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Admin

Extension on HW1!
Until Friday 3PM
On Friday only, give to Diane Stidle, 
4612 Wean Hall
50% credit until Monday 10:30AM
No HWs accepted over weekend
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Admin

HW2 out today (on website now)
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Admin

Poster session for final projects
5:30PM on Thursday, Dec 13

Final report deadline: beginning of poster 
session

This is a hard deadline, since course 
grades are due soon thereafter
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Review
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Duality

Duality w/ equality constraints
How to express path planning as an LP
Dual of path planning LP
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Optimization in ILPs

DFS, with pruning by:
constraint propagation
best solution so far
dual feasible solution
dual feasible solution for relaxation of 
ILP with some variables set (branch 
and bound)
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Optimization in ILPs

Duality gap
Cutting planes
Branch and cut
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More on optimization

Unconstrained optimization: gradient = 0
Equality-constrained optimization

Lagrange multipliers
Inequality-constrained: either

nonnegative multipliers, or
search through bases (for LP: simplex)
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Quiescence
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Duality as game

Yet one more interpretation of 
duality
Game between minimizer and 
maximizer
minxy  x2 + y2  s.t.  x + y = 2

Lagrange Multipliers

Lagrange multipliers are a way to solve constrained optimization problems. 

For example, suppose we want to minimize the function

f !x, y" ! x2 " y2

subject to the constraint

0 ! g!x, y" ! x " y# 2

Here are the constraint surface, the contours of f , and the solution.

lp.nb 3

minxy maxλ  x2 + y2 + λ(x + y – 2)
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Duality as game

minxy maxλ  x2 + y2 + λ(x + y – 2)

Gradients wrt x, y, λ:

2x + λ = 0
2y + λ = 0

x + y = 2
Same equations as before
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Matrix 
games
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Matrix games

Games where each player chooses a single 
move (simultaneously with other players)
Also called normal form games
Simultaneous moves cause uncertainty: we 
don’t know what other player(s) will do
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Acting in a matrix game

One of the simplest kinds of games; we’ll 
get more complicated later in course
But still will make us talk about

negotiation
cooperation
threats, promises, etc.
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Matrix game: prisoner’s dilemma

C D

C –1 –9

D 0 –5

C D

C –1 0

D –9 –5

payoff to Row Payoff to Col
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Matrix game: prisoner’s dilemma

C D

C –1, –1 –9, 0

D 0, –9 –5, –5
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Can also have n-player games

H T

H 0, 0, 1 0, 0, 1

T 0, 0, 1 1, 1, 0

H T

H 1, 1, 0 0, 0, 1

T 0, 0, 1 0, 0, 1

if Layer plays H if Layer plays T
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Analyzing a game

What do we want to know about a game?
Value of a joint action: just read it off of 
the table
Value of a mixed joint strategy: almost as 
simple
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Value of a mixed joint strategy

Suppose Row plays 30-70, Col plays 60-40

C D

C .6*.3*w .4*.3*x

D .6*.7*y .4*.7*z
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Payoff of joint strategy

Just an average over elements of payoff 
matrices MR and MC

If x and y are strategy vectors like (.3, .7)’ 
then we can write 

x’ MR y 
x’ MC y
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What else?

Could ask for value of a strategy x under 
various weaker assumptions about other 
players’ strategies y, z, …
Weakest assumption: other players might 
do absolutely anything!
How much does a strategy guarantee us in 
the most paranoid of all possible worlds?
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Paranoia

Worst-case value of a row strategy x in 2-
player game is

miny x’ MR y
More than two players, min over y, z, …
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Paranoia

Paranoid player wants to maximize the 
worst-case value:

maxx miny x’ MR y
Famous theorem of von Neumann: it 
doesn’t matter who chooses first

maxx miny x’ MR y  =  miny maxx x’ MR y
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Safety value

miny maxx x’ MR y is safety value or 
minimax value of game 
A strategy that guarantees minimax value 
is a minimax strategy
Particularly useful in …
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Zero-sum 
games
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Zero-sum game

A 2-player matrix game where
(payoff to A) = –(payoff to B) for all 
combinations of actions
Note: 3-player games are never called 
zero-sum, even if payoffs add to 0
But if (payoff to A) = 7 – (payoff to B) we 
sometimes fudge and call it zero-sum

