Partially Observable Markov Decision Processes (POMDPs)

Geoff Hollinger Graduate Artificial Intelligence Fall, 2007

^{*}Some media from Reid Simmons, Trey Smith, Tony Cassandra, Michael Littman, and Leslie Kaelbling

Outline for POMDP Lecture

- Introduction
 - What is a POMDP anyway?
 - A simple example
- Solving POMDPs
 - Exact value iteration
 - Policy iteration
 - Witness algorithm, HSVI
 - Greedy solutions
- Applications and extensions
 - When am I ever going to use this (other than in homework five)?

So who is this Markov guy?

- Andrey Andreyevich Markov (1856-1922)
- Russian mathematician
- Known for his work in stochastic processes
 - Later known as Markov Chains

What is a Markov Chain?

- Finite number of discrete states
- Probabilistic transitions between states
- Next state determined only by the current state
 - This is the Markov property

Rewards: S1 = 10, S2 = 0

What is a Hidden Markov Model?

- Finite number of discrete states
- Probabilistic transitions between states
- Next state determined only by the current state
- We're unsure which state we're in
 - The current states emits an observation

Rewards: S1 = 10, S2 = 0

Do not know state: S1 emits O1 with prob 0.75 S2 emits O2 with prob 0.75

What is a Markov Decision Process?

- Finite number of discrete states
- Probabilistic transitions between states and controllable actions in each state
- Next state
 determined only by
 the current state
 and current action
 - This is still the Markov property

Rewards: S1 = 10, S2 = 0

What is a Partially Observable Markov Decision Process?

- Finite number of discrete states
- Probabilistic transitions between states and controllable actions
- Next state determined only by the current state and current action
- We're unsure which state we're in
 - The current state emits observations

Rewards: S1 = 10, S2 = 0

Do not know state: S1 emits O1 with prob 0.75 S2 emits O2 with prob 0.75

A Very Helpful Chart

Markov Models		Do we have control over the state transitons?	
		NO	YES
Are the states completely observable?	YES	Markov Chain	MDP
			Markov Decision Process
	NO	HMM	POMDP
		Hidden Markov Model	Partially Observable Markov Decision Process

POMDP versus MDP

MDP

- +Tractable to solve
- +Relatively easy to specify
- -Assumes perfect knowledge of state

POMDP

- +Treats all sources of uncertainty uniformly
- +Allows for information gathering actions
- -Hugely intractable to solve optimally

- Initial distribution: [0.1, 0.9]
- Discount factor: 0.5
- Reward: S1 = 10, S2 = 0
- Observations: S1 emits O1 with prob 1.0, S2 emits O2 with prob 1.0

- Initial distribution: [0.9, 0.1]
- Discount factor: 0.5
- Reward: S1 = 10, S2 = 0
- Observations: S1 emits O1 with prob 1.0, S2 emits O2 with prob 1.0

- Initial distribution: [0.1, 0.9]
- Discount factor: 0.5
- Reward: S1 = 10, S2 = 0
- Observations: S1 emits O1 with prob 0.75,
 S2 emits O2 with prob 0.75

- Initial distribution: [0.5, 0.5]
- Discount factor: 0.5
- Reward: S1 = 10, S2 = 0
- Observations: S1 emits O1 with prob 1.0,
 S2 emits O2 with prob 1.0

- Initial distribution: [0.5, 0.5]
- Discount factor: 0.5
- Reward: S1 = 10, S2 = 0
- Observations: S1 emits O1 with prob 0.5,
 S2 emits O2 with prob 0.5

Time for Some Formalism

POMDP model

- □ Finite set of states: $s_1, ..., s_n \in S$
- \Box Finite set of actions: $a_1, \ldots, a_m \in A$
- Probabilistic state-action transitions: p(s_i | a, s_i)
- Reward for each state/action pair*: r(s, a)
- \Box Conditional observation probabilities: $p(o \mid s)$

Belief state

- □ Probability distribution over world states: b(s) = p(s)
- □ Action update rule: $b'(s) = \sum_{s' \in S} p(s \mid a, s') \cdot b(s')$
- □ Observation update rule: $b'(s) = p(o \mid s) \cdot b(s)/k$

POMDP as Belief-State MDP

- Equivalent belief-state MDP
 - Each MDP state is a probability distribution (continuous belief state b) over the states of the original POMDP
 - State transitions are products of actions and observations

```
b'(s') = p(s' | a, o, b) = p(o | s', a, b) \cdot p(s' | a, b)/p(o | a, b)
p(o | s', a, b) = p(o | s')
p(s' | a, b) = \sum_{s \in S} p(s' | a, s) \cdot b(s)
p(o | a, b) = \sum_{s' \in S} p(o | s') \cdot p(s' | a, b)
```

 Rewards are expected rewards of original POMDP

$$R(a, b) = \sum_{s \in S} r(a, s) \cdot b(s)$$

Our First POMDP Solving Algorithm

- Discretize the POMDP belief space
 - Solve the resulting belief-space MDP using
 - Value iteration
 - Policy iteration
 - Any MDP solving technique
- Why might this not work very well?

