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Bayesian networks: Construction and
inference



Bayesian networks: Notations

Le

Li S

P(Lo) = 0.5

P(Li | Lo) = 0.4

P(Li | ¬Lo) = 0.7

P(S | Lo) = 0.6

P(S | ¬Lo) = 0.2

Conditional
probability tables
(CPTs)

Conditional
dependency

Random variables

Bayesian networks are directed acyclic graphs.



Constructing a Bayesian network

• How do we go about constructing a network for a
specific problem?

• Step 1: Identify the random variables
• Step 2: Determine the conditional dependencies
• Step 3: Populate the CPTs

Can be learned from observation data!



A example problem
• An alarm system
    B – Did a burglary occur?
    E – Did an earthquake occur?
    A – Did the alarm sound off?
    M – Mary calls
    J – John calls

• How do we reconstruct the network for this problem?



Factoring joint distributions
• Using the chain rule we can always factor a joint

distribution as follows:
    P(A,B,E,J,M) =
            P(A | B,E,J,M) P(B,E,J,M) =
            P(A | B,E,J,M) P(B | E,J,M) P(E,J,M) =
            P(A | B,E,J,M) P(B | E, J,M) P(E | J,M) P(J,M)
            P(A | B,E,J,M) P(B | E, J,M) P(E | J,M)P(J | M)P(M)
• This type of conditional dependencies can also be

represented graphically.



A Bayesian network

E

J M

A B
Number of parameters:

A: 2^4

B: 2^3

E: 4

J: 2

M: 1

A total of 31 parameters



A better approach
• An alarm system
    B – Did a burglary occur?
    E – Did an earthquake occur?
    A – Did the alarm sound off?
    M – Mary calls
    J – John calls

• Lets use our knowledge of the domain!



Reconstructing a network

A

J M

B ENumber of parameters:

A: 4

B: 1

E: 1

J: 2

M: 2

A total of 10 parameters

By relying on domain knowledge
we saved 21 parameters!



Constructing a Bayesian network:
Revisited

• Step 1: Identify the random variables
• Step 2: Determine the conditional dependencies
    - Select on ordering of the variables
     - Add them one at a time
     - For each new variable X added select the minimal subset of nodes

as parents such that X is independent from all other nodes in the
current network given its parents.

• Step 3: Populate the CPTs
    - We will discuss this when we talk about density estimations



Reconstructing a network

A

J M

B E

Suppose we wanted to add
a new variable to the
network:

R – Did the radio announce
that there was an
earthquake?

How should we insert it?

R



Bayesian network: Inference
• Once the network is constructed, we can use algorithm

for inferring the values of unobserved variables.
• For example, in our previous network the only observed

variables are the phone call and the radio
announcement. However, what we are really interested
in is whether there was a burglary or not.

• How can we determine that?



Inference
• Lets start with a simpler question
   - How can we compute a joint distribution from the

network?
   - For example, P(B,¬E,A,J, ¬M)?
• Answer:
   - That’s easy, lets use the network



Computing: P(B,¬E,A,J, ¬M)

A

J M

B E
P(B)=.05

P(E)=.1

P(A|B,E) )=.95
P(A|B,¬E) = .85
P(A| ¬ B,E) )=.5
P(A| ¬ B, ¬ E) = .05

P(J|A) )=.7
P(J|¬A) = .05

P(M|A) )=.8
P(M|¬A) = .15

P(B,¬E,A,J, ¬M) =

P(B)P(¬E)P(A | B, ¬E)
P(J | A)P(¬M | A)

= 0.05*0.9*.85*.7*.2

= 0.005355



Computing: P(B,¬E,A,J, ¬M)

A

J M

B E
P(B)=.05

P(E)=.1

P(A|B,E) )=.95
P(A|B,¬E) = .85
P(A| ¬ B,E) )=.5
P(A| ¬ B, ¬ E) = .05

P(J|A) )=.7
P(J|¬A) = .05

P(M|A) )=.8
P(M|¬A) = .15

P(B,¬E,A,J, ¬M) =

P(B)P(¬E)P(A | B, ¬E)
P(J | A)P(¬M | A)

= 0.05*0.9*.85*.7*.2

= 0.005355 We can easily compute a
complete joint distribution.
What about partial
distributions?  Conditional
distributions?



