15-780: Graduate Artificial
Intelligence

Decision trees



Graphical models

« So far we discussed models that capture joint probability
distributions

 These have many uses, and can also be used to
determine binary values for variables

- For example, did a burglary occur?

 However, they also require us to make many
assumptions and to fit many parameters:

- model structure
- probability model
- model parameters



Classification

In many cases we are only interested in one specific

variable.
Examples:

- Does the robot have to turn? Slow down?

- What digit is in each of the squares?
- Does the patient have cancer?
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Generative vs. discriminative
models

» Graphical models can be used for classification

- They represent a subset of classifiers known as
‘generative models’

« But we can also design classifiers that are more specific
to a given task and do not require an estimation of joint
probabilities

- These are often referred to as discriminative models
« Examples:

- Support vector machines (SVM)

- Decision trees



Decision trees

* One of the most intuitive classifiers
« Easy to understand and construct
« Surprisingly, also works very (very) well*

Lets build a decision tree!

* More on this towards the end
of this lecture



Structure of a decision tree

@ A age > 26
* Internal nodes | lincome > 40K
correspond to attributes 1 \ C citizen
(features)
F female
» Leafs correspond to @
classification outcome
- edges denote / \ /
assignment
yes N0 yes
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Dataset

Attributes (features) Label
A A
N/ )

Movie | Type Length | Director Famous actors | Liked?
m1 Comedy | Short Adamson | No Yes
m2 Animated | Short Lasseter | No No
m3 Drama Medium | Adamson | No Yes
m4 animated |long Lasseter | Yes No
mb Comedy |Long Lasseter | Yes No
m6 Drama Medium | Singer Yes Yes
m7 animated | Short Singer No Yes
m38 Comedy |Long Adamson | Yes Yes
m9 Drama Medium | Lasseter | No Yes




Building a decision tree

Function BuildTree(n,A) // n: samples (rows), A: attributes
If empty(A) or all n(L) are the same
status = leaf
class = most common class in n(L)
else
status = internal
a < bestAttribute(n,A)
LeftNode = BuildTree(n(a=1), A\{a})
RightNode = BuildTree(n(a=0), A\ {a})
end
end



Building a decision tree

Function BuildTree(n,A) // n: samples (rows), A: attributes

If empty(A) or all n(L) are the same
n(L): Labels for samples in

status = leaf .
_ this set
class = most common class in n(L)
else

_ We will discuss this function
status = internal next
a < bestAttribute(n,A)
LeftNode = BuildTree(n(a=1), A\ {a}),\Recursive calls to create left

RightNode = BuildTree(n(a=0), A \ {a})«— and right subtrees, n(a=1) is
end the set of samples in n for

which the attribute a is 1
end



ldentifying ‘bestAttribute’

« There are many possible ways to select the best
attribute for a given set.

 We will discuss one possible way which is based on
information theory and generalizes well to non binary
variables



Entropy

* Quantifies the amount of uncertainty
associated with a specific probability
distribution

* The higher the entropy, the less
confident we are in the outcome

* Definition

H(X) =3 - p(X =¢)log, p(X =c)

Claude Shannon (1916 —
2001), most of the work was
done in Bell labs



Entropy

[

0T

 Definition 05 4
H(X) = E— p(X =i)log, p(X =1i)

0

.
>

0 1.0

0.5
Pr(X = 1)

¢ S0, if P(X=1) =1 then

H(X)=-p(x=1log, p(X =1) - p(x = 0)log, p(X =0)
=—-1logl -0log0 =0

« If P(X=1)=.5then

H(X) =-p(x =1Dlog, p(X =1) - p(x = 0)log, p(X =0)
=-.5log,.5-.5log,.5=-log,.5=1



Interpreting entropy

Entropy can be interpreted from an information
standpoint

Assume both sender and receiver know the distribution.
How many bits, on average, would it take to transmit one
value?

If P(X=1) = 1 then the answer is 0 (we don’t need to
transmit anything)

If P(X=1) = .5 then the answer is 1 (either values is
equally likely)

If 0<P(X=1)<.5 or 0.5<P(X=1)<1 then the answer is
between 0 and 1

- Why?



Expected bits per symbol

 Assume P(X=1)=0.8
« Then P(11) = 0.64, P(10)=P(01)=.16 and P(00)=.04

» Lets define the following code
- For 11 we send O
- For 10 we send 01
- For 01 we send 011
- For 00 we send 0111



Expected bits per symbol

Assume P(X=1)=10.8
Then P(11) = 0.64, P(10)=P(01)=.16 and P(00)=.04
Lets define the following code

- For 11 we send 0 so: 01001101110001101110

- For 10 we send 10 can be brokento: 0100110111000 110 1110
- For 01 we send 110

-~ Eor 00 we send 1110 which is: 11 10 11 01 00 11 11 01 00

What is the expected bits / symbol?
(.64*1+.16"2+.16*3+.04*4)/2 = 0.8

Entropy (lower bound) H(X)=0.7219



Conditional entropy

* Entropy measures the uncertainty in a

specific distribution

* What if both sender and receiver know

something about the transmission?

