
15-780: Graduate Artificial
Intelligence

Markov decision processes (MDPs)

What’s missing in HMMs
• HMMs cannot model important aspects of agent interactions:
 - No model for rewards
 - No model for actions which can affect these rewards
• These are actually issues that are faced by many applications:
 - Agents negotiating deals on the web
 - A robot which interacts with its environment

Example: No actions

Graduate
student

20

Asst. prof

40

Tenured
prof.

100

Google

200

On the
street

0

Dead

0

0.6

0.2

0.7 0.9

0.2

0.1

0.1 0.1
1

0.6

0.1

0.3
0.3

0.1

0.6

0.1

Formal definition of MDPs
• A set of states {s1 … sn}
• A set of rewards {r1 … rn}
• A set of action {a1 .. am}
• Transition probability

)&|(1, kttjt

k

ji ahiqsqPP ==== +

One reward for each state

Number of actions could be
larger than number of states

Questions
• What is my expected pay if I am in state i
• What is my expected pay if I am in state i and perform

action a?

Solving MDPs
• No actions: Value iterations

• With actions: Value iteration, Policy iteration

Value computation
• An obvious question for such models is what is

combined expected value for each state
• What can we expect to earn over our life time if we

become Asst. prof.?
• What if we go to industry?

Before we answer this question, we need to define a
model for future rewards:

• The value of a current award is higher than the value
of future awards

 - Inflation, confidence

 - Example: Lottery

Discounted rewards
• The discounted rewards model is specified using a

parameter γ
• Total rewards = current reward +
 γ (reward at time t+1) +
 γ2 (reward at time t+2) +
 ………….
 γk (reward at time t+k) +

 infinite sum

Discounted awards
• The discounted award model is specified using a

parameter γ
• Total awards = current award +
 γ (award at time t+1) +
 γ2 (award at time t+2) +
 ………….
 γk (award at time t+k) +

 infinite sum

Converges if 0<γ<1

Determining the total rewards in a
state

• Define J*(si) = expected discounted sum of rewards when
starting at state si

• How do we compute J*(si)?

))(*)(*)(*(

)(*

2211 niniii

ii

sJpsJpsJpr

XrsJ

L+++=

+=

!

!

How can we solve this?

Computing j*(si)

))(*)(*)(*()(* 222212122 nn sJpsJpsJprsJ L+++= !

))(*)(*)(*()(* 121211111 nn sJpsJpsJprsJ L+++= !

• We have n equations with n unknowns

• Can be solved in close form

))(*)(*)(*()(* 2211 nnnnnnn sJpsJpsJprsJ L+++= !

Iterative approaches
• Solving in closed form is possible, but may be time consuming.
• It also doesn’t generalize to non-linear models
• Alternatively, this problem can be solved in an iterative manner
• Lets define Jt(si) as the expected discounted rewards after k steps
• How can we compute Jt(si)?

ii
rSJ =)(1

!
"

#
$
%

&
+= '

k

kkiii sJprSJ)()(1

,

2 (

!
"

#
$
%

&
+= '+

k

k

t

kiii

t sJprSJ)()(,

1 (

Iterative approaches
• Solving in closed form is possible, but may be time

consuming.
• Alternatively, this problem can be solved in an iterative

manner
• Lets define Jk(si) as the expected discounted awards after k

steps
• How can we compute Jk(si)?

ii
rSJ =)(1

!
"

#
$
%

&
+= '

k

kkiii sJprSJ)()(1

,

2 (

!
"

#
$
%

&
+= '+

k

k

t

kiii

t sJprSJ)()(,

1 (

We know how to solve this!

Lets fill the dynamic programming table

But wait …

This is a never ending task!

When do we stop?
ii
rSJ =)(1

!
"

#
$
%

&
+= '

k

kkiii sJprSJ)()(1

,

2 (

!
"

#
$
%

&
+= '+

k

k

t

kiii

t sJprSJ)()(,

1 (

Remember, we have a converging function

We can stop when |Jt-1(si)- Jt(si)|∞ < ε

Infinity norm selects maximal element

Example for γ=0.9

Graduate
student

20

Asst. prof

40

Google

200

Dead

0

0.9

0.2

0.8

0.2

0.1

0.1

1

0.6

0.1

04931351413

06001822094

036287742

020040201

Jt(D)Jt(Goo)Jt(P)Jt(Gr)t

Solving MDPs
• No actions: Value iterations

• With actions: Value iteration, Policy iteration

√

Adding actions
A Markov Decision Process:
• A set of states {s1 … sn}
• A set of rewards {r1 … rn}
• A set of action {a1 .. am}
• Transition probability

)&|(1, kttjt

k

ji ahiqsqPP ==== +

Example: Actions

Graduate
student

20

Asst. prof

40

Tenured
prof.

