
15-780: Graduate Artificial
Intelligence

Reinforcement learning (RL)

From MDPs to RL
• We still use the same Markov model with rewards and

actions
• But there are a few differences:
 1. We do not assume we know the Markov model
 2. We adapt to new observations (online vs. offline)
• Examples:
 - Game playing
 - Robot interacting with enviroment
 - Agents

RL
• No actions
• With actions

Scenario
• You wonder the world
• At each time point you see a state and a reward
• Your goal is to compute the sum of discounted rewards

for each state

S1, 4 S2, 0 S3, 2 S2, 2 S4, 0

Scenario
• You wonder the world
• At each time point you see a state and a reward
• Your goal is to compute the sum of discounted rewards

for each state
• Once again we will denote these by Jest(Si)

S1, 4 S2, 0 S3, 2 S2, 2 S4, 0

Discounted rewards
• Lets compute the discounted

rewards for each time point:
 t1: 4 + 0.9*0 + 0.92*2 + …= 7.1
 t2: 0 + 0.9*2 + .. = 3.4
 t3: 2 + … = 3.8
 t4: 2 + 0 … = 2
 t5: 0 = 0

S1, 4 S2, 0 S3, 2 S2, 2 S4, 0

00S4

3.83.8S3

2.73.4, 2S2

7.17.1S1

MeanObservationsState

Supervised learning for RL
• Observe set of states and rewards: (s(0),r(0)) …(s(T),r(T))
• For t=0 … T compute discounted sum:

• Compute Jest(si) = (mean of J(t) for t such that s(t) = si)

!
=

"
=

T

ti

i

ti
rtJ #][

i

stst

i

est

sts

tJ

sJ
i

=
=

!
=

][#

][

][
][|

We assume that we observe each state frequently enough and
that we have many observations so that the final observations
do not have a big impact on our prediction

Algorithm for supervised learning

1. Initialize Counts(si) = J(si)= Disc(si) = 0
2. Observe a state si and a reward r
3. Counts(si) = Counts(si) + 1
4. Disc(si) = Disc(si) + 1
5. For all states j
 J(sj)= J(sj) + r*Disc(sj)
 Disc(sj) = γ*Disc(sj)
6. Go to 2

At any time we can estimate J* by setting:
Jest(si)= J(si) / Counts(si)

Running time and space
• Each update takes O(n) where n is the number of states,

since we are updating vectors containing entries for all
states

• Space is also O(n)

1. Convergences to true J* can be proven

2. Can be more efficient by ignoring states for which
Disc() is very low already.

Problems with supervised learning

• Takes a long time to converge
• Does not use all available data
 - We can learn transition probabilities as well!

Certainty-Equivalent (CE) Learning

• Lets try to learn the underlying Markov system’s
parameters

S1, 4 S2, 0 S3, 2 S2, 2 S4, 0

S2

R2=?

S1

R1=?

S4

R4=?

S3

R3=?

?

??

?

CE learning
• We keep track of three vectors:

• When we visit state si, receive reward r and move to state
sj we do the following:

Counts(s): number of times we visited state s

J(s): sum of rewards from state s

Trans(i,j): number of time we transtiioned from state si to state sj

Counts(si) = Counts(si) +1

J(si) =J(si) + r

Trans(i,j) = Trans(i,j) +1

CE learning
• When we visit state si, receive reward r and move to state

sj we do the following:
Counts(si) = Counts(si) +1

J(si) =J(si) + r

Trans(i,j) = Trans(i,j) +1

Using this we can estimate at any time the following parameters:

Rest(si) = J(si)/Counts(si)

Pest(j|i) = Trans(i,j) / Counts(si)

CE learning
We can estimate at any time the following parameters:

Rest(si) = J(si)/Counts(si)

Pest(j|i) = Trans(i,j) / Counts(si)

We now can solve the MDP by setting, for all states sk:

)()|()()(j

est

k

j

j

est

k

est

k

est sJsspsrsJ !+= "

CE: Running time and space
Running time
• Updates: O(1)
• Solving MDP:
 - O(n3) using matrix inversion
 - O(n2*#it) when using value iteration