27



Zero-sum: matching pennies

H T

H 1 –1

T –1 1
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Minimax

In zero-sum games, safety value for Row is 
negative of safety value for Col
If both players play such strategies, we are 
in a minimax equilibrium

no incentive for either player to switch 
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Finding minimax

minx maxy  x’My  subject to
1’x = 1
1’y = 1
x, y ≥ 0
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For example
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Finding minimax

Eliminate x’s equality constraint:
minx maxy, z  z(1 – 1’x) + x’My  subject to

1’y = 1
x, y ≥ 0
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Finding minimax

Gradient wrt x is
My – 1z

maxy, z  z  subject to
My – 1z ≥ 0
1’y = 1
y ≥ 0

33



Interpreting LP

maxy, z  z  subject to
My ≥ 1z
1’y = 1
y ≥ 0

y is a strategy for Col; z is value of this 
strategy
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For example
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Duality

x is dual variable for My ≥ 1z
Complementarity: Row can only play 
strategies where My = 1z
Makes sense: others cost more
Dual of this LP looks the same, so Col can 
only play strategies where x’M is maximal
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Back to general-sum

What if the world isn’t really out to get us?
Minimax strategy is unnecessarily 
pessimistic
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General-sum 
equilibria
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Lunch

A U

A 3, 4 0, 0

U 0, 0 4, 3

A = Ali Baba, U = Union Grill
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Pessimism

In Lunch, safety value is 12/7 < 2
Could get 3 by suggesting other player’s 
preferred restaurant
Any halfway-rational player will 
cooperate with this suggestion
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Rationality

Trust the other player to look out for his/
her own best interests
Stronger assumption than “s/he might do 
anything”
Results in possibility of higher-than-safety 
payoff
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Dominated strategies

First step towards being rational: if a 
strategy is bad no matter what the other 
player does, don’t play it!
Such a strategy is (strictly) dominated
Strict = always worse (not just the same)
Weak = sometimes worse, never better
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Eliminating dominated strategies

C D

C -1, -1 -9, 0

D 0, -9 -5, -5

Prisoner’s dilemma
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Do we always get a unique 
answer?

No: try Lunch
What can we do instead?
Well, what was special 
about Row offering to play 
A?

A U

A 3, 4 0, 0

U 0, 0 4, 3
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Equilibrium

If Row says s/he will play A, 
Col’s best response is to play 
A as well
And if Col plays A, then Row’s 
best response is also A
So (A, A) are mutually 
reinforcing strategies—an 
equilibrium

A U

A 3, 4 0, 0

U 0, 0 4, 3
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Equilibrium

In addition to assuming players will avoid 
dominated strategies, could assume they 
will play an equilibrium
Can rule out some more joint strategies 
this way
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Nash equilibrium

Best-known type of equilibrium
Independent mixed strategy for each 
player
Each strategy is a best response to others

puts zero weight on suboptimal actions
therefore zero weight on dominated 
actions
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For example

A U

A 3, 4 0, 0

U 0, 0 4, 3

A = Ali Baba, U = Union Grill
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Another Nash

A U

A 3, 4 0, 0

U 0, 0 4, 3

3/7

4/7

4/7     3/7
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Row strategy, Col payoffs

A U

A 4 0

U 0 3

3/7

4/7

12/7     12/7
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Col strategy, Row payoffs

A U

A 3 0

U 0 4

4/7      3/7

12/7

12/7
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Correlated 
equilibria
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Nash at Lunch

Nash was still counterintuitive
Always play U, U or always play A, A
Or, get bizarrely low payoffs

Any real humans would flip a coin or 
alternate
Leads to “correlated equilibrium”
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Correlated equilibrium

If there is intelligent life on other planets, 
in a majority of them, they would have 
discovered correlated equilibrium before 
Nash equilibrium.