100

Google

200

On the
street

0

Dead

0

Action A

0.7 0.7 0.9

0.3

0.2

0.1
1

0.1

0.3
0.3

0.1

0.6

0.1
Action
B

0.6

0.1
0.1

Action A: Leave to
Google

Action B: Stay in
academia

0.8

Questions for MDPs
• Now we have actions
• The question changes to the following:

Given our current state and the possible actions, what is
the best action for us in terms of long term payment?

Example: Actions

Graduate
student

20

Asst. prof

40

Tenured
prof.

100

Google

200

On the
street

0

Dead

0

Action A

0.7 0.7 0.9

0.3

0.2

0.1
1

0.1

0.3
0.3

0.1

0.6

0.1
Action
B

0.6

0.1
0.1

Action A: Leave to
Google

Action B: Stay in
academia

So should you leave now (right
after class) or should you stay in
the PhD program?

0.8

Policy
• A policy maps sates to

actions
• An optimal policy leads to

the highest expected
returns

• Note that this does not
depend on the start state

BTen. Pr.

AAsst. Pr.

AGo

BGr

Solving MDPs with actions
• It could be shown that for every MDP there exists an

optimal policy (we won’t discuss the proof).
• Such policy guarantees that there is no other action that

is expected to yield a higher payoff

Computing the optimal policy:
1. Modified value iteration

• We can compute it by modifying the value iteration
method we discussed.

• Define pk
ij as the probability of transitioning from state i to

state j when using action k
• Then we compute:

!
!
"

#
$
$
%

&
+= '+

j

j

tk

i
k

i

t sJprSJ
ji

)()(
,max

1 (

Also known as Bellman’s
equation

Computing the optimal policy:
1. Modified value iteration

• We can compute it by modifying the value iteration
method we discussed.

• Define pk
ij as the probability of transitioning from state i to

state j when using action k
• Then we compute:

!
!
"

#
$
$
%

&
+= '+

j

j

tk

i
k

i

t sJprSJ
ji

)()(
,max

1 (

Run until convergences

Computing the optimal policy:
1. Modified value iteration

• We can compute it by modifying the value iteration
method we discussed.

• Define pk
ij as the probability of transitioning from state i to

state j when using action k
• Then we compute:

!
!
"

#
$
$
%

&
+= '+

j

j

tk

i
k

i

t sJprSJ
ji

)()(
,max

1 (

• When the algorithm converges, we have
computed the best outcome for each state

• We associate states with the actions that
maximize their return

Value iteration for γ=0.9

Graduate
student

20

Asst. prof

40

Google

200

Dead

0

0.9

0.8

0.1

0.1

1

0.1

0493135311(A)
120(B)

3

0600182431(A)
189(B)

4

036287168(A)
51(B)

2

020040201

Jt(D)Jt(Goo)Jt(P)Jt(Gr)t

0.7

0.3
Action
B

Action A

0.8

0.2

Computing the optimal policy:
2. Policy iteration

• We can also compute optimal policies by revising an
existing policy.

• We initially select a policy at random (mapping from
states to actions).

• We re-compute the expected long term reward at each
state using the selected policy

• We select a new policy using the expected rewrads and
iterate until convergences

Policy iteration: algorithm
• Let πt(si) be the selected policy at time t
1. Randomly chose π0 ; set t = 0
2. For each state si compute J*(si), the long term

expected reward using policy πt .
3. Set πt(si) =

4. Convergence? Yes: output policy. No: t = t + 1, go to 2.

!
!
"

#
$
$
%

&
+ '

j

j

k

i
k

sJpr
ji

)(*
,max (

Policy iteration: algorithm
• Let πt(si) be the selected policy at time t
1. Randomly chose π0 ; set t = 0
2. For each state si compute J*(si), the long term

expected reward using policy πt .
3. Set πt(si) =

4. Convergence? Yes: output policy. No: t = t + 1, go to 2.

!
!
"

#
$
$
%

&
+ '

j

j

k

i
k

sJpr
ji

)(*
,max (

Can be computed
using value iteration

Can be computed
using J*(si) for all
states

Value iteration vs. policy iteration

• Depending on the model and the information at hand:
 - If you have a good guess regarding the optimal policy

then policy iteration would converge much faster
 - similarly, if there are many possible actions, policy

iteration might be faster
 - otherwise value iteration is a safer way

Demo

What you should know
• Models that include rewards and actions
• Value iteration for solving MDPs
• Policy iteration

Partially Observed Markov Decision
Processes (POMDPs)

• Same model as MDP except: We do not observe the
states we are in.

• Thus, we have a distribution over states
• There is an initial distribution for states (initial belief)
• Once we reach a new state and receive a reward we can

re-compute a new belief regrading the possible set of
states

Example

1 1 1

3 1

1 2 1

2

• If we see 1, we can be in any of several
locations.

• However, based on past and future
observations we can increase a decrease
our belief at a given state

POMDPs can be solved by extending the MDP
methods to solve for a belief state vector rather than
for the original single state MDP

