
15-780: Graduate Artificial
Intelligence

Hidden Markov Models (HMMs)

A Hidden Markov model

• A set of states {s1 … sn}
 - In each time point we are in exactly one of these states

denoted by qt

• Πi, the probability that we start at state si

• A transition probability model, P(qt = si | qt-1 = sj)
• A set of possible outputs Σ
 - In time point t we emit a symbol σ∈Σ
• An emission probability model, p(ot = σ | si)

Inference in HMMs
• Computing P(Q) and P(qt = si)

• Computing P(Q | O) and P(qt = si |O)

• Computing argmaxQP(Q)

√

√

√

Computing δt(i)

)(

)|()(

)()(

1

111

111

Ob

sqOpsqp

Osqpi

ii

ii

i

!

"

=

===

#==)...(max)(111
11

titt
qq

t OOsqqqpi
t

!=!= "
"

K
K

#

Q: Given δt(i), how can we compute δt+1(i)?

A: To get from δt(i) to δt+1(i) we need to

1. Add an emission for time t+1 (Ot+1)

2. Transition to state si

)()(max

)|()|()(max

)...(max)(

1,

111

11111
1

+

+++

+++

=

====

!=!=

tiijt
j

ittjtitt
j

titt
qq

t

Obaj

sqOpsqsqpj

OOsqqqpi
t

"

"

" K
K

The Viterbi algorithm

!

"t+1(i) =max
q1Kqt

p(q1Kqt #qt+1 = si #O1...Ot+1)

=max
j
"t (j)p(qt+1 = si |qt = s j)p(Ot+1 |qt+1 = si)

=max
j

"t (j)a j ,ibi(Ot+1)

• Once again we use dynamic programming for
solving δt(i)

• Once we have δt(i), we can solve for our P(Q*|O)

By:

P(Q* | O) = argmaxQP(Q|O) = P(Q* | O) =

 path defined by argmaxj δt(j),

Learning HMMs
• Until now we assumed that the emission and transition

probabilities are known
• This is usually not the case
 - How is “AI” pronounced by different individuals?
 - What is the probability of hearing “class” after “AI”?

While we will discuss learning the transition and
emission models, we will not discuss selecting the
states.

This is often the most important task and is heavily
dependent on domain knowledge.

Example
• Assume the model below
• We also observe the following sequence:
 1,2,2,5,6,5,1,2,3,3,5,3,3,2 …..
• How can we determine the initial, transition and emission

probabilities?

A B

Initial probabilities
Q: assume we can observe the following sets of states:
 AAABBAA
 AABBBBB
 BAABBAB
 how can we learn the initial probabilities?
A: Maximum likelihood estimation
 Find the initial probabilities π such that

A B
πA = #A/ (#A+#B)

)(maxarg*

)|()(maxarg*

1

2

11

q

qqpq

k

T

t

tt

k

!

!!

=

"=
=

#

$$

$$

$

$

k is the number of
sequences avialable for
training

Transition probabilities
Q: assume we can observe the set of states:
 AAABBAAAABBBBBAAAABBBB
 how can we learn the transition probabilities?
A: Maximum likelihood estimation
 Find a transition matrix a such that

aA,B = #AB / (#AB+#AA)

!

a* = argmaxa "
k

(q1) p(qt |qt$1)
t= 2

T

%

a* = argmaxa p(qt |qt$1)
t= 2

T

#

A B

remember that we
defined ai,j=p(qt=sj|qt-1=si)

Emission probabilities
Q: assume we can observe the set of states:
 A A A B B A A A A B B B B B A A
 and the set of dice values
 1 2 3 5 6 3 2 1 1 3 4 5 6 5 2 3
 how can we learn the emission probabilities?
A: Maximum likelihood estimation

A B

bA(5)= #A5 / (#A1+#A2 + … +#A6)

Learning HMMs
• In most case we do not know the set of states (fully

unsupervised)
• For these cases we can use an algorithm called

expectation maximization (EM) to learn the HMM
parameters

Expectation Maximization (EM)
• Appropriate for problems with ‘missing values’ for the

variables.
• For example, in HMMs we usually do not observe the

states
 - Other famous examples include clustering (variable: class

membership) and Bayesian networks (for learning parameters and /
or structure from incomplete data)

Expectation Maximization (EM)
• Two steps
• E step: Fill in the expected values for the missing variables
• M step: Regular maximum likelihood estimation (MLE) using the

values computed in the E step and the values of the other variables
• Guaranteed to converge (though only to a local minima).

M stepE step

values for (missing)
variables

parameters

Expectation Maximization (EM)
• Two steps
• E step: Fill in the expected values for the missing variables
• M step: Regular maximum likelihood estimation (MLE) using the

values computed in the E step and the values of the other variables
• Guaranteed to converge (though only to a local minima).

EM is another one of these vary general and highly
popular algorithms. The key computational issue is
how to derive the expectations in the E step.

Forward-Backward
• We already defined a forward looking variable

• We also need to define a backward looking variable

!

" t (i) = P(O
1
KOt #qt = si)

)|,,()(1 isOOPi
tntt
== + L!

Forward-Backward
• We already defined a forward looking variable

• We also need to define a backward looking variable

!

" t (i) = P(O
1
KOt #qt = si)

!

"t (i) = P(Ot+1,L,On | st = i) =

ai, jb j (Ot+1)" t+1(j)
j

#

Forward-Backward
• We already defined a forward looking variable

• We also need to define a backward looking variable

• Using these two definitions we can show

!

" t (i) = P(O
1
KOt #qt = si)

)(
)()(

)()(
),,|(1 iS

jj

ii
OOsqP t

def

j

tt

tt
nit ===

! "#

"#
L

P(A|B)=P(A,B)/P(B)

)|,,()(1 isOOPi
tntt
== + L!

