
15-780: Graduate Artificial
Intelligence

Markov decision processes (MDPs)



What’s missing in HMMs
• HMMs cannot model important aspects of agent interactions:
   - No model for rewards
   - No model for actions which can affect these rewards
• These are actually issues that are faced by many applications:
    - Agents negotiating deals on the web
    - A robot which interacts with its environment
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Formal definition of MDPs
• A set of states {s1 … sn}
• A set of rewards {r1 … rn}
• A set of action {a1 .. am}
• Transition probability
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One reward for each state

Number of actions could be
larger than number of states



Questions
• What is my expected pay if I am in state i
• What is my expected pay if I am in state i and perform

action a?



Solving MDPs
• No actions: Value iterations

• With actions: Value iteration, Policy iteration



Value computation
• An obvious question for such models is what is

combined expected value for each state
• What can we expect to earn over our life time if we

become Asst. prof.?
• What if we go to industry?

Before we answer this question, we need to define a
model for future rewards:

• The value of a current award is higher than the value
of future awards

   - Inflation, confidence

   - Example: Lottery



Discounted rewards
• The discounted rewards model is specified using a

parameter γ
• Total rewards = current reward +
                             γ (reward at time t+1) +
                             γ2 (reward at time t+2) +
                             ………….
                             γk (reward at time t+k) +

                              infinite sum



Discounted awards
• The discounted award model is specified using a

parameter γ
• Total awards = current award +
                             γ (award at time t+1) +
                             γ2 (award at time t+2) +
                             ………….
                             γk (award at time t+k) +

                              infinite sum

Converges if 0<γ<1



Determining the total rewards in a
state

• Define J*(si) = expected discounted sum of rewards when
starting at state si

• How do we compute J*(si)?
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How can we solve this?



Computing j*(si)
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• We have n equations with n unknowns

• Can be solved in close form
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Iterative approaches
• Solving in closed form is possible, but may be time consuming.
• It also doesn’t generalize to non-linear models
• Alternatively, this problem can be solved in an iterative manner
• Lets define Jt(si) as the expected discounted rewards after k steps
• How can we compute Jt(si)?
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Iterative approaches
• Solving in closed form is possible, but may be time

consuming.
• Alternatively, this problem can be solved in an iterative

manner
• Lets define Jk(si) as the expected discounted awards after k

steps
• How can we compute Jk(si)?
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We know how to solve this!

Lets fill the dynamic programming table

But wait …

This is a never ending task!



When do we stop?
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Remember, we have a converging function

We can stop when |Jt-1(si)- Jt(si)|∞ < ε

Infinity norm selects maximal element



Example for γ=0.9
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Solving MDPs
• No actions: Value iterations

• With actions: Value iteration, Policy iteration

√



Adding actions
A Markov Decision Process:
• A set of states {s1 … sn}
• A set of rewards {r1 … rn}
• A set of action {a1 .. am}
• Transition probability
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Example: Actions
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Questions for MDPs
• Now we have actions
• The question changes to the following:

Given our current state and the possible actions, what is
the best action for us in terms of long term payment?



Example: Actions
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Policy
• A policy maps sates to

actions
• An optimal policy leads to

the highest expected
returns

• Note that this does not
depend on the start state
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Solving MDPs with actions
• It could be shown that for every MDP there exists an

optimal policy (we won’t discuss the proof).
• Such policy guarantees that there is no other action that

is expected to yield a higher payoff



Computing the optimal policy:
1. Modified value iteration

• We can compute it by modifying the value iteration
method we discussed.

• Define pk
ij as the probability of transitioning from state i to

state j when using action k
• Then we compute:
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Also known as Bellman’s
equation



Computing the optimal policy:
1. Modified value iteration

• We can compute it by modifying the value iteration
method we discussed.

• Define pk
ij as the probability of transitioning from state i to

state j when using action k
• Then we compute:
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Run until convergences



Computing the optimal policy:
1. Modified value iteration

• We can compute it by modifying the value iteration
method we discussed.

• Define pk
ij as the probability of transitioning from state i to

state j when using action k
• Then we compute:
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• When the algorithm converges, we have
computed the best outcome for each state

• We associate states with the actions that
maximize their return



Value iteration for γ=0.9
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Computing the optimal policy:
2. Policy iteration

• We can also compute optimal policies by revising an
existing policy.

• We initially select a policy at random (mapping from
states to actions).

• We re-compute the expected long term reward at each
state using the selected policy

• We select a new policy using the expected rewrads and
iterate until convergences



Policy iteration: algorithm
• Let πt(si) be the selected policy at time t
1. Randomly chose π0 ; set t = 0
2. For each state si compute J*(si), the long term

expected reward using policy πt .
3. Set πt(si) =

4. Convergence? Yes: output policy. No: t = t + 1, go to 2.
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Policy iteration: algorithm
• Let πt(si) be the selected policy at time t
1. Randomly chose π0 ; set t = 0
2. For each state si compute J*(si), the long term

expected reward using policy πt .
3. Set πt(si) =

4. Convergence? Yes: output policy. No: t = t + 1, go to 2.
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Can be computed
using value iteration

Can be computed
using J*(si) for all
states



Value iteration vs. policy iteration

• Depending on the model and the information at hand:
    - If you have a good guess regarding the optimal policy

then policy iteration would converge much faster
    - similarly, if there are many possible actions, policy

iteration might be faster
    - otherwise value iteration is a safer way



Demo



What you should know
• Models that include rewards and actions
• Value iteration for solving MDPs
• Policy iteration



Partially Observed Markov Decision
Processes (POMDPs)

• Same model as MDP except: We do not observe the
states we are in.

• Thus, we have a distribution over states
• There is an initial distribution for states (initial belief)
• Once we reach a new state and receive a reward we can

re-compute a new belief regrading the possible set of
states



Example
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• If we see 1, we can be in any of several
locations.

• However, based on past and future
observations we can increase a decrease
our belief at a given state

POMDPs can be solved by extending the MDP
methods to solve for a belief state vector rather than
for the original single state MDP