—Roger Myerson
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Moderator

A moderator has a big deck of cards
Each card has written on it a 
recommended action for each player
Moderator draws a card, whispers 
actions to corresponding players

actions may be correlated
only find out your own
may infer others

Row: Ali 
Baba

Col: Union 
Grill

♠

♠
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Correlated equilibrium

Since players can have correlated 
actions, an equilibrium with a 
moderator is called a correlated 
equilibrium
Example: 5-way stoplight
All NE are CE
At least as many CE as NE in every 
game (often strictly more)

stop
stop
go

stop
stop

♠

♠
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Finding correlated equilibrium

A U

A a b

U c d

A U

A 3, 4 0, 0

U 0, 0 4, 3
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Finding correlated equilibrium

P(Row is recommended to play A) = a + b
P(Col recommended A | Row 
recommended A) = a / (a + b)
Rationality: when I’m recommended to 
play A, I don’t want to play U instead

A U
A a b
U c d
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Rationality constraint

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2006/03/30 20:02

21.2 Equilibrium 7

OO

FF

OF

FO

Figure 21.1 Equilibria in the Battle of the Sexes. The corners of the outlined
simplex correspond to the four pure strategy profiles OO, OF, FO, and FF; the
curved surface is the set of distributions where the row and column players pick
independently; the convex shaded polyhedron is the set of correlated equilibria.
The Nash equilibria are the points where the curved surface intersects the shaded
polyhedron.

and FF:

O F

O a b

F c d

Suppose that the row player receives the recommendation O. Then it knows that
the column player will play O and F with probabilities a/(a + b) and b/(a + b). (The
denominator is nonzero since the row player has received the recommendation O.)
The definition of correlated equilibrium states that in this situation the row player’s
payoff for playing O must be at least as large as its payoff for playing F.

In other words, in a correlated equilibrium we must have

4
a

a + b
+ 0

b

a + b
≥ 0

a

a + b
+ 3

b

a + b
if a + b > 0

Multiplying through by a + b yields the linear inequality

4a + 0b ≥ 0a + 3b (21.2)

(We have discarded the qualification a+b > 0 since inequality 21.2 is always true in
this case.) On the other hand, by examining the case where the row player receives

Rpayoff(A, A) P(col A | row A)

Rpay(A, U) P(U | A)

Rpay(U, U) P(U | A)

Rpay(U, A) P(A | A)

A U
A a b
U c d

A U
A 4,3 0,0
U 0,0 3,4 63



Rationality constraint is linear
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Figure 21.1 Equilibria in the Battle of the Sexes. The corners of the outlined
simplex correspond to the four pure strategy profiles OO, OF, FO, and FF; the
curved surface is the set of distributions where the row and column players pick
independently; the convex shaded polyhedron is the set of correlated equilibria.
The Nash equilibria are the points where the curved surface intersects the shaded
polyhedron.

and FF:

O F

O a b

F c d

Suppose that the row player receives the recommendation O. Then it knows that
the column player will play O and F with probabilities a/(a + b) and b/(a + b). (The
denominator is nonzero since the row player has received the recommendation O.)
The definition of correlated equilibrium states that in this situation the row player’s
payoff for playing O must be at least as large as its payoff for playing F.

In other words, in a correlated equilibrium we must have
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and FF:

O F
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F c d

Suppose that the row player receives the recommendation O. Then it knows that
the column player will play O and F with probabilities a/(a + b) and b/(a + b). (The
denominator is nonzero since the row player has received the recommendation O.)
The definition of correlated equilibrium states that in this situation the row player’s
payoff for playing O must be at least as large as its payoff for playing F.

In other words, in a correlated equilibrium we must have
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this case.) On the other hand, by examining the case where the row player receives

64



All rationality constraints

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2006/03/30 20:02

8 Game-theoretic Learning—DRAFT Please do not distribute

the recommendation F, we can show that

0c + 3d ≥ 4c + 0d . (21.3)

Similarly, the column player’s two possible recommendations tell us that

3a + 0c ≥ 0a + 4c (21.4)

and

0b + 4d ≥ 3b + 0d . (21.5)

Intersecting the four constraints (21.2–21.5), together with the simplex constraints

a + b + c + d = 1

and

a, b, c, d ≥ 0

yields the set of correlated equilibria. The set of correlated equilibria is shown as
the six-sided shaded polyhedron in figure 21.1. (Figure 21.1 is adapted from (Nau
et al., 2004).)