State and transition probabilities
• Probability of a state

• We can also derive a transition probability

),(),,|,(11 jiSoosqsqP tnjtit === + L

)(
)()(

)()(
),,|(1 iS

jj

ii
OOsqP t

def

j

tt

tt
nit ===

! "#

"#
L

!

P(qt = si,qt+1 = s j |o1,L,on) =

=
" t (i)P(qt+1 = s j |qt = si)P(ot+1 |qt+1 = s j)#t+1(j)

" t (j)#t (j)
j

$
=
def

St (i, j)

E step
• Compute St(i) and St(i,j) for all t, i, and j (1≤t≤n, 1≤i≤k,

2≤j≤k)

!

P(qt = si,qt+1 = s j |o1,L,on) = St (i, j)

!

P(qt = si |O1,L,On)=St (i)

M step (1)
Compute transition probabilities:

 where

!
=

k

ji
kin

jin
a

),(ˆ

),(ˆ
,

!=
t

t jiSjin),(),(ˆ

M step (2)
Compute emission probabilities (here we assume a

multinomial distribution):
 define:

 then

!
=

=
jot

tk

t

kSjB
|

)()(

!
=

i

k

k
k

iB

jB
jb

)(

)(
)(

Complete EM algorithm for learning the
parameters of HMMs (Baum-Welch)

• Inputs: 1 .Observations O1 … On

 2. Number of states, model
1. Guess initial transition and emission parameters
2. Compute E step: St(i) and St(i,j)
3. Compute M step
4. Convergence?
5. Output complete model

No

We did not discuss initial probability estimation. These can
be deduced from multiple sets of observation (for example,
several recorded customers for speech processing)

Advanced HMMs

• Factorial HMM’s

• Input-output HMMs

• Dynamic Bayesian Networks (DBNs)

Coupling of hidden states

• A robot for tourists

• Location ∈ {K by K grid}

• Language ∈ {English, Spanish,
French}

• Talk ∈ {yes, no}

How do we design a HMM
for this robot?

HMM for roboguide

• States: triplets {Loc, Lan, Tal}

• Emissions: based on location and
presence / absence of a person

• Transitions: From one triplet to
another

Example of transition:

P({Loc = (i,j), Lan = E, Tal = y} | ({Loc = (i,j-1), Lan = E, Tal = n})

Problems?

Decoupling of states
• In many cases each state needs to be represented by a

vector of attributes
• In these cases the transition between attributes may not

depend on all the other attributes
 - For example, given a current location the next location is

independent of the language being used

• In such cases it is better to use a different representation
that is less complex and still captures the correct model

Factorial HMMs

Learning and inference in factorial
HMMs

• M step: Same as in HMMs:
 - given expected state assignments compute initial,

transition and emission probabilities (could couple
states)

• E step: Harder, we cannot solve efficiently any more
 - The observations couple the states and the E step can

be exponential in the number of different types of states
 - In practice people usually use a sampling (Monte

Carlo) method for this task.

Factorial HMMs

Can also be used to
represent relationships
between different
types of states. Again,
inference is hard but if
the states are known
(estimated) we can
compute transition and
other probabilities (but
we need more data).

Advanced HMMs

• Factorial HMM’s

• Input-output HMMs

• Dynamic Bayesian Networks (DBNs)

√

Static input
• Assume we are building a robot tracker which

determines the location of a robot based on sensor
information

• The model is to be used for 3 different types of robots,
each has a slightly different speed and preference as
to the next location

50% 50% 30% 70%

Handling the robotype model
• We can always build separate models for the three

different robots
• But this is a waste
 - All robots share the same output probabilities
 - Perhaps they also share other properties (language,

etc.).
• Instead, it would be better if we can design one model

that will fit all of them

Input-output HMMs
Input layer: impacts only
the transition probabilities

)|(),|()|()()|,(1111 tttt

t

qopRqqpqopqMOQp !"= #

R

Learning and inference in input-
output HMMs

• Depends on how the transition probability is modeled.
Since R is given we can just learn a new transition table
for each R value (note that the emission probabilities are
still the same regardless of R).

• In some cases the transition probability may take on a
different format (for example, logistic regression
classifier). For such transitions learning is harder.

More general Input-output HMMs
R

More general Input-output HMMs
R1 R2 R3

Advanced HMMs

• Factorial HMM’s

• Input-output HMMs

• Dynamic Bayesian Networks (DBNs)

√

√

Predicting stock prices
• If we knew the price for Microsoft, Yahoo and Ebay

today and the price of Google yesterday, could we
predict the new price for Google?

• In these and other cases there is no hidden states but
there is a strong dependency over time

Dynamic Bayesian networks
(DBNs)

G

E

Y

M

G

E

Y

M

• DBNs are an extension of
Bayesian networks

• They follow the same
semantics

• But they are repeated
over time and so loops
(between time units) are
allowed.

!=
i

ii xPaxpXP))(|()(

Dynamic Bayesian networks
(DBNs)

G

E

Y

M

G

E

Y

M

!=
i

ii xPaxpXP))(|()(

G

E

Y

M

G

E

Y

M

Learning and inference in DBNs
• This is really more similar to a Bayesian network (BN)

than to a HMM
• Like all BNs, learning and inference is NP hard
• Which brings as to several approximation methods:
 - Hill climbing
 - Annealing
 - Greedy algorithms
 - etc.

What you should know
• Why HMMs? Which applications are suitable?
• Learning HMMs: EM algorithm (Baum-Welch)
• Extensions of HMMs

