15-780: Graduate Artificial Intelligence

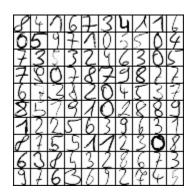
Decision trees

Graphical models

- So far we discussed models that capture joint probability distributions
- These have many uses, and can also be used to determine binary values for variables
 - For example, did a burglary occur?
- However, they also require us to make many assumptions and to fit many parameters:
 - model structure
 - probability model
 - model parameters

Classification

- In many cases we are only interested in one specific variable.
- Examples:
 - Does the robot have to turn? Slow down?
 - What digit is in each of the squares?
 - Does the patient have cancer?



Generative vs. discriminative models

• Graphical models can be used for classification

- They represent a subset of classifiers known as 'generative models'

- But we can also design classifiers that are more specific to a given task and do not require an estimation of joint probabilities
 - These are often referred to as discriminative models
- Examples:
 - Support vector machines (SVM)
 - Decision trees

Decision trees

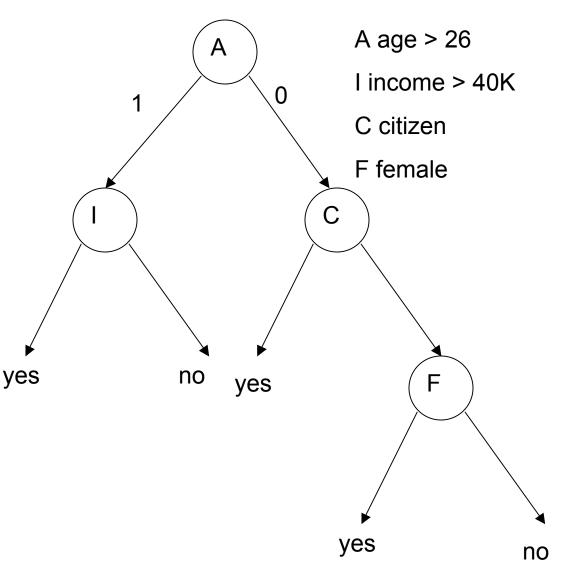
- One of the most intuitive classifiers
- Easy to understand and construct
- Surprisingly, also works very (very) well*

Lets build a decision tree!

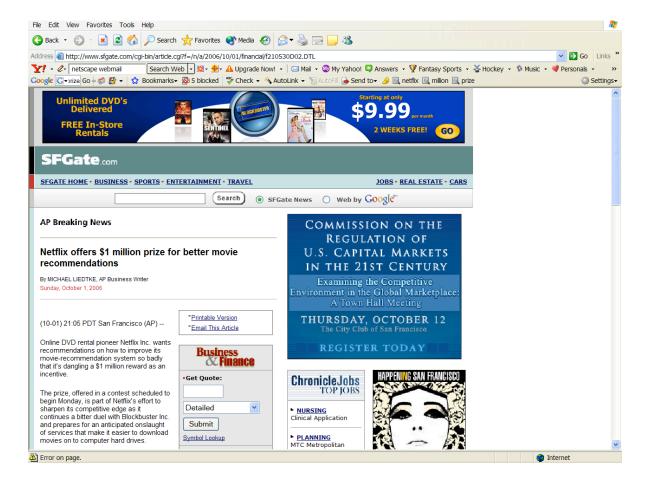
* More on this towards the end of this lecture

Structure of a decision tree

- Internal nodes correspond to attributes (features)
- Leafs correspond to classification outcome
- edges denote assignment



Netflix



Dataset

	Attributes (features)				
Movie	Туре	Length	Director	Famous actors	Liked?
m1	Comedy	Short	Adamson	No	Yes
m2	Animated	Short	Lasseter	No	No
m3	Drama	Medium	Adamson	No	Yes
m4	animated	long	Lasseter	Yes	No
m5	Comedy	Long	Lasseter	Yes	No
m6	Drama	Medium	Singer	Yes	Yes
m7	animated	Short	Singer	No	Yes
m8	Comedy	Long	Adamson	Yes	Yes
m9	Drama	Medium	Lasseter	No	Yes

Building a decision tree

```
Function BuildTree(n,A) // n: samples (rows), A: attributes
  If empty(A) or all n(L) are the same
    status = leaf
    class = most common class in n(L)
  else
    status = internal
    a \leftarrow bestAttribute(n,A)
    LeftNode = BuildTree(n(a=1), A \setminus \{a\})
    RightNode = BuildTree(n(a=0), A \setminus \{a\})
  end
end
```

