15-780: Graduate Artificial
Intelligence

Bayesian networks: Construction and
inference



Bayesian networks: Notations

Bayesian networks are directed acyclic graphs.

Conditional = »P(Lo)=0.5 -
probability tables Conditional

(CPTSs) / dependency

P(Li| Lo) = 0.4 P(S|Lo)=0.6
P(Li| -Lo)=0.7 @\ /@ P(S|-Lo)=0.2

Random variables



Constructing a Bayesian network

How do we go about constructing a network for a
specific problem?

Step 1: Identify the random variables

Step 2: Determine the conditional dependencie}

Step 3: Populate the CPTs

Can be learned from observation data!



A example problem

* An alarm system
B — Did a burglary occur?
E — Did an earthquake occur?
A — Did the alarm sound off?
M — Mary calls
J — John calls

 How do we reconstruct the network for this problem?



Factoring joint distributions

« Using the chain rule we can always factor a joint
distribution as follows:

P(A,B,E,J,M) =
P(A | B,E,J,M) P(B,E,J,M) =
P(A|B,E,J,M)PB | E,JM)P(E,J,M)=
P(A|B,E,J,M)PB | E, JM)PE|J,M)P(I,M)
P(A|B,E,J,M)PB | E, JM)PE|JMPUI | M)P(M)
« This type of conditional dependencies can also be
represented graphically.




A Bayesian network

Number of parameters:
A: 27N

B: 273

E. 4

J: 2

M: 1

A total of 31 parameters

o




A better approach

* An alarm system
B — Did a burglary occur?
E — Did an earthquake occur?
A — Did the alarm sound off?
M — Mary calls
J — John calls

» Lets use our knowledge of the domain!



Reconstructing a network

Number of parameters:
A: 4
B: 1

E: 1

AN
G

A total of 10 parameters

By relying on domain knowledge
we saved 21 parameters!



Constructing a Bayesian network:
Revisited

Step 1: Identify the random variables
Step 2: Determine the conditional dependencies

- Select on ordering of the variables
- Add them one at a time

- For each new variable X added select the minimal subset of nodes
as parents such that X is independent from all other nodes in the
current network given its parents.

Step 3: Populate the CPTs

- We will discuss this when we talk about density estimations



Reconstructing a network

Suppose we wanted to add

a new variable to the

network:

R — Did the radio announce

that there was an @
earthquake?

How should we insert it? @



Bayesian network: Inference

Once the network is constructed, we can use algorithm
for inferring the values of unobserved variables.

For example, in our previous network the only observed
variables are the phone call and the radio
announcement. However, what we are really interested
In iIs whether there was a burglary or not.

How can we determine that?



Inference

» Lets start with a simpler question

- How can we compute a joint distribution from the
network?

- For example, P(B,-E,A,J, -M)?
 Answer:
- That’s easy, lets use the network



Computing: P(B,-E,A,J, - M)

P(B,-E,AJ, -M) =

P(B)P(-E)P(A | B, -E)

P(J | AP(=M | A)

= 0.05%0.9*.85*.7*.2 \
A[B,E) )=.95

P(
= 0.005355 P(A|B E)=.85
P(A| - B E)) 5
P(A

'BM/\

PUIA) )
P(J|- A) = 05



Computing: P(B,-E,A,J, - M)

P(B,~EAJ, ~M) = P(B)=

=.05
P(E)=.1
P(B)P(-E)P(A | B, -E) )

PJTAP(=-M]A)
= 0.05*0.9*.85*.7* ? \
We can easily compute a

complete joint distribution.
What about partial /
distributions? Conditional \
distributions?

P(J|A) )
P(J|- A) = 05

= 0.005355

P(M|A)) 8
P(M[-A) = .15



Inference

 We are interested in queries of the form:
P(B[J,-M)

* This can also be written as a joint:
P(B,J,-M
P(B|J,-M)= (8., )
PB,J,-M)+ P(-B,J,-M)

 How do we compute the new joint? / \




Computing partial joints

P(B,J,-M)
P(B,J,-M)+ P(-B,J,-M)

P(B|J,~M) =

Sum all instances with these settings (the
sum is over the possible assignments to the
other two variables, E and A)



Computing: P(B,J, = M)

P(B,J, -M) =
P(B,J, ~M,AE)+

B,J, =M, = AE) +
B,J, -M,A, - E) +
(B,J, =M, = A, - E) =

0.0007+0.00001+0.005+0.

