15-780: Graduate AI Lecture 8. Games

Geoff Gordon (this lecture) Ziv Bar-Joseph TAs Geoff Hollinger, Henry Lin

Admin

• Extension on HW1!

• Until Friday 3PM

 On Friday only, give to Diane Stidle, 4612 Wean Hall

• 50% credit until Monday 10:30AM

• No HWs accepted over weekend

Admin

Contraction of the second of t

• HW2 out today (on website now)

Admin

Poster session for final projects
5:30PM on Thursday, Dec 13

• Final report deadline: beginning of poster session

• This is a **hard** deadline, since course grades are due soon thereafter

ADDER THE AND AND AND THE STORE TO THE STORE TO THE STORE THE ADDER TO THE ADDER TO

Review

Duality

Duality w/ equality constraints
How to express path planning as an LP
Dual of path planning LP

Optimization in ILPs

- DFS, with pruning by:
 - constraint propagation
 - best solution so far
 - dual feasible solution
 - dual feasible solution for relaxation of ILP with some variables set (branch and bound)

Optimization in ILPs

Duality gap
Cutting planes
Branch and cut

More on optimization

Unconstrained optimization: gradient = 0
Equality-constrained optimization

Lagrange multipliers

Inequality-constrained: either

nonnegative multipliers, or
search through bases (for LP: simplex)

Duality as game

- Yet one more interpretation of duality
- Game between minimizer and maximizer

• $min_{xy} x^2 + y^2 s.t. x + y = 2$

 $min_{xy} max_{\lambda} x^2 + y^2 + \lambda(x + y - 2)$

Duality as game

• $min_{xy} max_{\lambda} x^2 + y^2 + \lambda(x + y - 2)$

• Gradients wrt x, y, λ :

$$\circ 2x + \lambda = 0$$

$$\circ 2y + \lambda = 0$$

 $\circ \ x + y = 2$

• Same equations as before

Matrix

games

Matrix games

- Games where each player chooses a single move (simultaneously with other players)
- Also called normal form games
- Simultaneous moves cause uncertainty: we don't know what other player(s) will do

Acting in a matrix game

- One of the simplest kinds of games; we'll get more complicated later in course
- But still will make us talk about
 - negotiation
 - cooperation
 - threats, promises, etc.

Matrix game: prisoner's dilemma

payoff to Row

A Tornissen min Carpon and

Payoff to Col

Matrix game: prisoner's dilemma

the store was some correct and their

	С	D
С	-1, -1	-9, 0
D	0, –9	-5, -5

Can also have n-player games

	Н	Т		Н	Т
H	0, 0, 1	0, 0, 1	Н	1, 1, 0	0, 0, 1
T	0, 0, 1	1, 1, 0	Т	0, 0, 1	0, 0, 1

if Layer plays H

Tor support of manufacture

if Layer plays T

Analyzing a game

- What do we want to know about a game?
- Value of a joint action: just read it off of the table
- Value of a mixed joint strategy: almost as simple

Value of a mixed joint strategy

• Suppose Row plays 30-70, Col plays 60-40

Payoff of joint strategy

- Just an average over elements of payoff matrices M_R and M_C
- If x and y are strategy vectors like (.3, .7)' then we can write
 - $\circ x' M_R y$ $\circ x' M_C y$

What else?

- Could ask for value of a strategy x under various weaker assumptions about other players' strategies y, z, ...
- Weakest assumption: other players might do absolutely anything!
- How much does a strategy **guarantee** us in the most paranoid of all possible worlds?

Paranoia

 Worst-case value of a row strategy x in 2player game is

 $\circ min_y x' M_R y$

• More than two players, min over y, z, ...

Paranoia

- Paranoid player wants to maximize the worst-case value:
 - $\circ max_x min_y x' M_R y$
- Famous theorem of von Neumann: it doesn't matter who chooses first
 - $\circ \max_{x} \min_{y} x' M_{R} y = \min_{y} \max_{x} x' M_{R} y$

Safety value

- miny maxx x' M_R y is safety value or minimax value of game
- A strategy that guarantees minimax value is a minimax strategy
- Particularly useful in ...

a tan was non

games

Zero-sum game

- A 2-player matrix game where
- (payoff to A) = -(payoff to B) for all combinations of actions
- Note: 3-player games are never called zero-sum, even if payoffs add to 0
- But if (payoff to A) = 7 (payoff to B) we sometimes fudge and call it zero-sum

