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Outline for POMDP Lecture
Introduction

What is a POMDP anyway?
A simple example

Solving POMDPs
Exact value iteration
Policy iteration
Witness algorithm, HSVI
Greedy solutions

Applications and extensions
When am I ever going to use this (other than in 
homework five)?



3

So who is this Markov guy?

Andrey Andreyevich 
Markov (1856-1922)
Russian mathematician
Known for his work in 
stochastic processes

Later known as Markov 
Chains
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What is a Markov Chain?

Finite number of 
discrete states
Probabilistic 
transitions 
between states
Next state 
determined only 
by the current 
state

This is the Markov 
property

Rewards: S1 = 10, S2 = 0
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What is a Hidden Markov Model?

Finite number of 
discrete states
Probabilistic 
transitions between 
states
Next state 
determined only by 
the current state
We’re unsure which 
state we’re in

The current states 
emits an observation

Rewards: S1 = 10, S2 = 0

Do not know state:
S1 emits O1 with prob 0.75
S2 emits O2 with prob 0.75
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What is a Markov Decision Process?

Finite number of 
discrete states
Probabilistic 
transitions between 
states and
controllable actions 
in each state
Next state 
determined only by 
the current state 
and current action

This is still the 
Markov property

Rewards: S1 = 10, S2 = 0
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What is a Partially Observable Markov 
Decision Process?

Finite number of 
discrete states
Probabilistic transitions 
between states and 
controllable actions
Next state determined 
only by the current state 
and current action
We’re unsure which 
state we’re in

The current state emits 
observations

Rewards: S1 = 10, S2 = 0

Do not know state:
S1 emits O1 with prob 0.75
S2 emits O2 with prob 0.75
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A Very Helpful Chart
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POMDP versus MDP

MDP
+Tractable to solve
+Relatively easy to specify
-Assumes perfect knowledge of state

POMDP
+Treats all sources of uncertainty uniformly
+Allows for information gathering actions
-Hugely intractable to solve optimally
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Simple Example

Initial distribution: [0.1, 0.9]
Discount factor: 0.5
Reward: S1 = 10, S2 = 0
Observations: S1 emits O1 with prob 1.0, S2 emits 
O2 with prob 1.0
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Simple Example

Initial distribution: [0.9, 0.1]
Discount factor: 0.5
Reward: S1 = 10, S2 = 0
Observations: S1 emits O1 with prob 1.0, S2 emits 
O2 with prob 1.0
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Simple Example

Initial distribution: [0.1, 0.9]
Discount factor: 0.5
Reward: S1 = 10, S2 = 0
Observations: S1 emits O1 with prob 0.75, 
S2 emits O2 with prob 0.75
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Simple Example

Initial distribution: [0.5, 0.5]
Discount factor: 0.5
Reward: S1 = 10, S2 = 0
Observations: S1 emits O1 with prob 1.0, 
S2 emits O2 with prob 1.0
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Simple Example

Initial distribution: [0.5, 0.5]
Discount factor: 0.5
Reward: S1 = 10, S2 = 0
Observations: S1 emits O1 with prob 0.5, 
S2 emits O2 with prob 0.5
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Time for Some Formalism

POMDP model
Finite set of states: 
Finite set of actions:
Probabilistic state-action transitions:
Reward for each state/action pair*:
Conditional observation probabilities:

Belief state
Probability distribution over world states:
Action update rule:
Observation update rule:
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POMDP as Belief-State MDP
Equivalent belief-state MDP

Each MDP state is a probability distribution 
(continuous belief state b) over the states of the 
original POMDP
State transitions are products of actions and 
observations

Rewards are expected rewards of original 
POMDP
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Our First POMDP Solving Algorithm

Discretize the POMDP belief space
Solve the resulting belief-space MDP using

Value iteration
Policy iteration
Any MDP solving technique

Why might this not work very well?
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Our First POMDP Solving Algorithm

Discretize the POMDP belief space
Solve the resulting belief-space MDP using

Value iteration
Policy iteration
Any MDP solving technique

This was the best people could do for a 
while…
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Value Iteration for POMDPs
Until someone figured out

The value function of POMDPs can be 
represented as max of linear segments

Each vector typically called “alpha vector”:
This is piecewise-linear-convex (let’s think about why)



20

Value Iteration for POMDPs
The value function of POMDPs can be represented 
as max of linear segments

This is piecewise-linear-convex (let’s think about why)
Convexity

State is known at edges of belief space
Can always do better with more knowledge of state
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Value Iteration for POMDPs
The value function of POMDPs can be represented 
as max of linear segments

