15-780: Graduate Artificial Intelligence

Reinforcement learning (RL)

From MDPs to RL

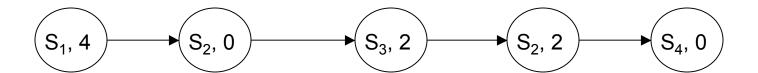
- We still use the same Markov model with rewards and actions
- But there are a few differences:
 - 1. We do not assume we know the Markov model
 - 2. We adapt to new observations (online vs. offline)
- Examples:
 - Game playing
 - Robot interacting with environment
 - Agents

RL

- No actions
- With actions

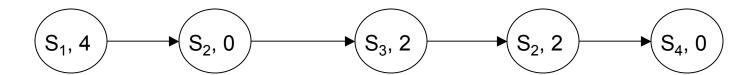
Scenario

- You wonder the world
- At each time point you see a state and a reward
- Your goal is to compute the sum of discounted rewards for each state



Scenario

- You wonder the world
- At each time point you see a state and a reward
- Your goal is to compute the sum of discounted rewards for each state
- Once again we will denote these by J^{est}(S_i)



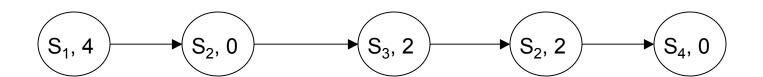
Discounted rewards

• Lets compute the discounted rewards for each time point:

t1:
$$4 + 0.9*0 + 0.9^{2*}2 + ... = 7.1$$

t2: $0 + 0.9*2 + ... = 3.4$
t3: $2 + ... = 3.8$
t4: $2 + 0 ... = 2$
t5: $0 = 0$

State	Observations	Mean
S ₁	7.1	7.1
S ₂	3.4, 2	2.7
S_3	3.8	3.8
S ₄	0	0



Supervised learning for RL

- Observe set of states and rewards: (s(0),r(0)) ...(s(T),r(T))
- For t=0 ... T compute discounted sum:

$$J[t] = \sum_{i=t}^{T} \gamma^{i-t} r_i$$

• Compute $J^{est}(s_i) = (mean of J(t) for t such that s(t) = s_i)$

$$J^{est}[S_i] = \frac{\sum_{t|s[t]=S_i} J[t]}{\#s[t]=S_i}$$

We assume that we observe each state frequently enough and that we have many observations so that the final observations do not have a big impact on our prediction

Algorithm for supervised learning

- 1. Initialize Counts(s_i) = $J(s_i)$ = Disc(s_i) = 0
- 2. Observe a state s_i and a reward r
- 3. $Counts(s_i) = Counts(s_i) + 1$
- 4. $Disc(s_i) = Disc(s_i) + 1$
- 5. For all states j $J(s_j) = J(s_j) + r*Disc(s_j)$ $Disc(s_i) = \gamma*Disc(s_i)$
- 6. Go to 2

At any time we can estimate J^* by setting: $J^{est}(s_i) = J(s_i) / Counts(s_i)$

Running time and space

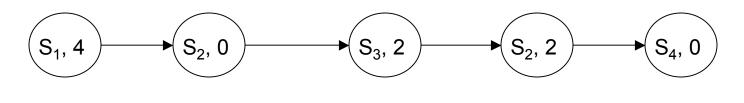
- Each update takes O(n) where n is the number of states, since we are updating vectors containing entries for all states
- Space is also O(n)
 - 1. Convergences to true J* can be proven
 - 2. Can be more efficient by ignoring states for which Disc() is very low already.

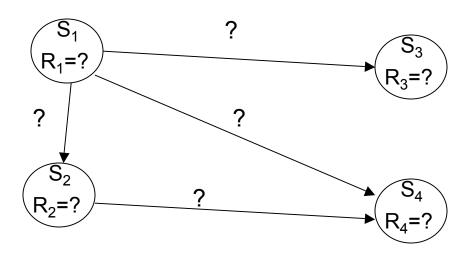
Problems with supervised learning

- Takes a long time to converge
- Does not use all available data
 - We can learn transition probabilities as well!

Certainty-Equivalent (CE) Learning

 Lets try to learn the underlying Markov system's parameters





CE learning

We keep track of three vectors:

```
Counts(s): number of times we visited state s

J(s): sum of rewards from state s

Trans(i,j): number of time we transtiioned from state s; to state s;
```

• When we visit state s_i, receive reward r and move to state s_i we do the following:

```
Counts(s_i) = Counts(s_i) +1
J(s_i) = J(s_i) + r
Trans(i,j) = Trans(i,j) +1
```

CE learning

• When we visit state s_i, receive reward r and move to state s_i we do the following:

```
Counts(s_i) = Counts(s_i) +1
J(s_i) = J(s_i) + r
Trans(i,j) = Trans(i,j) +1
```

Using this we can estimate at any time the following parameters:

```
R^{est}(s_i) = J(s_i)/Counts(s_i)

P^{est}(j|i) = Trans(i,j) / Counts(s_i)
```

CE learning

We can estimate at any time the following parameters:

$$R^{est}(s_i) = J(s_i)/Counts(s_i)$$

$$P^{est}(j|i) = Trans(i,j) / Counts(s_i)$$

We now can solve the MDP by setting, for all states s_k :

$$J^{est}(s_k) = r^{est}(s_k) + \gamma \sum_j p^{est}(s_j \mid s_k) J^{est}(s_j)$$

CE: Running time and space

Running time

- Updates: O(1)
- Solving MDP:
 - O(n³) using matrix inversion
 - O(n²*#it) when using value iteration