* For example, say | want to send the label

(liked) when the length is known

* This becomes a conditional entropy

problem: H(Li | Le=v)

Is the entropy of Liked among movies with

Movie Liked?
length

Short Yes
Short No
Medium | Yes
long No
Long No
Medium | Yes
Short Yes
Long Yes
Medium | Yes

length v




Conditional entropy: Examples for
specific values

Movie Liked?
length Lets compute H(Li | Le=v)

Short Yes
1. H(Li | Le = S) = .92

Short No

Medium | Yes

long No

Long No

Medium | Yes

Short Yes

Long Yes

Medium | Yes




Conditional entropy: Examples for
specific values

Movie Liked?

length Lets compute H(Li | Le=v)
Short Yes

1. H(Li | Le = S) = .92
Short No
Medium | Yes 2. H(Li Le = M) =0
long No 3. H(LI Le = L) = .92
Long No

Medium | Yes

Short Yes

Long Yes

Medium | Yes




Conditional entropy

* We can generalize the conditional entropy

idea to determine H( Li | Le)

 Thatis, what is the expected number of

bits we need to transmit if both sides know

the value of Le for each of the records

(samples)

* Definition: H(X|Y)= EP(Y = )H(X |Y =i)

Movie Liked?
length

Short Yes
Short No
Medium | Yes
long No
Long No
Medium | Yes
Short Yes
Long Yes
Medium | Yes

/'

We explained how to compute this in

the previous slides



Conditional entropy: Example

Movie Liked?
length

Short Yes
Short No
Medium | Yes
long No
Long No
Medium | Yes
Short Yes
Long Yes
Medium | Yes

HX|Y)= EP(Y =NH(X|Y =1)

« Lets compute H( Li| Le)

H(Li|Le) = P(Le =S) H(Li|Le=S)+
P(Le = M) H( Li | Le=M)+
P(Le =L) H(Li|Le=L)=
1/3*.92+1/3*0+1/3%.92 =

0.61

. we already computed:
H(Li|Le =S) = .92
H(Li|Le=M)=0
H(Li | Le = L) = .92



Information gain

How much do we gain (in terms of reduction in entropy)
from knowing one of the attributes

In other words, what is the reduction in entropy from this
knowledge

Definition: IG(X|Y)* = H(X)-H(X|Y)

*IG(X|Y) is always = 0

Proof: Jensen inequality



Where we are

We were looking for a good criteria for selecting the best
attribute for a node split

We defined the entropy, conditional entropy and
information gain

We will now use information gain as our criteria for a
good split

That is, BestAttribute will return the attribute that
maximizes the information gain at each node



Building a decision tree

Function BuildTree(n,A) // n: samples (rows), A: attributes
If empty(A) or all n(L) are the same
status = leaf
class = most common class in n(L)
else
status = internal
a < bestAth/
LeftNode = BuildTree(n(a=1), A\{a})
RightNode = BuildTree(n(a=0), A\ {a})
end
end

Based on information gain



Example: Root attribute

P(Li=yes) = 2/3

H(Li) = .91

H(Li | T) — Movie | Type Length | Director gca:\tr::?sus ’I.;lked

H(Li | Le) = m1 Comedy | Short | Adamson | No Yes

H(Li | D) = m2 Animated | Short | Lasseter | No No

H(Li | F) = m3 Drama Medium | Reiner No Yes
m4 animated | long Adamson | Yes No
mb5 Comedy Long Lasseter Yes No
mo6 Thriller Medium | Singer Yes Yes
M7 animated | Short Singer No Yes
m8 Comedy Long Marshall Yes Yes
m9 Drama Medium | Linklater No Yes




Example: Root attribute

P(Li=yes) = 2/3
H(L|)— 91

H(Li | T) = 0.61

H(Li | Le) = 0.61
H(Li | D) = 0.36
H(Li | F) = 0.85

Movie | Type Length | Director Famous | Liked
actors ?

m1 Comedy Short Adamson No Yes
m2 Animated | Short Lasseter No No
m3 Drama Medium | Adamson | No Yes
m4 animated | long Lasseter Yes No
mb5 Comedy Long Lasseter Yes No
mo6 Drama Medium | Singer Yes Yes
M7 animated | Short Singer No Yes
m8 Comedy Long Adamson | Yes Yes
m9 Drama Medium | Lasseter No Yes




Example: Root attribute

P(Li=yes) = 2/3
H(L|)— 91

H(Li | T) = 0.61

H(Li | Le) = 0.61
H(Li | D) = 0.36
H(Li | F) = 0.85

G(Li|T)=.91-.61=0.3

G(Li | Le) = .91-.61 = 0.3
G(Li | D) = .91-.36 = 0.55
G(Li | Le) = .91-.85 = 0.06

Movie | Type Length | Director Famous | Liked
actors ?