Zero-sum: matching pennies

Allowed &

The and the grant of me we can be reader in the consider the the second with the

	Н	Т
Н	1	-1
Т	-1	1

Minimax

- In zero-sum games, safety value for Row is negative of safety value for Col
- If both players play such strategies, we are in a minimax equilibrium
 - no incentive for either player to switch

Finding minimax

• $min_x max_y x'My$ subject to 1'x = 1 1'y = 1 $x, y \ge 0$

aller The Ode Ta A Adeas

For example ×н ун + ×т уг - ×нуг - хгун min max x y ×+ *×r =1 SE JH " JT " 1 x,y 30 31

Finding minimax

• Eliminate x's equality constraint: • $min_x max_{y, z} [z(1 - 1'x)] + x'My$ subject to 1'y = 1 $x, y \ge 0$

Finding minimax

• Gradient wrt x is • My - Iz• $max_{y, z} z$ subject to $My - Iz \ge 0$ 1'y = 1 $y \ge 0$

ALL CONTRACTOR AND

Interpreting LP

max_{y, z} z subject to My ≥ 1z 1'y = 1 y ≥ 0
y is a strategy for Col; z is value of this strategy

For example

ANT THE DESTANT AND THE

Max Z YZ スミ ブル ー プト スミ - ブル ・ プト SE JH * JT * 1 Z = 0

Duality

- x is dual variable for $My \ge 1z$.
- Complementarity: Row can only play strategies where My = 1z
- Makes sense: others cost more
- Dual of this LP looks the same, so Col can only play strategies where x'M is maximal

Back to general-sum

What if the world isn't really out to get us?
Minimax strategy is unnecessarily pessimistic

General-sum

equilibria

Pessimism

- In Lunch, safety value is 12/7 < 2
- Could get 3 by suggesting other player's preferred restaurant
- Any halfway-rational player will cooperate with this suggestion

Rationality

- Trust the other player to look out for his/ her own best interests
- Stronger assumption than "s/he might do anything"
- Results in possibility of higher-than-safety payoff

Dominated strategies

- First step towards being rational: if a strategy is bad no matter what the other player does, don't play it!
- Such a strategy is (strictly) dominated
- Strict = always worse (not just the same)
- Weak = sometimes worse, never better

Eliminating dominated strategies

A TOT DOST TIME

Prisoner's dilemma

Do we always get a unique answer?

- No: try Lunch
- What can we do instead?
- Well, what was special about Row offering to play A?

	A	U	
A	3, 4	0, 0	
U	0, 0	4, 3	

Equilibrium

- If Row says s/he will play A, Col's best response is to play A as well
- And if Col plays A, then Row's best response is also A
- So (A, A) are mutually reinforcing strategies—an equilibrium

Equilibrium

 In addition to assuming players will avoid dominated strategies, could assume they will play an equilibrium

 Can rule out some more joint strategies this way

Nash equilibrium

- Best-known type of equilibrium
- Independent mixed strategy for each player
- Each strategy is a best response to others
 puts zero weight on suboptimal actions
 - therefore zero weight on dominated actions

For example

A = Ali Baba, U = Union Grill

Row strategy, Col payoffs

A TOT AND TO MAN SECTOR TAL TANK

Col strategy, Row payoffs

L'a Tor was to man sector person that there we

4/7 3/7

Correlated equilibria

Nash at Lunch

Nash was still counterintuitive
Always play U, U or always play A, A
Or, get bizarrely low payoffs
Any real humans would flip a coin or alternate

• Leads to "correlated equilibrium"

Correlated equilibrium

If there is intelligent life on other planets, in a majority of them, they would have discovered correlated equilibrium before Nash equilibrium.

-Roger Myerson

Moderator

- A moderator has a big deck of cards
- Each card has written on it a recommended action for each player
- Moderator draws a card, whispers actions to corresponding players
 actions may be correlated
 only find out your own
 may infer others

Correlated equilibrium

- Since players can have correlated actions, an equilibrium with a moderator is called a correlated equilibrium
- Example: 5-way stoplight
- All NE are CE
- At least as many CE as NE in every game (often strictly more)

Finding correlated equilibrium

J'MARIA &

the the second white

THE A TOT SUPER'S MAN SECTOR TANKA

	A	U		A	U
A	3, 4	0, 0	A	а	b
U	0, 0	4, 3	U	С	d

Finding correlated equilibrium

- P(Row is recommended to play A) = a + b
- P(Col recommended A | Row recommended A) = a / (a + b)
- Rationality: when I'm recommended to play A, I don't want to play U instead