For a game with multiple players and multiple strategies we will have more
variables and constraints: one nonnegative variable per strategy profile, one equality
constraint which ensures that the variables represent a probability distribution, and
one inequality constraint for each ordered pair of distinct strategies of each player.
(A typical example of the last type of constraint is “given that the moderator
tells player i to play strategy j, player i doesn’t want to play k instead.”) All
of these constraints together describe a convex polyhedron. The number of faces
of this polyhedron is no larger than the number of inequality and nonnegativity
constraints given above, but the number of vertices can be much larger.

The Nash equilibria for Battle of the Sexes are a subset of the correlated
equilibria. The large tetrahedron in figure 21.1 represents the set of probability
distributions over strategy profiles. In most of these probability distributions the
players’ action choices are correlated. If we constrain the players to pick their
actions independently, we are restricting the allowable distributions. The set of
distributions which factor into independent row and column strategy choices is
shown as a hyperbola in figure 21.1. The constraints which define an equilibrium
remain the same, so the Nash equilibria are the three places where the hyperbola
intersects the six-sided polyhedron.

21.3 Learning in One-Step Games

In normal-form games we have assumed that the description of the game is common
knowledge: everyone knows all of the rules of the game and the motivations of the
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Suppose that the row player receives the recommendation O. Then it knows that
the column player will play O and F with probabilities a/(a + b) and b/(a + b). (The
denominator is nonzero since the row player has received the recommendation O.)
The definition of correlated equilibrium states that in this situation the row player’s
payoff for playing O must be at least as large as its payoff for playing F.

In other words, in a correlated equilibrium we must have

4
a

a + b
+ 0

b

a + b
≥ 0

a

a + b
+ 3

b

a + b
if a + b > 0

Multiplying through by a + b yields the linear inequality

4a + 0b ≥ 0a + 3b (21.2)

(We have discarded the qualification a+b > 0 since inequality 21.2 is always true in
this case.) On the other hand, by examining the case where the row player receives

Row recommendation A

Row recommendation U

Col recommendation A

Col recommendation U

A U
A a b
U c d

A U
A 4,3 0
U 0 3,4
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Correlated equilibrium
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Correlated equilibrium payoffs
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Figure 1: Illustration of feasible values, safety values, equilibria, Pareto domi-
nance, and the Folk Theorem for RBoS.

problem facing two people who go out to an event every weekend, either the
opera (O) or football (F ). One person prefers opera, the other prefers football,
but they both prefer to go together: the one-step reward function is

O F
O 3, 4 0, 0
F 0, 0 4, 3

Player p wants to maximize her expected total discounted future value Vp; we
discount rewards t steps in the future by γt = 0.99t. Figure 1 displays the
expected value vector (E(V1), E(V2)) for a variety of situations.

The shaded triangle in Figure 1, blue where color is available, is the set
of feasible expected-value vectors. Each of the points in this triangle is the
expected-value vector of some joint policy (not necessarily an equilibrium).

The single-round Battle of the Sexes game has three Nash equilibria. Re-
peatedly playing any one of these equilibria yields an equilibrium of RBoS, and
the resulting expected-value vectors are marked with circles in Figure 1. Some
learning algorithms guarantee convergence of average payoffs to one of these
points in self-play. For example, one such algorithm is gradient descent in the
space of an agent’s mixed strategies, since RBoS is a 2× 2 repeated game [15].

Other algorithms, such as the no-regret learners mentioned above, guarantee
that they will achieve at least the safety value of the game. The safety values
for the two players are shown as horizontal and vertical thin dashed lines. So,
two such algorithms playing against each other will arrive at a value vector
somewhere inside the dashed pentagon (cyan where color is available).

The Folk Theorem tells us that RBoS has a Nash equilibrium for every point

4
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Realism?

Often more realistic than Nash
Moderators are often available
Sometimes have to be kind of clever
E.g., can simulate a moderator if we can 
talk (may need crypto, though)
Or, can use private function of public 
randomness (e.g., headline of NY Times)
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How good is equilibrium?