Space

• O(n²) for transition probabilities

Improving CE: One backup

 We do the same updates and estimates as the original CE:

```
\begin{aligned} &\text{Counts}(\textbf{s}_i) = \text{Counts}(\textbf{s}_i) + 1 \\ &J(\textbf{s}_i) = J(\textbf{s}_i) + r \\ &\text{Trans}(\textbf{i},\textbf{j}) = \text{Trans}(\textbf{i},\textbf{j}) + 1 \end{aligned} \qquad \begin{aligned} &\text{Rest}(\textbf{s}_i) = J(\textbf{s}_i) / \text{Counts}(\textbf{s}_i) \\ &\text{Pest}(\textbf{j}|\textbf{i}) = \text{Trans}(\textbf{i},\textbf{j}) / \text{Counts}(\textbf{s}_i) \end{aligned}
```

- But we do not carry out the full value iteration
- Instead, we only update J^{est}(s_i) for the current state:

$$J^{est}(s_i) = r^{est}(s_i) + \gamma \sum_i p^{est}(s_j \mid s_i) J^{est}(s_j)$$

CE one backup: Running time and space

Running time

- Updates: O(1)
- Solving MDP:
 - O(1) just update current state

Space

- O(n²) for transition probabilities
 - Still a lot of memory, but much more efficient
 - Can prove convergence to optimal solution (but slower than CE)

Summary so far

Three methods

Method	Time	Space
Supervised learning	O(n)	O(n)
CE learning	O(n ² *#it)	O(n ²)
One backup CE	O(1)	O(n ²)

Temporal difference (TD) learning

- Goal: Same efficiency as one backup CE while much less space
- We only maintain the J^{est} array.
- Assume we have J^{est}(s₁) ... J^{est}(s_n). If we observe a transition from state s_i to state s_j and a reward r, we update using the following rule:

$$J^{est}(s_i) = (1 - \alpha)J^{est}(s_i) + \alpha(r + \gamma j^{est}(s_i))$$

Temporal difference (TD) learning

Assume we have J^{est}(s₁) ... J^{est}(s_n). If we observe a transition from state s_i to state s_j and a reward r, we update using the following rule:

$$J^{est}(s_i) = (1 - \alpha)J^{est}(s_i) + \alpha(r + \gamma j^{est}(s_j))$$

parameter to determine how much weight we place on current observation

We have seen similar update rule before, as always, choosing α is an issue

Convergence

- TD learning is guaranteed to converge if:
- All states are visited often

• And:
$$\sum_{t} \alpha_{t} = \infty$$
$$\sum_{t} \alpha_{t}^{2} < \infty$$

For example, α_t =C/t for some constant C would satisfy both requirements

TD: Complexity and space

• Time to update: O(1)

• Space: O(n)

Method	Time	Space
Supervised learning	O(n)	O(n)
CE learning	O(n ² *#it)	O(n ²)
One backup CE	O(1)	O(n²)

RL

- No actions √
- With actions

Policy learning

- So far we assumed that we cannot effect the environment.
- I real world situations we often have a choice of actions we take (as we discussed for MDPs).
- How can we learn the best policy for such cases?

Policy learning using CE

We can easily update CE by setting:

$$J^{est}(s_k) = r^{est}(s_k) + \max_{a} \left[\gamma \sum_{j} p^{est}(s_j \mid s_k, a) J^{est}(s_j) \right]$$
We revise our transition model to include actions

But which action should we chose next?

Policy learning for TD

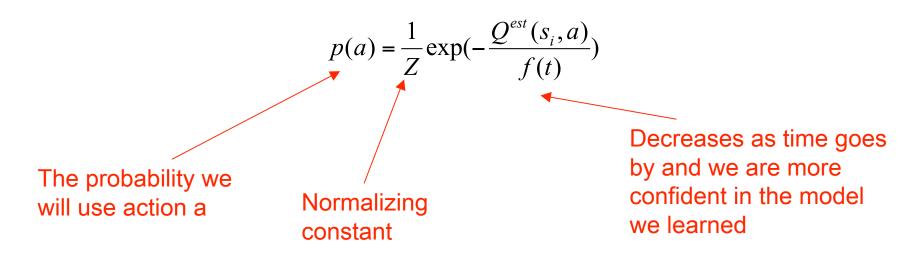
- TD is model free
- We can adjust TD to learn policies by defining the Q function:
- Q*(s_i,a) = expected sum of future (discounted) rewards if we start at state s_i and take action a
- When we take a specific action a in state s_i and then transition to state s_i we can update the Q function directly by setting:

$$Q^{est}(S_i, a) = (1 - \alpha)Q^{est}(S_i, a) + \alpha(r_i + \gamma \max_{a'} Q^{est}(S_j, a'))$$

Instead of the Jest vector we maintain the Qest matrix, which is a rather sparse n by m matrix (n states and m actions)

Choosing the next action

- We can select the action that results in the highest expected sum of future rewards
- But that may not be the best action. Remember, we are only sampling from the distribution of possible outcomes. We do not want to avoid potentially beneficial actions.
- Instead, we can take a more probabilistic approach:



Choosing the next action

Instead, we can take a more probabilistic approach:

$$p(a) \propto \exp(-\frac{Q^{est}(s_i, a)}{f(t)})$$

- We can initialize Q values to be high to increase the likelihood that we will explore more options
- It can be shown that Q learning converges to optimal policy

Demo

What you should know

- Differences between MDP and RL
- Strategies for computing with expected rewards
- Strategies for computing rewards and actions
- Q learning