Rationality constraint

Rpayoff(A, A) P(col A | row A) Rpay(U, A) P(A | A)

$$4\frac{a}{a+b} + 0\frac{b}{a+b} \ge 0\frac{a}{a+b} + 3\frac{b}{a+b} \qquad \text{if } a+b > 0$$

Rpay(A, U) P(U|A)

	A	U		A	U
A	a	b	A	4,3	0,0
U	С	d	U	0,0	3,4

Rpay(U, U) P(U|A)

Rationality constraint is linear

STR.IA.

$$4\frac{a}{a+b} + 0\frac{b}{a+b} \ge 0\frac{a}{a+b} + 3\frac{b}{a+b}$$

there is some water and the second a

$$\text{if } a+b > 0$$

 $4a + 0b \ge 0a + 3b$

All rationality constraints

Row recommendation A $4a + 0b \ge 0a + 3b$ Row recommendation U $0c + 3d \ge 4c + 0d$ Col recommendation A $3a + 0c \ge 0a + 4c$ Col recommendation U $0b + 4d \ge 3b + 0d$

Correlated equilibrium

Correlated equilibrium payoffs

a lan was monored

Realism?

- Often more realistic than Nash
- Moderators are often available
- Sometimes have to be kind of clever
- E.g., can simulate a moderator if we can talk (may need crypto, though)
- Or, can use private function of public randomness (e.g., headline of NY Times)

How good is equilibrium?

Does an equilibrium tell you how to play?
Sadly, no.

 while CE included reasonable answer, also included lots of others

• To get further, we'll need additional assumptions

Bargaining

Bargaining

- In the standard model of a matrix game, players can't communicate
- To allow for bargaining, we will extend the model with cheap talk

Cheap talk

- Players get a chance to talk to one another before picking their actions
- They cay say whatever they want—lie, threaten, cajole, or even be honest
 - "cheap" because no guarantees
- What will happen?
Coordination

- Certainly the players will try to coordinate
 That is, they will try to agree on an equilibrium
 - agreeing on a non-equilibrium will lead to deviation

• But which one?

Which one?

In Lunch, there are 3 Nash equilibria
and 5 corner CE + combinations

 Players could agree on any one, or agree to randomize among them

 e.g., each simultaneously say a binary number, XOR together, use result to pick equilibrium

Pareto dominance

- Not all equilibria are created equal
- For any in brown triangle's interior, there is one on red line that's better for both players
- Red line = Pareto dominant

Beyond Pareto

- We still haven't achieved our goal of actually predicting what will happen
- We've narrowed it down a lot: Paretodominant equilibria
- Further narrowing is the subject of much argument among game theorists

So let's try it

A = Ali Baba, U = Union Grill

Nash bargaining solution

- Nash built model of bargaining process
- Rubinstein later made the model more detailed and implementable
- Model includes offers, threats, and impatience to reach an agreement
- In this model, we finally have a unique answer to "what will happen?"

Nash bargaining solution

 Predicts players will agree on the point on Pareto frontier that maximizes product of extra utility

 Invariant to axis rescaling, player exchanging

Rubinstein's game

- Two players split a pie
- Each has concave, increasing utility for a share in [0,1]

Rubinstein's game

• Bargain by alternating offers: • Alice offers 60-40 • Bob says no, how about 30-70 • Alice says no, wants 55-45 • Bob says OK • Alice gets $\gamma^2 U_A(0.55)$, Bob: $\gamma^2 U_B(0.45)$ • In case of disagreement, no pie for anyone

Theorem Value to player 2 0.5 0 2.5 0.5 3 1.5 0 2 1 Value to player 1 • In this model, we can finally predict what "rational" players will do • Will arrive (near) Nash bargaining point, which maximizes product of extra utilities $(U_1 - min_1) (U_2 - min_2)$

83

Theorem

- NBP is unique outcome that is
 - optimal (on Pareto frontier)
 - symmetric (utilities are equal if possible outcomes are symmetric)
 - scale-invariant
 - independent of irrelevant alternatives

Scale invariance

Independence of irrelevant alternatives

Lunch with Rubinstein

- Use Rubinstein's game to predict outcome of Lunch
- Offer = "let's play this equilibrium"
- Arrive at "rational" solution

Bargaining over time

Bargaining over time

- If we're playing more than once, life gets really interesting
- Threats, promises, punishment, trust, concessions, ...

A political game

without & . As

Statistic for wast's me statistics in a consist the second state

	С	W	0
С	-1, 5	0, 0	-5, -3
W	0, 0	0, 0	-5, -3
0	-3, -10	-3, -10	-8, -13

A political game