Building a decision tree

```
Function BuildTree(n,A) // n: samples (rows), A: attributes
  If empty(A) or all n(L) are the same
                                                  n(L): Labels for samples in
    status = leaf
                                                  this set
     class = most common class in n(L)
  else
                                                  We will discuss this function
     status = internal
                                                  next
    a \leftarrow bestAttribute(n,A)
    LeftNode = BuildTree(n(a=1), A \setminus \{a\})_{\bullet}
                                                     Recursive calls to create left
                                                     and right subtrees, n(a=1) is
     RightNode = BuildTree(n(a=0), A \setminus \{a\})
                                                     the set of samples in n for
  end
                                                     which the attribute a is 1
end
```

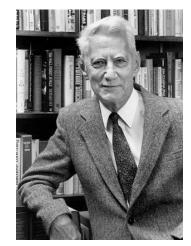
Identifying 'bestAttribute'

- There are many possible ways to select the best attribute for a given set.
- We will discuss one possible way which is based on information theory and generalizes well to non binary variables

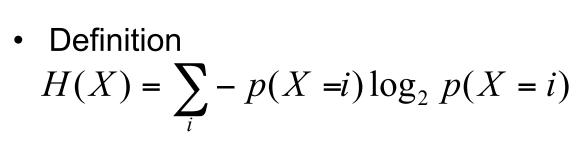
Entropy

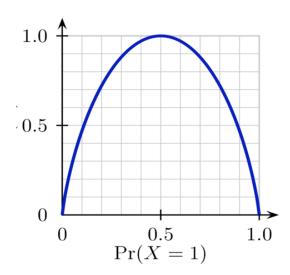
- Quantifies the amount of uncertainty associated with a specific probability distribution
- The higher the entropy, the less confident we are in the outcome
- Definition

$$H(X) = \sum_{c} - p(X = c) \log_2 p(X = c)$$



Claude Shannon (1916 – 2001), most of the work was done in Bell labs





 $H(X) = -p(x = 1)\log_2 p(X = 1) - p(x = 0)\log_2 p(X = 0)$ = -1log1 - 0log0 = 0

Entropy

• If P(X=1) = .5 then

$$H(X) = -p(x = 1)\log_2 p(X = 1) - p(x = 0)\log_2 p(X = 0)$$

= -.5log₂.5 - .5log₂.5 = -log₂.5 = 1

Interpreting entropy

- Entropy can be interpreted from an information standpoint
- Assume both sender and receiver know the distribution. How many bits, on average, would it take to transmit one value?
- If P(X=1) = 1 then the answer is 0 (we don't need to transmit anything)
- If P(X=1) = .5 then the answer is 1 (either values is equally likely)
- If 0<P(X=1)<.5 or 0.5<P(X=1)<1 then the answer is between 0 and 1
 - Why?

Expected bits per symbol

- Assume P(X=1) = 0.8
- Then P(11) = 0.64, P(10)=P(01)=.16 and P(00)=.04
- Lets define the following code
 - For 11 we send 0
 - For 10 we send 01
 - For 01 we send 011
 - For 00 we send 0111

Expected bits per symbol

- Assume P(X=1) = 0.8
- Then P(11) = 0.64, P(10)=P(01)=.16 and P(00)=.04
- Lets define the following code
 - For 11 we send 0

so: 01001101110001101110

- For 10 we send 10
- For 01 we send 110
- For 00 we send 1110

can be broken to: 0 10 0 110 1110 0 0 110 1110

which is: 11 10 11 01 00 11 11 01 00

- What is the expected bits / symbol?
 (.64*1+.16*2+.16*3+.04*4)/2 = 0.8
- Entropy (lower bound) H(X)=0.7219

Conditional entropy

Movie length	Liked?
Short	Yes
Short	No
Medium	Yes
long	No
Long	No
Medium	Yes
Short	Yes
Long	Yes
Medium	Yes

• Entropy measures the uncertainty in a specific distribution

- What if both sender and receiver know something about the transmission?
- For example, say I want to send the label (liked) when the length is known
- This becomes a conditional entropy problem: H(Li | Le=v)