This is piecewise-linear-convex (let’s think about why)
Convexity

State is known at edges of belief space
Can always do better with more knowledge of state

Linear segments
Horizon 1 segments are linear (belief times reward)
Horizon n segments are linear combinations of Horizon n-1 
segments (more later)
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Value Iteration for POMDPs
The value function of POMDPs can be 
represented as max of linear segments

This leads to a method of exact value iteration for 
POMDPs
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Value Iteration for POMDPs
Basic idea

Calculate value function vectors for each action (horizon 1 
value function)

Keep in mind we need to account for observations
Continue looking forward (horizon 2, horizon 3)
Iterate until convergence

Equations coming later
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Value Iteration for POMDPs
Example POMDP for value iteration

Two states: s1, s2
Two actions: a1, a2
Three observations: z1, z2, z3
Positive rewards in both states: R(s1) = 1.0, R(s2) = 1.5

1D belief space for a 2 state POMDP
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Value Iteration for POMDPs

Horizon 1 value function
Calculate immediate rewards for each action in 
belief space

Horizon 1 value function
R(s1) = 1.0, R(s2) = 1.5
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Value Iteration for POMDPs
Need to transform value function with 
observations
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Value Iteration for POMDPs
Each action from horizon 1 yields new 
vectors from the transformed space

Value function and partition for taking 
action a1 in step 1
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Value Iteration for POMDPs
Each action from horizon 1 yields new 
vectors from the transformed space

Value function and partition for taking 
action a1 in step 1

Value function and partition for taking 
action a2 in step 1
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Value Iteration for POMDPs
Combine vectors to yield horizon 2 value 
function

Combined a1 and a2 value functions
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Value Iteration for POMDPs
Combine vectors to yield horizon 2 value 
function (can also prune dominated vectors)

Combined a1 and a2 value functions Horizon 2 value function with pruning
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Value Iteration for POMDPs
Iterate to convergence

This can sometimes take many steps
Course reading also gives horizon 3 
calculation

“POMDPs for Dummies” by Tony Cassandra

Horizon 3 value function with pruning
Horizon 2 value function with pruning
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Value Iteration for POMDPs
Equations for backup operator: V = HV’
Step 1: 

Generate intermediate sets for all actions and observations 
(non-linear terms cancel)

Step 2:
Take the cross-sum over all observation

Step 3:
Take the union of resulting sets
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Value Iteration for POMDPs
After all that…
The good news

Value iteration is an exact method for determining the 
value function of POMDPs
The optimal action can be read from the value function 
for any belief state

The bad news
Guesses?
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Value Iteration for POMDPs
After all that…
The good news

Value iteration is an exact method for determining the 
value function of POMDPs
The optimal action can be read from the value function 
for any belief state

The bad news
Time complexity of solving POMDP value iteration is 
exponential in:

Actions and observations
Dimensionality of the belief space grows with number 
of states
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The Witness Algorithm (Littman)
A Witness is a Counter-Example

Idea: Find places where the value 
function is suboptimal
Operates action-by-action and 
observation-by-observation to build up 
value (alpha) vectors

Algorithm
Start with value vectors for known 
(“corner”) states
Define a linear program (based on 
Bellman’s equation) that finds a point in 
the belief space where the value of the 
function is incorrect
Add a new vector (a linear combination 
of the old value function)
Iterate Witness region where value 

function is suboptimal

Current value function estimate



36

Policy Iteration for POMDPs
Policy Iteration

Choose a policy
Determine the value function, based on the current policy
Update the value function, based on Bellman’s equation
Update the policy and iterate (if needed)
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Policy Iteration for POMDPs
Policy Iteration

Choose a policy
Determine the value function, based on the current policy
Update the value function, based on Bellman’s equation
Update the policy and iterate (if needed)

Policy Iteration for POMDPs
Original algorithm (Sondik) very inefficient and complex
Mainly due to evaluation of value function from policy!
Represent policy using finite-state controller (Hansen 1997):

Easy to evaluate
Easy to update
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Policy Iteration for POMDPs (Hansen)
Key Idea: Represent Policy as Finite-State 
Controller (Policy Graph)

Explicitly represents: “do action then continue with 
given policy”
Nodes correspond to vectors in value function
Edges correspond to transitions based on observations
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Policy Iteration for POMDPs (Hansen)
Determine the value function, based on the current policy

Solve system of linear equations
Update the value function, based on Bellman’s equation