m1 Comedy Short Adamson No Yes
m2 Animated | Short Lasseter No No
m3 Drama Medium | Adamson | No Yes
m4 animated | long Lasseter Yes No
mb5 Comedy Long Lasseter Yes No
mo6 Drama Medium | Singer Yes Yes
M7 animated | Short Singer No Yes
m8 Comedy Long Adamson | Yes Yes
m9 Drama Medium | Lasseter No Yes




Example: Root attribute

P(Li=yes) = 2/3
H(L|)— 91
H(Li | T) = 0.61 Movie | Type Length | Director gstr;\?sus ’I;iked
H(Li | Le) = 0.61 m1 Comedy | Short | Adamson | No Yes
H(Li | D) = 0.36 m2 Animated | Short | Lasseter | No No
H(Li | F) = 0.85 m3 Drama Medium | Adamson | No Yes
m4 | animated |long Lasseter | Yes No
G(Li| T)= .91-61=0.3 m5 | Comedy |Long |Lasseter | Yes No
mé |Drama | Medium | Singer Yes Yes
- _G_(lii_l I__e:)_=_.?1_- ? 1_ f 9 '_3_ - M7 | animated | Short | Singer No Yes
IG(Li|D) = 91-36=0.55 | [5 Gomedy [Long | Adamson |¥es | ves
G(Li | Le) =.91-.85=0.06 m9 |Drama | Medium | Lasseter | No Yes




Adamson

yes

Building a tree

Singer

yes

Movie | Type Length | Director Famous | Liked
actors ?

m1 Comedy Short Adamson No Yes
m2 Animated | Short Lasseter No No
m3 Drama Medium | Adamson No Yes
m4 animated | long Lasseter Yes No
mS Comedy Long Lasseter Yes No
mo6 Drama Medium | Singer Yes Yes
M7 animated | Short Singer No Yes
m8 Comedy Long Adamson Yes Yes
m9 Drama Medium | Lasseter No Yes




Building a tree

Adamson Movie | Type Length | Director Famous | Liked
Singer actors ?
m2 Animated | Short Lasseter No No
m4 animated | long Lasseter Yes No
es
y yes mS Comedy Long Lasseter Yes No
m9 Drama Medium | Lasseter No Yes

We only need to focus on the records (samples)
associated with this node



BUlIdlng a tree We eliminated the

director’ attribute. All
samples have the same

director /

Adamson Movie | Type Length | Famous | Liked
Singer actors ?
m2 Animated | Short No No
m4 animated | long Yes No
es
y yes md5 Comedy Long Yes No
m9 Drama Medium | No Yes

P(Li=yes) = 1/4 H(Li) = .81
H(L||T)—

H(Li | Le) =

H(Li | F)=0.5



Building a tree

Adamson Movie | Type Length | Famous | Liked
Singer actors ?
m2 Animated | Short No No
m4 animated | long Yes No
es
y yes md5 Comedy Long Yes No
m9 Drama Medium | No Yes

P(Li=yes) = 1/4 H(Li) = .81

HLi|T)=0 ' IG(Li|T)=0.81"

H(Li|Le)=0 IG(Li|Le)=0.81
(

H(Li|F)=05 IG(Li|F)=.31



Building a tree

Adamson Movie | Type Length | Famous | Liked
Singer actors ?
Lassete .
m2 Animated | Short No No
m4 animated | long Yes No
es
y @ yes md5 Comedy Long Yes No
animated m9 Drama Medium | No Yes

comedy
drama

no yes no



Final tree

Adamson

Singer
Lassetq

animated
comedy
drama
no yes no

Movie | Type Length | Director Famous | Liked
actors ?

m1 Comedy Short Adamson No Yes
m2 Animated | Short Lasseter No No
m3 Drama Medium | Adamson | No Yes
m4 animated | long Lasseter Yes No
mb5 Comedy Long Lasseter Yes No
mo6 Drama Medium | Singer Yes Yes
M7 animated | Short Singer No Yes
m8 Comedy Long Adamson | Yes Yes
m9 Drama Medium | Lasseter No Yes




Additional points

The algorithm we gave reaches homogonous nodes (or
runs out of attributes)

This is dangerous: For datasets with many (non relevant)
attributes the algorithm will continue to split nodes

This will lead to overfitting!



Avoiding overfitting: Tree pruning

« Split data into train and test set
e Build tree using training set
- For all internal nodes (starting at the root)
- remove sub tree rooted at node
- assign class to be the most common among training set
- check test data error
- if error is lower, keep change

- otherwise restore subtree, repeat for all nodes in
subtree



Continuous values

Either use threshold to turn into binary or discretize

Its possible to compute information gain for all possible
tresholds (there are a finite number of training samples)

Harder if we wish to assign more than two values (can
be done recursively)



The ‘best’ classifier

« There has been a lot of interest lately in decision trees.

* They are quite robust, intuitive and, surprisingly, very
accurate



Random forest

A collection of decision trees

* For each tree we select a subset of the attributes
(recommended square root of |A|) and build tree using
just these attributes

* An input sample is classified using majority voting
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Ranking classifiers
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Learning Algorithms, ICML 2006



Important points

Classifiers vs. graphical models
Entropy

Information gain

Building decision trees