Is the entropy of Liked among movies with length v

Conditional entropy: Examples for specific values

Movie length	Liked?
Short	Yes
Short	No
Medium	Yes
long	No
Long	No
Medium	Yes
Short	Yes
Long	Yes
Medium	Yes

Lets compute H(Li | Le=v)

1. H(Li | Le = S) = .92

Conditional entropy: Examples for specific values

Movie	Liked?
length	
Short	Yes
Short	No
Medium	Yes
long	No
Long	No
Medium	Yes
Short	Yes
Long	Yes
Medium	Yes

Lets compute H(Li | Le=v)

- 1. H(Li | Le = S) = .92
- 2. H(Li | Le = M) = 0
- 3. H(Li | Le = L) = .92

Conditional entropy

Movie length	Liked?
Short	Yes
Short	No
Medium	Yes
long	No
Long	No
Medium	Yes
Short	Yes
Long	Yes
Medium	Yes

- We can generalize the conditional entropy idea to determine H(Li | Le)
- That is, what is the expected number of bits we need to transmit if both sides know the value of Le for each of the records (samples)
- Definition: $H(X | Y) = \sum_{i} P(Y = i) H(X | Y = i)$

We explained how to compute this in the previous slides

Conditional entropy: Example $H(X | Y) = \sum_{i} P(Y = i)H(X | Y = i)$

Liked?
Yes
No
Yes
No
No
Yes
Yes
Yes
Yes

Lets compute H(Li | Le)
 H(Li | Le) = P(Le = S) H(Li | Le=S)+
 P(Le = M) H(Li | Le=M)+
 P(Le = L) H(Li | Le=L) =
 1/3*.92+1/3*0+1/3*.92 =
 0.61

we already computed: H(Li | Le = S) = .92 H(Li | Le = M) = 0H(Li | Le = L) = .92

Information gain

- How much do we gain (in terms of reduction in entropy) from knowing one of the attributes
- In other words, what is the reduction in entropy from this knowledge
- Definition: $IG(X|Y)^* = H(X)-H(X|Y)$

*IG(X|Y) is always ≥ 0 Proof: Jensen inequality

Where we are

- We were looking for a good criteria for selecting the best attribute for a node split
- We defined the entropy, conditional entropy and information gain
- We will now use information gain as our criteria for a good split
- That is, BestAttribute will return the attribute that maximizes the information gain at each node

Building a decision tree

```
Function BuildTree(n,A) // n: samples (rows), A: attributes

If empty(A) or all n(L) are the same

status = leaf

class = most common class in n(L)

else

status = internal

a 	< bestAttribute(n,A)

LeftNode = BuildTree(n(a=1), A \ {a})

RightNode = BuildTree(n(a=0), A \ {a})

end
```

end

- P(Li=yes) = 2/3
- H(Li) = .91

H(Li | T) =

H(Li | Le) =

H(Li | D) =

H(Li | F) =

Movie	Туре	Length	Director	Famous actors	Liked ?
m1	Comedy	Short	Adamson	No	Yes
m2	Animated	Short	Lasseter	No	No
m3	Drama	Medium	Reiner	No	Yes
m4	animated	long	Adamson	Yes	No
m5	Comedy	Long	Lasseter	Yes	No
m6	Thriller	Medium	Singer	Yes	Yes
M7	animated	Short	Singer	No	Yes
m8	Comedy	Long	Marshall	Yes	Yes
m9	Drama	Medium	Linklater	No	Yes

P(Li=yes) = 2/3

H(Li) = .91

H(Li | T) = 0.61

H(Li | Le) = 0.61

H(Li | D) = 0.36

H(Li | F) = 0.85

Movie	Туре	Length	Director	Famous actors	Liked ?
m1	Comedy	Short	Adamson	No	Yes
m2	Animated	Short	Lasseter	No	No
m3	Drama	Medium	Adamson	No	Yes
m4	animated	long	Lasseter	Yes	No
m5	Comedy	Long	Lasseter	Yes	No
m6	Drama	Medium	Singer	Yes	Yes
M7	animated	Short	Singer	No	Yes
m8	Comedy	Long	Adamson	Yes	Yes
m9	Drama	Medium	Lasseter	No	Yes