0003 = 0.00601

P(B)=.0

A|B,E) )=.95 \\\x /

P(

Pmm E)=.85
P(A| - B,E) )=.5
P(A

'B”/\

JIA
u|M-o§:>

m =,
PN%M—JS



Computing partial joints

P(B,J,-M)

P(B|J,~M) =
P(B,J,~M)+P(~B,J,~M)

Sum all instances with these settings (the sum is over the
possible assignments to the other two variables, E and A)

» This method can be improved by re-using calculations
(similar to dynamic programming)

« Still, the number of possible assignments is exponential in
the unobserved variables?

* That is, unfortunately, the best we can do. General querying
of Bayesian networks is NP-complete



Inference in Bayesian networks if
NP complete (sketch)

 Reduction from 3SAT

* Recall: 3SAT, find satisfying assignments to the
following problem: (avbvc)a(dv-Dbv-2c)...

What is P(Y)?

P(x=1) = 0.5 Q) \OA\iO O 58\ ?D
P(x=1) = (X; v X5 V X) E %@ O

P(Y=1) = (X; A X3 A X3 A Xy) \\®//



Other inference methods

« Convert network to a polytree
- In a polytree no two nodes have @
more than one path between them \®\
- We can convert arbitrary networks to /
a polytree by clustering (grouping) @ @

nodes. For such a graph there is a
algorithm which is linear in the number

of nodes
- However, converting into a polytree ;

can result in an exponential increase Z
in the size of the CPTs



Stochastic inference

« We can easily sample the joint
distribution to obtain possible
instances

1. Sample the free variable

2. For every other variable:
- If all parents have been sampled, \
sample based on conditional AB.E) )=.95

P(B)=.05

P(
distribution ﬁEA'B ~5) )‘ fg
P(Al - =
We end up with a new set of / \
assignments for B,E,A,J and M
which are a random sample from P(JA) )
the joint PJ|- A) = 05

P(M|A) )—-
P(M[-A) = .15



Stochastic inference

« We can easily sample the joint
distribution to obtain possible

instances P(B)=.05
1. Sample the free variable
2. For every other variable:
- If all parents have been sampled, \
sample based on conditional P(AIB.E) )= 95
distribution P(A'B £) =85
P(Al - B E) )=.5
P(A

|- B, -~ E)=.05
Its always possible to / \

carry out this sampling
procedure, why? (jIA A 05

P(M|A) )—-
P(M[-A) = .15



Using sampling for inference

» Lets revisit our problem: Compute P(B | J,—M)
» Looking at the samples we can cound:

- N: total number of samples

- N, : total number of samples in which the condition holds (J,-M)
- Ng: total number of samples where the joint is true (B,J,-M)
For a large enough N
-N_./ N =P(J,-M)
-Ng /N =P(B,J,-M)
« And so, we can set

P(B | J,-M) = P(B,J,-M) / P(J,=M) = N, / N,



Using sampling for inference

» Lets revisit our problem: Compute P(B | J,—M)

« Looking at the c2mnlac wia ~an fatind-
Problem: What if the condition rarely

- N: total number o
happens?

- N, : total number
_ N, total number V€ would need lots and lots of

For a large enoug S@mples, and most would be wasted

-N_/N=P(J,-M)
- Ng /N =P(B,J,-M)
« And so, we can set

P(B | J,-M) = P(B,J,-M) / P(J,=M) = N, / N,



Weighted sampling

Compute P(B | J,-M)
We can manually set the value of J to

1and Mto O

This way, all samples will contain the

correct values for the conditional \
variables

Problems? @



Weighted sampling

« Compute P(B | J,-M)
« Given an assignment to parents, we

assign a value of 1 to J and 0 to M.

« We record the probability of this
assignment (w = p,*p,) and we weight \
the new joint sample by w

/
0



Weighted sampling algorithm for
computing P(B | J,-M)

o Set Ng,N.=0
« Sample the joint setting the values for J and M, 4------ 2
compute the weight, w, of this sample |
|

« N_,=N__w
¢ IfB=1, NB=NB+W ________

« After many iterations, set
P(B|J,-M)=Ng/N,



Bayesian networks for cancer
detection

[hot-ase 2101 x|
Visit To Asia Smoking
Visit 1. E Smoker
No Visit ©¢ . : NonSmo!(er
v & N
Tuberculosis Lung Cancer Bronchitis
Present | - [ [ I Present ! Present =« ; ]
Absent ) Absent ©d : Absent
T P ,
Tuberculosis or Cancer
True 48 [\ | ] [
False 93.5 | / T
Sy Chest Clinic
» - »
XRay Result Dyspnea
Abnormal | | | ‘ Present | ;
Normal emd Absent 0 ¢ ;
or]




Important points

Bayes rule

Joint distribution, independence, conditional
independence

Attributes of Bayesian networks
Constructing a Bayesian network
Inference in Bayesian networks