Our First POMDP Solving Algorithm

- Discretize the POMDP belief space
 - Solve the resulting belief-space MDP using
 - Value iteration
 - Policy iteration
 - Any MDP solving technique
- This was the best people could do for a while...

- Until someone figured out
 - The value function of POMDPs can be represented as max of linear segments
 - Each vector typically called "alpha vector": $\alpha_i \cdot b$
 - This is piecewise-linear-convex (let's think about why)

- The value function of POMDPs can be represented as max of linear segments
 - This is piecewise-linear-convex (let's think about why)
 - Convexity
 - State is known at edges of belief space
 - Can always do better with more knowledge of state

- The value function of POMDPs can be represented as max of linear segments
 - This is piecewise-linear-convex (let's think about why)
 - Convexity
 - State is known at edges of belief space
 - Can always do better with more knowledge of state
 - Linear segments
 - Horizon 1 segments are linear (belief times reward)
 - □ Horizon n segments are linear combinations of Horizon n-1 segments (more later)

- The value function of POMDPs can be represented as max of linear segments
 - This leads to a method of exact value iteration for POMDPs

- Basic idea
 - Calculate value function vectors for each action (horizon 1 value function)
 - Keep in mind we need to account for observations
 - Continue looking forward (horizon 2, horizon 3)
 - Iterate until convergence
- Equations coming later

- Example POMDP for value iteration
 - Two states: s1, s2
 - Two actions: a1, a2
 - Three observations: z1, z2, z3
 - □ Positive rewards in both states: R(s1) = 1.0, R(s2) = 1.5

- Horizon 1 value function
 - Calculate immediate rewards for each action in belief space

Need to transform value function with observations

 Each action from horizon 1 yields new vectors from the transformed space

 Each action from horizon 1 yields new vectors from the transformed space

Value function and partition for taking action a1 in step 1

Value function and partition for taking action a2 in step 1

 Combine vectors to yield horizon 2 value function

Combined a1 and a2 value functions

 Combine vectors to yield horizon 2 value function (can also prune dominated vectors)

Combined a1 and a2 value functions

Horizon 2 value function with pruning

- Iterate to convergence
 - This can sometimes take many steps
- Course reading also gives horizon 3 calculation
 - "POMDPs for Dummies" by Tony Cassandra

Horizon 2 value function with pruning

Horizon 3 value function with pruning

- Equations for backup operator: V = HV'
- Step 1:
 - Generate intermediate sets for all actions and observations (non-linear terms cancel)

$$\Gamma^{a,*} \leftarrow \alpha^{a,*}(s) = R(s,a)$$

$$\Gamma^{a,o} \leftarrow \alpha^{a,o}_i(s) = \gamma \sum_{s' \in S} T(s,a,s') \Omega(o,s',a) \alpha'_i(s'), \forall \alpha'_i \in V'$$

- Step 2:
 - Take the cross-sum over all observation

$$\Gamma^a = \Gamma^{a,*} \oplus \Gamma^{a,o_1} \oplus \Gamma^{a,o_2} \oplus \dots$$

- Step 3:
 - Take the union of resulting sets

$$V = \bigcup_{a \in A} \Gamma^a$$

- After all that...
- The good news
 - Value iteration is an exact method for determining the value function of POMDPs
 - The optimal action can be read from the value function for any belief state
- The bad news
 - □ Guesses?

- After all that...
- The good news
 - Value iteration is an exact method for determining the value function of POMDPs
 - The optimal action can be read from the value function for any belief state
- The bad news
 - Time complexity of solving POMDP value iteration is exponential in:
 - Actions and observations
 - Dimensionality of the belief space grows with number of states

The Witness Algorithm (Littman)

A Witness is a Counter-Example

- Idea: Find places where the value function is suboptimal
- Operates action-by-action and observation-by-observation to build up value (alpha) vectors

Algorithm

- Start with value vectors for known ("corner") states
- Define a linear program (based on Bellman's equation) that finds a point in the belief space where the value of the function is incorrect
- Add a new vector (a linear combination of the old value function)
- Iterate

Current value function estimate

Witness region where value function is suboptimal

Policy Iteration for POMDPs

Policy Iteration

- Choose a policy
- Determine the value function, based on the current policy
- Update the value function, based on Bellman's equation
- Update the policy and iterate (if needed)

Policy Iteration for POMDPs

Policy Iteration

- Choose a policy
- Determine the value function, based on the current policy
- □ Update the value function, based on Bellman's equation
- Update the policy and iterate (if needed)

Policy Iteration for POMDPs

- Original algorithm (Sondik) very inefficient and complex
- Mainly due to evaluation of value function from policy!
- □ Represent policy using finite-state controller (Hansen 1997):
 - Easy to evaluate
 - Easy to update

Policy Iteration for POMDPs (Hansen)

- Key Idea: Represent Policy as Finite-State Controller (*Policy Graph*)
 - Explicitly represents: "do action then continue with given policy"
 - Nodes correspond to vectors in value function
 - Edges correspond to transitions based on observations