- P(Li=yes) = 2/3
- H(Li) = .91
- H(Li | T) = 0.61
- H(Li | Le) = 0.61
- H(Li | D) = 0.36
- H(Li | F) = 0.85
- IG(Li | T) = .91 .61 = 0.3
- IG(Li | Le) = .91-.61 = 0.3
- IG(Li | D) = .91-.36 = 0.55
- IG(Li | Le) = .91-.85 = 0.06

Movie	Туре	Length	Director	Famous actors	Liked ?
m1	Comedy	Short	Adamson	No	Yes
m2	Animated	Short	Lasseter	No	No
m3	Drama	Medium	Adamson	No	Yes
m4	animated	long	Lasseter	Yes	No
m5	Comedy	Long	Lasseter	Yes	No
m6	Drama	Medium	Singer	Yes	Yes
M7	animated	Short	Singer	No	Yes
m8	Comedy	Long	Adamson	Yes	Yes
m9	Drama	Medium	Lasseter	No	Yes

P(Li=yes) = 2/3 H(Li) = .91

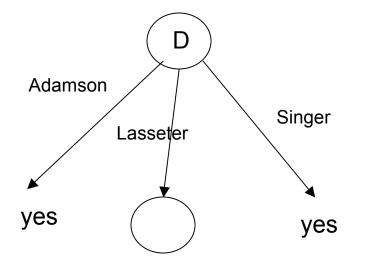
H(Li | T) = 0.61

H(Li | Le) = 0.61

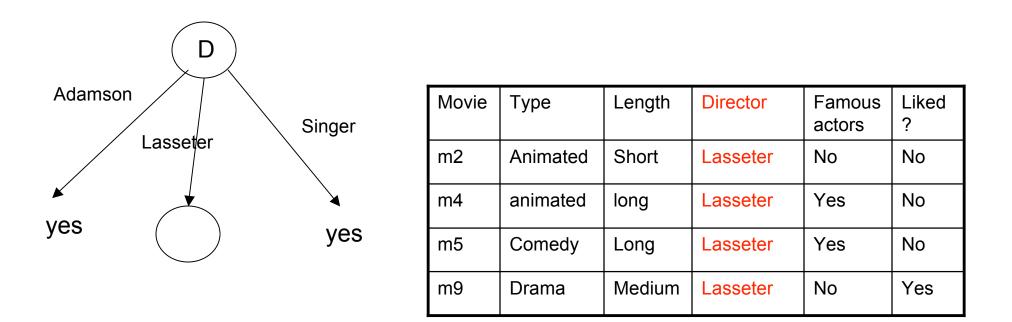
H(Li | D) = 0.36

H(Li | F) = 0.85

Movie	Туре	Length	Director	Famous actors	Liked ?
m1	Comedy	Short	Adamson	No	Yes
m2	Animated	Short	Lasseter	No	No
m3	Drama	Medium	Adamson	No	Yes
m4	animated	long	Lasseter	Yes	No
m5	Comedy	Long	Lasseter	Yes	No
m6	Drama	Medium	Singer	Yes	Yes
M7	animated	Short	Singer	No	Yes
m8	Comedy	Long	Adamson	Yes	Yes
m9	Drama	Medium	Lasseter	No	Yes

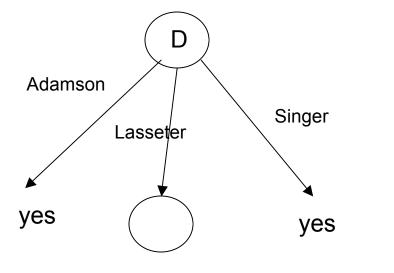


Movie	Туре	Length	Director	Famous actors	Liked ?
m1	Comedy	Short	Adamson	No	Yes
m2	Animated	Short	Lasseter	No	No
m3	Drama	Medium	Adamson	No	Yes
m4	animated	long	Lasseter	Yes	No
m5	Comedy	Long	Lasseter	Yes	No
m6	Drama	Medium	Singer	Yes	Yes
M7	animated	Short	Singer	No	Yes
m8	Comedy	Long	Adamson	Yes	Yes
m9	Drama	Medium	Lasseter	No	Yes



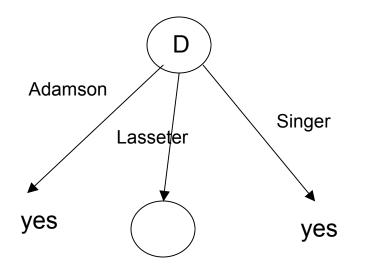
We only need to focus on the records (samples) associated with this node

