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Admin

Questions on HW1?
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Review
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Linear and PO planners

Linear planners
forward and backward chaining

Partial-order planning
action orderings, open preconditions, 
guard intervals, plan refinement

Monkey & bananas example
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Plan graphs

Plan graphs for propositional planning
How to build them

mutex conditions for literals, actions
How to use them

direct search, conversion to SAT
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Optimization & Search

Classes of optimization problem
LP, ILP, MILP
linear constraints, objective, integrality

Using search for optimization
pruning w/ lower bounds on objective
stopping early w/ upper bounds 
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Relaxation

Relaxation = increase feasible region
Good way to get upper bounds on max
Particularly, LP relaxation of an ILP
And its dual
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Duality

How to find dual of an LP or ILP
Interpretations of dual

linearly combine constraints to get a 
new constraint orthogonal to 
objective
find best prices for scarce resources
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Duality w/ 
equality
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Recall duality w/ inequality

Take a linear combination of constraints 
to bound objective
(a + 2b) w + (a + 5b) d ≤ 4a + 12b
profit = 1w + 2d
So, if 1 ≤ (a + 2b) and 2 ≤ (a + 5b), we 
know that profit ≤ 4a + 12b
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Equality example

minimize y subject to
x + y = 1
2y – z = 1
x, y, z ≥ 0

11



Equality example

Want to prove bound y ≥ …
Look at 2nd constraint:

2y – z = 1    ⇒  

y – z/2 = 1/2
Since z ≥ 0, dropping –z/2 can only 
increase LHS  ⇒

y ≥ 1/2
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Duality w/ equalities

In general, could start from any linear 
combination of equality constraints

no need to restrict to +ve combination
a (x + y – 1) + b (2y – z – 1) = 0
a x + (a + 2b) y – b z = a + b
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Duality w/ equalities

a x + (a + 2b) y – b z = a + b
As long as coefficients on LHS ≤ (0, 1, 0),

objective = 0 x + 1 y + 0 z ≥ a + b
So, maximize a + b subject to

a ≤ 0
a + 2b ≤ 1
–b ≤ 0
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Duality 
example
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Path planning LP

Find the min-cost path: variables
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Path planning LP
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Optimal solution

psy = pyg = 1,     psx = pxg = 0,     cost 3

18



Matrix form
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λs

λx

λy

λg



Dual
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Optimal dual solution

0

1

3

3

Any solution which adds a constant to 
all λs also works; λx = 2 also works
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Interpretation

Dual variables are prices on nodes: how 
much does it cost to start there?
Dual constraints are local price 
constraints: edge xg (cost 3) means that 
node x can’t cost more than 3 + price of 
node g
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Search in 
ILPs

23



Simple search algorithm

Run DFS
node = partial assignment
neighbor = set one variable

Prune if a constraint is unsatisfiable
E.g., in 0/1 prob, setting y = 0 in       
x + 3y ≥ 4

If we reach a feasible full assignment, 
calculate its value, keep best
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More pruning

Constraint from best solution so far: 
objective ≥ M (for maximization problem)
Constraint from optimal dual solution: 
objective ≤ M
Can we find more pruning to do?

25



First idea

Analog of constraint propagation or unit 
resolution
When we set x, check constraints w/ x in 
them to see if they restrict the domain of 
another variable y
E.g., setting x to 1 in implication 
constraint (1–x) + y ≥ 1
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Example

0/1 variables x, y, z
maximize x subject to

2x + 2y – z ≤ 2
2x – y + z ≤ 2
–x + 2y – z ≤ 0
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Problem w/ constraint propagation

Constraint propagation doesn’t prune as 
early as it could:

2x + 2y – z ≤ 2
2x – y + z ≤ 2
–x + 2y – z ≤ 0

Consider z = 1

2x + 2y ≤ 3

2x – y ≤ 1

x – 2y ≥ –1
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Generalizing constraint propagation

Try adding two constraints, then 
propagating

2x + 2y ≤ 3
(2x – y ≤ 1) * 2
6x ≤ 5

⇒ objective = x = 0

2x + 2y ≤ 3

2x – y ≤ 1

x – 2y ≥ –1
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Using the dual

We just applied the duality trick to the LP 
after fixing z = 1
Used a linear combination of two 
constraints to get a bound on the objective
Leads to an algorithm called branch and 
bound
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Branch and bound

Each time we fix a variable, solve the 
resulting LP
Gives a tighter upper bound on value of 
objective in this branch
If this upper bound < value of a previous 
solution, we can prune
Called fathoming the branch

31



Can we do more?