Space
• O(n2) for transition probabilities

Improving CE: One backup
• We do the same updates and estimates as the original

CE:

• But we do not carry out the full value iteration
• Instead, we only update Jest(si) for the current state:

Counts(si) = Counts(si) +1

J(si) =J(si) + r

Trans(i,j) = Trans(i,j) +1

Rest(si) = J(si)/Counts(si)

Pest(j|i) = Trans(i,j) / Counts(si)

)()|()()(j

est

i

j

j

est

i

est

i

est
sJsspsrsJ !+= "

CE one backup: Running time and
space

Running time
• Updates: O(1)
• Solving MDP:
 - O(1) just update current state
Space
• O(n2) for transition probabilities

• Still a lot of memory, but much more efficient

• Can prove convergence to optimal solution
(but slower than CE)

Summary so far
• Three methods

O(n2)O(1)One backup CE

O(n2)O(n2*#it)CE learning

O(n)O(n)Supervised learning

SpaceTimeMethod

Temporal difference (TD) learning

• Goal: Same efficiency as one backup CE while much less
space

• We only maintain the Jest array.
• Assume we have Jest(s1) … Jest(sn). If we observe a

transition from state si to state sj and a reward r, we
update using the following rule:

))(()()1()(j

est

i

est

i

est
sjrsJsJ !"" ++#=

Temporal difference (TD) learning

• Assume we have Jest(s1) … Jest(sn). If we observe a
transition from state si to state sj and a reward r, we
update using the following rule:

))(()()1()(j

est

i

est

i

est
sjrsJsJ !"" ++#=

parameter to determine how much
weight we place on current
observation

We have seen similar update rule before, as always, choosing
α is an issue

Convergence
• TD learning is guaranteed to converge if:
• All states are visited often
• And: !="

t

t
#

!<"
t

t

2#

For example, αt=C/t for some constant C would
satisfy both requirements

TD: Complexity and space
• Time to update: O(1)
• Space: O(n)

O(n2)O(1)One backup CE

O(n2)O(n2*#it)CE learning

O(n)O(n)Supervised
learning

SpaceTimeMethod

RL
• No actions
• With actions

√

Policy learning
• So far we assumed that we cannot effect the

environment.
• I real world situations we often have a choice of actions

we take (as we discussed for MDPs).
• How can we learn the best policy for such cases?

Policy learning using CE

We can easily update CE by setting:

!
"

#
$
%

&
+= ')(),|(max)()(j

est

k

j

j

est

a
k

est

k

est sJasspsrsJ (

But which action should we chose next?

We revise our
transition model to
include actions

Policy learning for TD
• TD is model free
• We can adjust TD to learn policies by defining the Q function:
• Q*(si,a) = expected sum of future (discounted) rewards if we start

at state si and take action a
• When we take a specific action a in state si and then transition to

state sj we can update the Q function directly by setting:

))',(max(),()1(),(
'

aSQraSQaSQ j

est

a
ii

est

i

est !"" ++#=

Instead of the Jest vector we maintain the Qest matrix, which is a
rather sparse n by m matrix (n states and m actions)

Choosing the next action
• We can select the action that results in the highest expected sum of

future rewards
• But that may not be the best action. Remember, we are only

sampling from the distribution of possible outcomes. We do not
want to avoid potentially beneficial actions.

• Instead, we can take a more probabilistic approach:

)
)(

),(
exp(

1
)(

tf

asQ

Z
ap i

est

!=

The probability we
will use action a

Decreases as time goes
by and we are more
confident in the model
we learned

Normalizing
constant

Choosing the next action
• Instead, we can take a more probabilistic approach:

• We can initialize Q values to be high to increase the likelihood that
we will explore more options

• It can be shown that Q learning converges to optimal policy

)
)(

),(
exp()(

tf

asQ
ap i

est

!"

Demo

What you should know
• Differences between MDP and RL
• Strategies for computing with expected rewards
• Strategies for computing rewards and actions
• Q learning