We eliminated the 'director' attribute. All samples have the same director



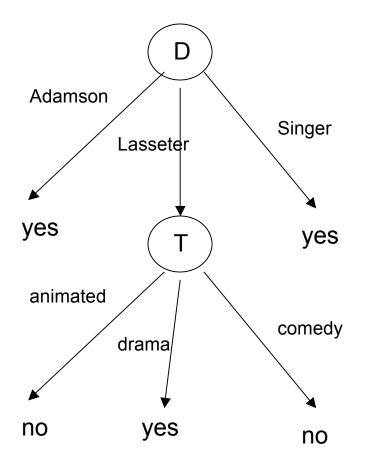
Movie	Туре	Length	Famous actors	Liked ?
m2	Animated	Short	No	No
m4	animated	long	Yes	No
m5	Comedy	Long	Yes	No
m9	Drama	Medium	No	Yes

$$P(Li=yes) = 1/4$$
 $H(Li) = .81$
 $H(Li | T) = 0$
 $H(Li | Le) = 0$
 $H(Li | F) = 0.5$



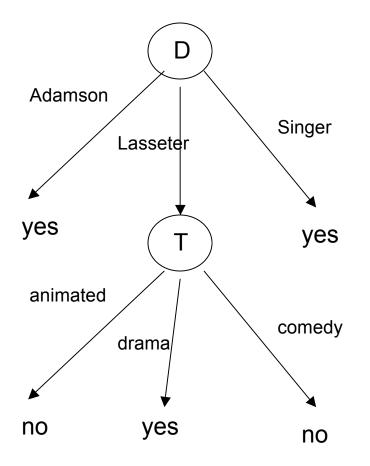
Movie	Туре	Length	Famous actors	Liked ?
m2	Animated	Short	No	No
m4	animated	long	Yes	No
m5	Comedy	Long	Yes	No
m9	Drama	Medium	No	Yes

 $P(Li=yes) = 1/4 \quad H(Li) = .81$ $H(Li | T) = 0 \quad IG(Li | T) = 0.81$ $H(Li | Le) = 0 \quad IG(Li | Le) = 0.81$ $H(Li | F) = 0.5 \quad IG(Li | F) = .31$



Movie	Туре	Length	Famous actors	Liked ?
m2	Animated	Short	No	No
m4	animated	long	Yes	No
m5	Comedy	Long	Yes	No
m9	Drama	Medium	No	Yes

Final tree



Movie	Туре	Length	Director	Famous actors	Liked ?	
m1	Comedy	Short	Adamson	No	Yes	
m2	Animated	Short	Lasseter	No	No	
m3	Drama	Medium	Adamson	No	Yes	
m4	animated	long	Lasseter	Yes	No	
m5	Comedy	Long	Lasseter	Yes	No	
m6	Drama	Medium	Singer	Yes	Yes	
M7	animated	Short	Singer	No	Yes	
m8	Comedy	Long	Adamson	Yes	Yes	
m9	Drama	Medium	Lasseter	No	Yes	

Additional points

- The algorithm we gave reaches homogonous nodes (or runs out of attributes)
- This is dangerous: For datasets with many (non relevant) attributes the algorithm will continue to split nodes
- This will lead to overfitting!

Avoiding overfitting: Tree pruning

- Split data into train and test set
- Build tree using training set
 - For all internal nodes (starting at the root)
 - remove sub tree rooted at node
 - assign class to be the most common among training set
 - check test data error
 - if error is lower, keep change