Yes: we can make bounds tighter by 
looking at the…
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Duality gap
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Factory LP

Widgets →

D
oo

da
ds

 →
Ca: w + d ≤ 4

Cb: 2w + 5d ≤ 12

(1/3) Ca + (1/3) Cb
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Duality gap

We got bound of 5 1/3 either from primal 
LP relaxation or from dual LP
Compare to actual best profit of 5 
(respecting integrality constraints)
Difference of 1/3 is duality gap

Term is also used for ratio 5 / (5 1/3)
Pretty close to optimal, right?
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Unfortunately…

Widgets →

D
oo

da
ds

 → profit = 
w + 2d
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Bad gap

In this example, duality gap is 3 vs 8.5, or 
about a ratio of 0.35
Ratio can be arbitrarily bad
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Aside: bounding the gap

Can often bound gap for classes of ILPs
E.g., straightforward ILP from MAX SAT 

MAX SAT: satisfy as many clauses as 
possible in a CNF formula

Gap no worse than 1–1/e = 0.632…
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Early stopping

A duality gap this large won’t let us prune 
or stop our search early
To fix this problem: cutting planes
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Cutting plane

A cutting plane is a new linear constraint 
that 

cuts off some of the non-integral points 
in the LP relaxation 
while leaving all integral points feasible
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Cutting plane

Widgets →

D
oo

da
ds

 →

constraint from 
dual optimum

cutting plane
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Cutting plane method

Solve the LP relaxation
Use solution to find a cutting plane
Add cutting plane to LP

LP is now a stronger relaxation
Repeat

until solution to LP is integral
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How can we find a cutting plane?

One suggestion: Gomory cuts
R. E. Gomory, 1963

First to guarantee finite termination of 
cutting plane method
Example above was a Gomory cut
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Gomory cut example

A linear combination of constraints:
w + 2d ≤ 5 1/3

Since w, d are integers, so is w + 2d
So we also have

w + 2d ≤ 5
Can (but won’t) generalize recipe
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Cutting planes

How good is the Gomory cut in general?
Sadly, not so great.
Other general cuts have been proposed, 
but best cuts are often problem-specific
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Branch 
and Cut
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Branch and cut

Cutting planes recipe doesn’t use 
branching
What if we try to interleave search with 
cut generation?
Resulting branch and cut methods are 
some of the most popular algorithms for 
solving ILPs and MILPs
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Recipe

DFS as for branch and bound
Every so often, solve LP relaxation

prune if bound shows branch useless
while not bored, use solution to 
generate cut, re-solve

Branch on next variable, repeat
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Tension of cutting v. branching

After a branch it may become easier to 
generate more cuts

so easier as we go down the tree
Cuts at a node N are valid at N’s children

so it’s worth spending more effort 
higher in the search tree
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Example: robot task assignment

Team of robots must explore unknown area
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Points of interest

Base
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Exploration plan
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ILP

Variables (all 0/1):
zij = robot i does task j
xijkt = robot i uses edge jk at step t

Cost = path cost – task bonus
∑ xijkt cijkt - ∑ zij tij
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Constraints

Assigned tasks: ∀i, j, ∑kt xikjt ≥ zij

One edge per step: ∀i, t, ∑jk xijkt = 1

self-loops @ base to allow idling
For each i, xijkt forms a tour from base:
∀i, j, t, ∑k xikjt = ∑k xijk(t+1)

edges used into node = edges used out
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More on 
duality, search, 
optimization
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General optimization

minimize f(x) over region defined by pieces
gi(x) = 0  or  gi(x) ≤ 0

assume f(x) convex, so difficulty is g
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Minimization

Unconstrained: set ∇f(x) = 0

E.g., minimize 
f(x, y) = x2 + y2 + 6x – 4y + 5

∇f(x, y) = (2x + 6, 2y – 4)

(x, y) = (–3, 2)
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Equality constraints

Equality constraint:
minimize f(x) s.t. g(x) = 0

can’t just set ∇f = 0 (might violate g(x) = 0)

Instead, objective gradient should be along 
constraint normal

any motion that decreases objective will 
violate the constraint
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Example

Minimize x2 + y2 subject to x + y = 2

Lagrange Multipliers

Lagrange multipliers are a way to solve constrained optimization problems. 

For example, suppose we want to minimize the function

f !x, y" ! x2 " y2

subject to the constraint

0 ! g!x, y" ! x " y# 2

Here are the constraint surface, the contours of f , and the solution.

lp.nb 3
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Lagrange multipliers

Minimize f(x) s.t. g(x) = 0
Constraint normal is ∇g

(1, 1) in our example
Want ∇f parallel to ∇g

Equivalently, want ∇f = λ∇g
λ is a Lagrange multiplier

Lagrange Multipliers

Lagrange multipliers are a way to solve constrained optimization problems. 

For example, suppose we want to minimize the function

f !x, y" ! x2 " y2

subject to the constraint

0 ! g!x, y" ! x " y# 2

Here are the constraint surface, the contours of f , and the solution.

lp.nb 3
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Lagrange multipliers

Original constraint: x + y = 2
∇f = λ∇g: (2x, 2y) = λ(1, 1)

x + y = 2
2x = λ

2y = λ
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More than one constraint

With multiple constraints, use multiple 
multipliers:

min x2 + y2 + z2 st 
x + y = 2
x + z = 2

(2x, 2y, 2z) = λ(1, 1, 0) + µ(1, 0, 1)
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5 equations, 5 unknowns

x + y = 2
x + z = 2

2x = λ + µ

2y = λ

2z = µ
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Two constraints: the picture

Multiple Constraints: the Picture

The solution to the above equations is

!p ! "
4
#####
3

, q ! "
4
#####
3

, x ! 4
#####
3

, y! 2
#####
3

, z ! 2
#####
3
"

Here are the two constraints, together with a level surface of the objective 

function. Neither constraint is tangent to the level surface; instead, the 

normal to the level surface is a linear combination of the normals to the 

two constraint surfaces (with coefficients p and q).

lp.nb 7
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What about inequalities?