Inference
• We are interested in queries of the form:
    P(B | J,¬M)
• This can also be written as a joint:

• How do we compute the new joint?
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Computing partial joints
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Sum all instances with these settings (the
sum is over the possible assignments to the
other two variables, E and A)



Computing: P(B,J, ¬M)

A

J M

B E
P(B)=.05

P(E)=.1

P(A|B,E) )=.95
P(A|B,¬E) = .85
P(A| ¬ B,E) )=.5
P(A| ¬ B, ¬ E) = .05

P(J|A) )=.7
P(J|¬A) = .05

P(M|A) )=.8
P(M|¬A) = .15

P(B,J, ¬M) =

P(B,J, ¬M,A,E)+

P(B,J, ¬M, ¬ A,E) +
P(B,J, ¬M,A, ¬ E) +
P(B,J, ¬M, ¬ A, ¬ E) =

0.0007+0.00001+0.005+0.
0003 = 0.00601



Computing partial joints
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Sum all instances with these settings (the sum is over the
possible assignments to the other two variables, E and A)

• This method can be improved by re-using calculations
(similar to dynamic programming)

• Still, the number of possible assignments is exponential in
the unobserved variables?

• That is, unfortunately, the best we can do. General querying
of Bayesian networks is NP-complete



Inference in Bayesian networks if
NP complete (sketch)

• Reduction from 3SAT
• Recall: 3SAT, find satisfying assignments to the

following problem: (a ∨ b ∨ c) ∧ (d ∨ ¬ b ∨ ¬ c) …

P(xi=1) = 0.5

P(xi=1) = (x1 ∨ x2 ∨ x3)

P(Y=1) = (x1 ∧ x2 ∧ x3 ∧ x4)

What is P(Y)?

Y



Other inference methods
• Convert network to a polytree
    - In a polytree no two nodes have

more than one path between them
    - We can convert arbitrary networks to

a polytree by clustering (grouping)
nodes. For such a graph there is a
algorithm which is linear in the number
of nodes

   - However, converting into a polytree
can result in an exponential increase
in the size of the CPTs

A

J M

B E

A

J M

B E



Stochastic inference
• We can easily sample the joint

distribution to obtain possible
instances

1. Sample the free variable
2. For every other variable:
    - If all parents have been sampled,
      sample based on conditional

distribution

We end up with a new set of
assignments for B,E,A,J and M
which are a random sample from
the joint

A

J M

B E
P(B)=.05

P(E)=.1

P(A|B,E) )=.95
P(A|B,¬E) = .85
P(A| ¬ B,E) )=.5
P(A| ¬ B, ¬ E) = .05

P(J|A) )=.7
P(J|¬A) = .05

P(M|A) )=.8
P(M|¬A) = .15



Stochastic inference
• We can easily sample the joint

distribution to obtain possible
instances

1. Sample the free variable
2. For every other variable:
    - If all parents have been sampled,
      sample based on conditional

distribution A

J M

B E
P(B)=.05

P(E)=.1

P(A|B,E) )=.95
P(A|B,¬E) = .85
P(A| ¬ B,E) )=.5
P(A| ¬ B, ¬ E) = .05

P(J|A) )=.7
P(J|¬A) = .05

P(M|A) )=.8
P(M|¬A) = .15

Its always possible to
carry out this sampling
procedure, why?



Using sampling for inference
• Lets revisit our problem: Compute P(B | J,¬M)
• Looking at the samples we can cound:
   - N: total number of samples

   - Nc : total number of samples in which the condition holds (J,¬M)
    - NB: total number of samples where the joint is true (B,J,¬M)
• For a large enough N
    - Nc / N ≈ P(J,¬M)
    - NB / N ≈ P(B,J,¬M)
• And so, we can set
P(B | J,¬M) = P(B,J,¬M) / P(J,¬M) ≈ NB / Nc



Using sampling for inference
• Lets revisit our problem: Compute P(B | J,¬M)
• Looking at the samples we can cound:
   - N: total number of samples

   - Nc : total number of samples in which the condition holds (J,¬M)
    - NB: total number of samples where the joint is true (B,J,¬M)
• For a large enough N
    - Nc / N ≈ P(J,¬M)
    - NB / N ≈ P(B,J,¬M)
• And so, we can set
P(B | J,¬M) = P(B,J,¬M) / P(J,¬M) ≈ NB / Nc

Problem: What if the condition rarely
happens?

We would need lots and lots of
samples, and most would be wasted



Weighted sampling
• Compute P(B | J,¬M)
• We can manually set the value of J to

1 and M to 0
• This way, all samples will contain the

correct values for the conditional
variables

• Problems? A

J M

B E



Weighted sampling
• Compute P(B | J,¬M)
• Given an assignment to parents, we

assign a value of 1 to J and 0 to M.
• We record the probability of this

assignment (w = p1*p2) and we weight
the new joint sample by w

A

J M

B E



Weighted sampling algorithm for
computing P(B | J,¬M)

• Set NB,Nc = 0
• Sample the joint setting the values for J and M,

compute the weight, w, of this sample
• Nc = Nc+w
• If B = 1, NB = NB+w

• After many iterations, set
 P(B | J,¬M) = NB / Nc



Bayesian networks for cancer
detection



Important points
• Bayes rule
• Joint distribution, independence, conditional

independence
• Attributes of Bayesian networks
• Constructing a Bayesian network
• Inference in Bayesian networks