Does an equilibrium tell you how to play?
Sadly, no.

while CE included reasonable answer, 
also included lots of others

To get further, we’ll need additional 
assumptions
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Bargaining

70



Bargaining

In the standard model of a matrix game, 
players can’t communicate
To allow for bargaining, we will extend the 
model with cheap talk
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Cheap talk

Players get a chance to talk to one another 
before picking their actions
They cay say whatever they want—lie, 
threaten, cajole, or even be honest

“cheap” because no guarantees
What will happen?
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Coordination

Certainly the players will try to coordinate
That is, they will try to agree on an 
equilibrium

agreeing on a non-equilibrium will lead 
to deviation

But which one?
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Which one?

In Lunch, there are 3 Nash equilibria
and 5 corner CE + combinations

Players could agree on any one, or agree 
to randomize among them

e.g., each simultaneously say a binary 
number, XOR together, use result to pick 
equilibrium
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Which one?
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Pareto dominance

Not all equilibria are 
created equal
For any in brown triangle’s 
interior, there is one on red 
line that’s better for both 
players
Red line = Pareto dominant
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Beyond Pareto

We still haven’t achieved our goal of 
actually predicting what will happen
We’ve narrowed it down a lot: Pareto-
dominant equilibria
Further narrowing is the subject of much 
argument among game theorists
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So let’s try it

A U

A 3, 4 0, 0

U 0, 0 4, 3

A = Ali Baba, U = Union Grill
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Nash bargaining solution

Nash built model of bargaining process
Rubinstein later made the model more 
detailed and implementable
Model includes offers, threats, and 
impatience to reach an agreement
In this model, we finally have a unique 
answer to “what will happen?”
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Nash bargaining solution
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Rubinstein’s game

Two players split a pie
Each has concave, increasing utility for a 
share in [0,1]
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Rubinstein’s game

Bargain by alternating offers:
Alice offers 60-40
Bob says no, how about 30-70
Alice says no, wants 55-45
Bob says OK

Alice gets γ2UA(0.55), Bob: γ2UB(0.45)
In case of disagreement, no pie for anyone
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Theorem

In this model, we can finally predict what 
“rational” players will do
Will arrive (near) Nash bargaining point, 
which maximizes product of extra utilities

 (U1 - min1) (U2 - min2)
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Theorem

NBP is unique outcome that is
optimal (on Pareto frontier)
symmetric (utilities are equal if 
possible outcomes are symmetric)
scale-invariant
independent of irrelevant alternatives
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Scale invariance
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Independence of irrelevant alternatives
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Lunch with Rubinstein

Use Rubinstein’s game 
to predict outcome of 
Lunch
Offer = “let’s play this 
equilibrium”
Arrive at “rational” 
solution 0 100 200 300 400
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Bargaining 
over time
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Bargaining over time

If we’re playing more than once, life gets 
really interesting
Threats, promises, punishment, trust, 
concessions, …
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A political game

C W O

C –1, 5 0, 0 –5, –3

W 0, 0 0, 0 –5, –3

O –3, –10 –3, –10 –8, –13
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A political game
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Figure 1: Equilibria of the repeated cooperation game.

much in an equilibrium as he can guarantee himself by acting selfishly (called
his safety value), and any possible vector of payoffs that satisfies this restriction
corresponds to an equilibrium.

Figure 1 illustrates the equilibria of the repeated cooperation game, whose
one-round payoffs are given in Table 1. The pentagon in the figure is the feasible
region—the set of all possible joint payoffs.2 The corners of the feasible region
correspond to the pure joint actions as labeled; e.g., the corner labeled WC
shows the payoff to each player when U plays W and L plays C. (Some corners
have multiple labels, since some sets of joint actions have the same payoffs.)
The dashed lines indicate the safety values: L will not accept less than −10,
and U will not accept less than −5. The stippled area (the intersection of the
feasible and individually rational sets) is the set of payoffs that can result from
equilibrium play.

Figure 1 demonstrates that there is more to cooperation than just equilib-
rium computation: the payoff vectors that correspond to equilibria (stippled
region) are a significant fraction of all payoff vectors (pentagon); so, neither
party can use the set of equilibria to place meaningful limits on the payoffs
that he will receive. Worse, each different equilibrium requires the agents to act
differently, and so the set of equilibria does not give the agents any guidance
about which actions to select.

2Here we show average payoff, but the situation is essentially the same for total discounted
future payoff.
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