If minimum is in interior, can get it by 
setting ∇f = 0
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What about inequalities?

If minimum is on boundary, treat as if 
boundary were an equality constraint 
(use Lagrange multiplier)
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What about inequalities?

Minimum could be at a corner: two 
boundary constraints active
In n dims, up to n linear inequalities 
may be active (more if degenerate) 67



Search

So, a strategy for solving problems with 
inequality constraints: search through sets 
of constraints that might be active
For each active set, solve linear system of 
equations, get a possible solution
Test whether solution is feasible
If so, record objective value
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Search

Search space: 
node = active set of constraints

corresponds to a setting of variables 
(solve linear system)

objective = as given, plus penalty for 
constraint violations
neighbor = add, delete, or swap 
constraints
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Connection to duality

Linear combination of constraint 
normals = gradient of objective
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Connection to duality

Each active set defines Lagrange 
multipliers λ

active set G(x) = 0
∇f = ∇G λ

Multipliers at optimal solution are optimal 
dual solution
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LPs and 
Simplex
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Back to LP

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d

feasible
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Back to LP

Widgets →

D
oo

da
ds

 →
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Back to LP

Widgets →

D
oo

da
ds

 →
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Back to LP

Widgets →

D
oo

da
ds

 →
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Simplex

Objective increased monotonically 
throughout search
Turns out, this is always possible—leads 
to a lot of pruning!
We have just defined the simplex algorithm
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Connection to duality

Each active set defines Lagrange 
multipliers

min c’x s.t. Ax = b   (A, b = active set)
∇(c’x) = c

∇(Ax - b) = A’
So, A’ λ = c

Multipliers at optimal solution are optimal 
dual solution
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Game search
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Games

We will consider games like checkers and 
chess:

sequential
zero-sum
deterministic, alternating moves
complete information

Generalizations later
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Chess

Classic AI challenge problem
In late ’90s, Deep Blue became first 
computer to beat reigning human champion 81



History:

Minimax with heuristic: 1950

Learning the heuristic: 1950s (Samuels’ checkers)

Alpha-beta pruning: 1966

Transposition tables: 1967 (hash table to find dups)

Quiescence: 1960s

DFID: 1975

End-game databases: 1977 (all 5-piece and some 6)

Opening books: ?
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Game tree
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Game tree for chess
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Minimax search

For small games, we can determine the 
value of each node in the game tree by 
working backwards from the leaves
My move: node’s value is maximum over 
children
Opponent move: value is minimum over 
children
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Minimax example: 2x2 tic-tac-toe

87
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Synthetic example
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Principal variation
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Making it work

Minimax is all well and good for small 
games
But what about bigger ones? 2 answers:

cutting off search early (big win)
pruning (smaller win but still useful)
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Heuristics

Quickly and approximately evaluate a 
position without search
E.g., Q = 9, R = 5, B = N = 3, P = 1
Build out game tree as far as we can, use 
heuristic at leaves in lieu of real value

might want to build it out unevenly 
(more below)
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Heuristics

Deep Blue used: materiel, mobility, king 
position, center control, open file for rook, 
paired bishops/rooks, … (> 6000 total 
features!)
Weights are context dependent, learned 
from DB of grandmaster games then hand 
tweaked
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Pruning

Idea: don’t bother looking at parts of the 
tree we can prove are irrelevant
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Pruning example
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Pruning example
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Alpha-beta pruning

Do a DFS through game tree
At each node n on stack, keep bounds
α(n): value of best deviation so far for 
MAX along path to n
β(n): value of best deviation so far for 
MIN along path to n

96



Alpha-beta pruning

Deviation = way of leaving the path to n
So, to get α,

take all MAX nodes on path to n
look at all their children that we’ve 
finished evaluating
best (highest) of these children is α

Lowest of children of MIN nodes is β
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Example of alpha and beta
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Alpha-beta pruning

At max node:
receive α and β values from parent

expand children one by one
update α as we go

if α ever gets higher than β, stop
won’t ever reach this node (return α)
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Alpha-beta pruning

At min node:
receive α and β values from parent

expand children one by one
update β as we go

if β ever gets lower than α, stop
won’t ever reach this node (return β)
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Example
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How much do we save?

Original tree: bd nodes
b = branching factor
d = depth

If we expand children in random order, 
pruning will touch b3d/4 nodes
Lower bound (best node first): bd/2

Can often get close to lower bound w/ 
move ordering heuristics
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