Can use any standard dynamic-programming method
Update the policy

Ignore new vectors that are dominated by other vectors
Add new controller state otherwise
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Point-Based Value Iteration (Pineau, 
Gordon, Thrun)

Solve POMDP for finite 
set of belief points

Initialize linear segment 
for each belief point and 
iterate

Occasionally add new 
belief points

Add point after a fixed 
horizon
Add points when 
improvements fall below a 
threshold 
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Point-Based Value Iteration (Pineau, 
Gordon, Thrun)

Solve POMDP for finite 
set of belief points

Can do point updates in 
polytime

Modify belief update so 
that one vector is 
maintained per point
Simplified by finite 
number of belief points

Does not require pruning!
Only need to check for 
redundant vectors
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Heuristic Search Value Iteration 
(Smith and Simmons)

Approximate Belief Space
Deals with only a subset of the belief points
Focus on the most relevant beliefs (like point-based value 
iteration)
Focus on the most relevant actions and observations

Main Idea
Value iteration is the dynamic programming form of a tree search
Go back to the tree and use heuristics to speed things up
But still use the special structure of the value function and plane 
backups
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HSVI
Constraints on Value of Beliefs

Lower and upper bounds
Initialize upper bound to QMDP;
Lower bound to “always a”

Explore the “Horizon” Tree
Back up lower and upper bound to 
further constrain belief values
Lower bound is point-based value 
backups
Upper bound is set of points

Solve linear program to interpolate 
(can be expensive)
Or use approximate upper bound
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HSVI

Need to decide:
When to terminate search?

Minimal gain 
width(V(b)) < εγ-t

Which action to choose?
Highest upper bound:

argmaxa Q(b, a)
Which observation to choose?

Reduce excess uncertainty most
argmaxo p(o | b, a)*(width(V(τ(b,a,o)) - εγ-t+1)



45

HSVI Results
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Greedy Approaches
Solve Underlying MDP
πMDP: S → A; QMDP: S x A → √

Choose Action Based on Current Belief State
“most likely” πMDP (argmaxs(b(s))
“voting” argmaxa(Σ seS b(s)δ(a, πMDP (s))) where 
δ(a, b) = (1 if a=b; 0 otherwise)

“Q-MDP” argmaxa(Σ seS b(s) QMDP(s, a))
Essentially, try to act optimally as if the POMDP 
were to become observable after the next action

Cannot plan to do actions just to gain information
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Greedy Approaches
“Dual-Mode Control”

Extension to QMDP to allow Information-Gathering 
Actions

Compute entropy H(b) of belief state
If entropy is below a threshold, use a greedy method Z(a, b) 
for choosing action
If entropy is above a threshold, choose the action that reduces 
expected entropy the most

EE(a, b) = Σ b' p(b' | a, b) H(b')
π(s) = argmaxa Z(a, b) if H(b) < t
argmina EE(a, b) otherwise
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Extensions
Monte Carlo POMDPs (Thrun)

Continuous state and action spaces
For example:

A holonomic robot traveling on the 2D plane
Controlling a robotic gripper

Requires approximating belief space and value function 
with Monte Carlo methods (particle filters)
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Extensions
Monte Carlo POMDPs (Thrun)

Continuous state space means infinite 
dimensional belief space!
How do we compare beliefs?

Nearest neighbor calculation
We can then do value function backups
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Extensions
POMDPs with belief-state compression (Roy and 
Gordon)

Approximate belief space using exponential principal 
component analysis (E-PCA)
Reduces dimensionality of belief space
Applications to mobile robot navigation
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Applications
Pursuit-Evasion

Evader’s state is 
partially observed
Pursuer’s state is 
known
Applied on

Graphs
Polygonal spaces
Indoor environments

Multi-agent search 
(Hollinger and Singh)

Sequential allocation
Finite-horizon search

How do we 
find  the 
scout?
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Applications
Sensor placement (McMahan, Gordon, Blum)

World is partially observed
Can place sensors in world
Construct a low-error representation of the world
Achieve some task

Find an intruder
Facilitate “stealthy” movement
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Applications

Games
Some games (like poker) 
have hidden states
POMDPs can compute a 
best response to a fixed 
opponent policy
Solving the full game is a 
Partially Observable 
Stochastic Game (POSG)

Even harder to solve 
than a POMDP
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Applications

In most (if not all) applications
Size of real-world problems are outside the scope 
of tractable exact solutions
This is why POMDPs are an active research 
area…


