gradient should be along constraint normal
 - any motion that decreases objective will violate the constraint

Example

• Minimize $x^2 + y^2$ subject to x + y = 2

Lagrange multipliers

- Minimize f(x) s.t. g(x) = 0
- \circ Constraint normal is ∇g
 - (1, 1) in our example
- \circ Want ∇f parallel to ∇g
- Equivalently, want $\nabla f = \lambda \nabla g$
- λ is a Lagrange multiplier

Lagrange multipliers

- Original constraint: x + y = 2
- $\circ \nabla f = \lambda \nabla g : (2x, 2y) = \lambda(1, 1)$

$$x + y = 2$$

$$2x = \lambda$$

$$2y = \lambda$$

More than one constraint

 With multiple constraints, use multiple multipliers:

$$min x^2 + y^2 + z^2 st$$
$$x + y = 2$$

x + z = 2

$$(2x, 2y, 2z) = \lambda(1, 1, 0) + \mu(1, 0, 1)$$

5 equations, 5 unknowns

$$x + y = 2$$

$$x + z = 2$$

$$2x = \lambda + \mu$$

$$2y = \lambda$$

$$2z = \mu$$

Two constraints: the picture

What about inequalities?

• If minimum is in interior, can get it by setting $\nabla f = 0$

What about inequalities?

 If minimum is on boundary, treat as if boundary were an equality constraint (use Lagrange multiplier)

What about inequalities?

- Minimum could be at a corner: two boundary constraints active
- In n dims, up to n linear inequalities may be active (more if degenerate)

Search

- So, a strategy for solving problems with inequality constraints: search through sets of constraints that might be active
- For each active set, solve linear system of equations, get a possible solution
- Test whether solution is feasible
- If so, record objective value

Search

- Search space:
 - node = active set of constraints
 - corresponds to a setting of variables (solve linear system)
 - objective = as given, plus penalty for constraint violations
 - neighbor = add, delete, or swap constraints

Connection to duality

 Linear combination of constraint normals = gradient of objective

Connection to duality

- Each active set defines Lagrange multipliers λ
 - \circ active set G(x) = 0
 - $\circ \nabla f = \nabla G \lambda$
- Multipliers at optimal solution are optimal dual solution

LPs and Simplex

Simplex

- Objective increased monotonically throughout search
- Turns out, this is always possible—leads to a lot of pruning!
- We have just defined the simplex algorithm

Connection to duality

- Each active set defines Lagrange multipliers
 - \circ min c'x s.t. Ax = b (A, b = active set)
 - $\circ \nabla (c'x) = c$
 - $\circ \nabla (Ax b) = A'$
 - \circ So, $A'\lambda = c$
- Multipliers at optimal solution are optimal dual solution

Game search

Games

- We will consider games like checkers and chess:
 - sequential
 - o zero-sum
 - o deterministic, alternating moves
 - complete information
- Generalizations later

Chess

- Classic AI challenge problem
- o In late '90s, Deep Blue became first computer to beat reigning human champion

History:

- Minimax with heuristic: 1950
- Learning the heuristic: 1950s (Samuels' checkers)
- Alpha-beta pruning: 1966
- Transposition tables: 1967 (hash table to find dups)
- Quiescence: 1960s
- o DFID: 1975
- End-game databases: 1977 (all 5-piece and some 6)
- Opening books: ?

Game tree

Game tree for chess

Minimax search

- For small games, we can determine the value of each node in the game tree by working backwards from the leaves
- My move: node's value is maximum over children
- Opponent move: value is minimum over children

Minimax example: 2x2 tic-tac-toe

Synthetic example

Principal variation

Making it work

- Minimax is all well and good for small games
- But what about bigger ones? 2 answers:
 - cutting off search early (big win)
 - o pruning (smaller win but still useful)

Heuristics

- Quickly and approximately evaluate a position without search
- \circ E.g., Q = 9, R = 5, B = N = 3, P = 1
- Build out game tree as far as we can, use heuristic at leaves in lieu of real value
 - might want to build it out unevenly (more below)

Heuristics

- Deep Blue used: materiel, mobility, king position, center control, open file for rook, paired bishops/rooks, ... (> 6000 total features!)
- Weights are context dependent, learned from DB of grandmaster games then hand tweaked

Pruning

 Idea: don't bother looking at parts of the tree we can prove are irrelevant

Pruning example

Pruning example

Alpha-beta pruning

- o Do a DFS through game tree
- At each node n on stack, keep bounds
 - α(n): value of best deviation so far for MAX along path to n
 - β(n): value of best deviation so far for MIN along path to n

Alpha-beta pruning

- Deviation = way of leaving the path to n
- So, to get α,
 - o take all MAX nodes on path to n
 - look at all their children that we've finished evaluating
 - best (highest) of these children is α
- Lowest of children of MIN nodes is β

Example of alpha and beta

Alpha-beta pruning

- At max node:
 - o receive α and β values from parent
 - expand children one by one
 - o update a as we go
 - o if α ever gets higher than β, stop
 - won't ever reach this node (return α)

Alpha-beta pruning

- At min node:
 - o receive α and β values from parent
 - expand children one by one
 - update β as we go
 - o if β ever gets lower than α, stop
 - won't ever reach this node (return β)

Example

How much do we save?

- Original tree: bd nodes
 - \circ b = branching factor
 - \circ d = depth
- If we expand children in random order, pruning will touch $b^{3d/4}$ nodes
- Lower bound (best node first): $b^{d/2}$
- Can often get close to lower bound w/ move ordering heuristics