Policy Iteration for POMDPs (Hansen)

- Determine the value function, based on the current policy
 - Solve system of linear equations
- Update the value function, based on Bellman's equation
 - Can use any standard dynamic-programming method
- Update the policy
 - Ignore new vectors that are dominated by other vectors
 - Add new controller state otherwise

Point-Based Value Iteration (Pineau, Gordon, Thrun)

- Solve POMDP for finite set of belief points
 - Initialize linear segment for each belief point and iterate
- Occasionally add new belief points
 - Add point after a fixed horizon
 - Add points when improvements fall below a threshold

Point-Based Value Iteration (Pineau, Gordon, Thrun)

- Solve POMDP for finite set of belief points
 - Can do point updates in polytime
 - Modify belief update so that one vector is maintained per point
 - Simplified by finite number of belief points
 - Does not require pruning!
 - Only need to check for redundant vectors

Heuristic Search Value Iteration (Smith and Simmons)

Approximate Belief Space

- Deals with only a subset of the belief points
- Focus on the most relevant beliefs (like point-based value iteration)
- □ Focus on the most relevant actions and observations

■ Main Idea

- Value iteration is the dynamic programming form of a tree search
- Go back to the tree and use heuristics to speed things up
- But still use the special structure of the value function and plane backups

HSVI

- Constraints on Value of Beliefs
 - Lower and upper bounds
 - Initialize upper bound to QMDP;
 - Lower bound to "always a"
- Explore the "Horizon" Tree
 - Back up lower and upper bound to further constrain belief values
 - Lower bound is point-based value backups
 - Upper bound is set of points
 - Solve linear program to interpolate (can be expensive)
 - Or use approximate upper bound

HSVI

- Need to decide:
 - □ When to terminate search?
 - Minimal gain
 - \square width(V(b)) < $\epsilon \gamma^{-t}$
 - Which action to choose?
- Highest upper bound:
 - \Box argmax_a Q(b, a)
- Which observation to choose?
 - Reduce excess uncertainty most
 - $argmax_o$ p(o | b, a)*(width(V(T(b,a,o)) $\epsilon \gamma^{-t+1}$)

HSVI Results

Greedy Approaches

- Solve Underlying MDP
 - \square Π_{MDP} : $S \rightarrow A$; Q_{MDP} : $S \times A \rightarrow \mathbb{R}$
- Choose Action Based on Current Belief State
 - \square "most likely" π_{MDP} (argmax_s(b(s))
 - "voting" argmax_a($\Sigma_{s \in S} b(s) \delta(a, \pi_{MDP}(s))$) where $\delta(a, b) = (1 \text{ if } a = b; 0 \text{ otherwise})$
 - \square "Q-MDP" argmax_a($\sum_{s \in S} b(s) Q_{MDP}(s, a)$)
- Essentially, try to act optimally as if the POMDP were to become observable after the next action
 - Cannot plan to do actions just to gain information

Greedy Approaches

- "Dual-Mode Control"
 - Extension to QMDP to allow Information-Gathering Actions
 - Compute entropy H(b) of belief state
 - If entropy is below a threshold, use a greedy method Z(a, b) for choosing action
 - If entropy is above a threshold, choose the action that reduces expected entropy the most

$$EE(a, b) = \sum b' p(b' | a, b) H(b')$$

 $\pi(s) = \operatorname{argmax}_a Z(a, b) \text{ if } H(b) < t$
 $\operatorname{argmin}_a EE(a, b) \text{ otherwise}$

Extensions

- Monte Carlo POMDPs (Thrun)
 - Continuous state and action spaces
 - For example:
 - A holonomic robot traveling on the 2D plane
 - Controlling a robotic gripper
 - Requires approximating belief space and value function with Monte Carlo methods (particle filters)

Extensions

- Monte Carlo POMDPs (Thrun)
 - Continuous state space means infinite dimensional belief space!
 - How do we compare beliefs?
 - Nearest neighbor calculation
 - We can then do value function backups

Extensions

- POMDPs with belief-state compression (Roy and Gordon)
 - Approximate belief space using exponential principal component analysis (E-PCA)
 - Reduces dimensionality of belief space
 - Applications to mobile robot navigation

- Pursuit-Evasion
 - Evader's state is partially observed
 - Pursuer's state is known
 - Applied on
 - Graphs
 - Polygonal spaces
 - Indoor environments
 - Multi-agent search (Hollinger and Singh)
 - Sequential allocation
 - Finite-horizon search

- Sensor placement (McMahan, Gordon, Blum)
 - World is partially observed
 - Can place sensors in world
 - Construct a low-error representation of the world
 - Achieve some task
 - Find an intruder
 - Facilitate "stealthy" movement

Games

- Some games (like poker)
 have hidden states
- POMDPs can compute a best response to a fixed opponent policy
- Solving the full game is a Partially Observable Stochastic Game (POSG)
 - Even harder to solve than a POMDP

- In most (if not all) applications
 - Size of real-world problems are outside the scope of tractable *exact* solutions
 - This is why POMDPs are an active research area...