- otherwise restore subtree, repeat for all nodes in subtree

Continuous values

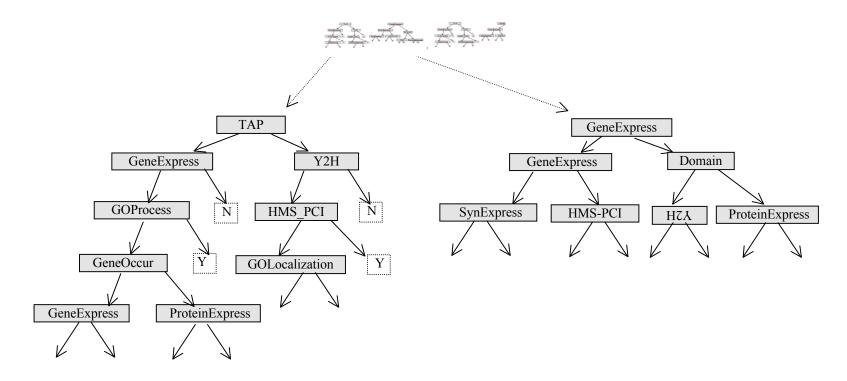
- Either use threshold to turn into binary or discretize
- Its possible to compute information gain for all possible tresholds (there are a finite number of training samples)
- Harder if we wish to assign more than two values (can be done recursively)

The 'best' classifier

- There has been a lot of interest lately in decision trees.
- They are quite robust, intuitive and, surprisingly, very accurate

Random forest

- A collection of decision trees
- For each tree we select a subset of the attributes (recommended square root of |A|) and build tree using just these attributes
- An input sample is classified using majority voting



Ranking classifiers

MODEL	CAL	ACC	FSC	LFT	ROC	APR	BEP	RMS	MXE	MEAN	OPT-SEL
BST-DT	PLT	.843*	.779	.939	.963	.938	.929*	.880	.896	.896	.917
RF	PLT	.872*	.805	.934*	.957	.931	.930	.851	.858	.892	.898
BAG-DT	_	.846	.781	.938*	.962*	.937*	.918	.845	.872	.887*	.899
BST-DT	ISO	.826*	.860*	.929*	.952	.921	.925*	.854	.815	.885	.917*
RF	_	.872	.790	.934*	.957	.931	.930	.829	.830	.884	.890
BAG-DT	PLT	.841	.774	.938*	.962*	.937*	.918	.836	.852	.882	.895
RF	ISO	.861*	.861	.923	.946	.910	.925	.836	.776	.880	.895
BAG-DT	ISO	.826	.843*	.933*	.954	.921	.915	.832	.791	.877	.894
SVM	PLT	.824	.760	.895	.938	.898	.913	.831	.836	.862	.880
ANN	_	.803	.762	.910	.936	.892	.899	.811	.821	.854	.885
SVM	ISO	.813	.836*	.892	.925	.882	.911	.814	.744	.852	.882
ANN	PLT	.815	.748	.910	.936	.892	.899	.783	.785	.846	.875
ANN	ISO	.803	.836	.908	.924	.876	.891	.777	.718	.842	.884
BST-DT	_	.834*	.816	.939	.963	.938	.929*	.598	.605	.828	.851
KNN	PLT	.757	.707	.889	.918	.872	.872	.742	.764	.815	.837
KNN	_	.756	.728	.889	.918	.872	.872	.729	.718	.810	.830
KNN	ISO	.755	.758	.882	.907	.854	.869	.738	.706	.809	.844
BST-STMP	PLT	.724	.651	.876	.908	.853	.845	.716	.754	.791	.808
SVM	-	.817	.804	.895	.938	.899	.913	.514	.467	.781	.810
BST-STMP	ISO	.709	.744	.873	.899	.835	.840	.695	.646	.780	.810
BST-STMP	-	.741	.684	.876	.908	.853	.845	.394	.382	.710	.726
DT	ISO	.648	.654	.818	.838	.756	.778	.590	.589	.709	.774
DT	-	.647	.639	.824	.843	.762	.777	.562	.607	.708	.763
DT	PLT	.651	.618	.824	.843	.762	.777	.575	.594	.706	.761
LR	_	.636	.545	.823	.852	.743	.734	.620	.645	.700	.710
LR	ISO	.627	.567	.818	.847	.735	.742	.608	.589	.692	.703
LR	PLT	.630	.500	.823	.852	.743	.734	.593	.604	.685	.695
NB	ISO	.579	.468	.779	.820	.727	.733	.572	.555	.654	.661
NB	PLT	.576	.448	.780	.824	.738	.735	.537	.559	.650	.654
NB	_	.496	.562	.781	.825	.738	.735	.347	633	.481	.489

Rich Caruana & Alexandru Niculescu-Mizil, An Empirical Comparison of Supervised Learning Algorithms, ICML 2006

Important points

- Classifiers vs. graphical models
- Entropy
- Information gain
- Building decision trees