15-780: Graduate Artificial
Intelligence

Reinforcement learning (RL)



From MDPs to RL

 We still use the same Markov model with rewards and
actions

« But there are a few differences:
1. We do not assume we know the Markov model
2. We adapt to new observations (online vs. offline)
« Examples:
- Game playing
- Robot interacting with enviroment
- Agents



 No actions
 With actions

RL



Scenario

* You wonder the world
« At each time point you see a state and a reward

* Your goal is to compute the sum of discounted rewards
for each state

DD e DD



Scenario

You wonder the world
At each time point you see a state and a reward

Your goal is to compute the sum of discounted rewards
for each state

Once again we will denote these by Jesi{(S;)

DD e DD



Discounted rewards

* Lets compute the discounted
rewards for each time point:

t1:4+09*0+0.92"2 + ..=7.1

t2: 0+ 0.9*2 + .. =34
t3:2 + ... = 3.8
t4:2+0 ... =2
t5: 0 =0

State | Observations Mean
S, 7.1 7.1
S, 34,2 2.7
S, 3.8 3.8

S 0 0

G




Supervised learning for RL

* QObserve set of states and rewards: (s(0),r(0)) ...(s(T),r(T))
 Fort=0 ... T compute discounted sum:

T
YUEDWAN
« Compute Jesi(s;) = (mean of J(t) for t such that s(t) = s))
J|t]

est t|slt]=s;
Ls; ]

 #s[t]=s,

We assume that we observe each state frequently enough and
that we have many observations so that the final observations
do not have a big impact on our prediction



Algorithm for supervised learning

Initialize Counts(s;) = J(s;)= Disc(s;) =0
Observe a state s,and arewardr <
Counts(s;) = Counts(s;) + 1
Disc(s;) = Disc(s;) + 1
For all states |

J(s;)= J(s;) + r"Disc(s))

Disc(s;) = y*Disc(s;)
6. Goto 2

o~ b=

At any time we can estimate J* by setting:
Jesi(s.)= J(s;) / Counts(s;)



Running time and space

« Each update takes O(n) where n is the number of states,
since we are updating vectors containing entries for all

states
« Space is also O(n)

1. Convergences to true J* can be proven

2. Can be more efficient by ignoring states for which
Disc() is very low already.



Problems with supervised learning

« Takes a long time to converge
* Does not use all available data
- We can learn transition probabilities as well!



Certainty-Equivalent (CE) Learning

« Lets try to learn the underlying Markov system’s
parameters

DD e DD

?




CE learning

« We keep track of three vectors:
Counts(s): number of times we visited state s

J(s): sum of rewards from state s

Trans(i,j): number of time we transtiioned from state s; to state s,

* When we visit state s;, receive reward r and move to state
s; we do the following:

Counts(s;,) = Counts(s;) +1

J(s)) =J(s)) +
Trans(i,j) = Trans(i,j) +1



CE learning

* When we visit state s;, receive reward r and move to state
s; we do the following:

Counts(s;,) = Counts(s;) +1

J(s)) =J(s)) +
Trans(i,j) = Trans(i,j) +1

Using this we can estimate at any time the following parameters:
ResY(s.) = J(s;)/Counts(s;))
Pest(ji) = Trans(i,j) / Counts(s;)



CE learning

We can estimate at any time the following parameters:
Rest(s,) = J(s;)/Counts(s)
Pest(ji) = Trans(i,j) / Counts(s)

We now can solve the MDP by setting, for all states s, :

Jest(Sk) =rest(Sk)+y2pest(Sj |Sk)Jest(Sj)
J



CE: Running time and space

Running time
« Updates: O(1)
« Solving MDP:
- O(n3) using matrix inversion
- O(n%*#it) when using value iteration

Space
« O(n?) for transition probabilities



Improving CE: One backup

We do the same updates and estimates as the original

CE.:
Counts(s;) = Counts(s;) +1

J(s) =J(s)) +
Trans(i,j) = Trans(i,j) +1

Resi(s,) = J(s,)/Counts(s)
Pest(j|i) = Trans(i,j) / Counts(s,)

But we do not carry out the full value iteration
Instead, we only update Jes(s,) for the current state:

Jest(Si) =rest(Si)+yEpest(Sj |Si)Jest(Sj)
J



CE one backup: Running time and

space
Running time
« Updates: O(1)
« Solving MDP:
- O(1) just update current state
Space

« O(n?) for transition probabilities

o Still a lot of memory, but much more efficient

« Can prove convergence to optimal solution
(but slower than CE)



Summary so far

Three methods

Method Time Space
Supervised learning | O(n) O(n)
CE learning O(n?*#it) O(n?)
One backup CE O(1) O(n?)




Temporal difference (TD) learning

« (Goal: Same efficiency as one backup CE while much less
space

« We only maintain the Jest array.

« Assume we have Jesi(s,) ... Jesi(s,). If we observe a
transition from state s; to state s; and a reward r, we
update using the following rule:

Jest(Si) _ (I—OC)JeSt(Si)"'a(r'l'WeSt(Sj))



Temporal difference (TD) learning

« Assume we have Jesi(s,) ... Jesi(s,). If we observe a
transition from state s; to state s; and a reward r, we
update using the following rule:

T (5,) = (1= )T (s) + @+ (5))

//

parameter to determine how much
weight we place on current
observation

We have seen similar update rule before, as always, choosing
o IS an issue



Convergence

« TD learning is guaranteed to converge if:
 All states are visited often

* And: Eaz=°°

t
2
Sa <
t

For example, a,=C/t for some constant C would
satisfy both requirements



TD: Complexity and space

« Time to update: O(1)
« Space: O(n)

Method Time Space
Supervised O(n) O(n)
learning

CE learning O(n2*#it) | O(n?)

One backup CE | O(1) O(n?)




 No actions
 With actions

v

RL



Policy learning

« So far we assumed that we cannot effect the
environment.

* | real world situations we often have a choice of actions
we take (as we discussed for MDPs).

 How can we learn the best policy for such cases?



Policy learning using CE
We can easily update CE by setting:

J(s,)=r""(s,)+ max

rS P (s, | s.a) <s,->}
J

We revise our
transition model to
include actions

But which action should we chose next?



Policy learning for TD

TD is model free
We can adjust TD to learn policies by defining the Q function:

Q*(s;,a) = expected sum of future (discounted) rewards if we start
at state s, and take action a

When we take a specific action a in state s; and then transition to
state s; we can update the Q function directly by setting:

0%/ (S,,a) = (1-a)Q* (S,,a) + au(r, +y max 0 (S ,,a"))

Instead of the Jest vector we maintain the Qest matrix, which is a
rather sparse n by m matrix (n states and m actions)



Choosing the next action

 We can select the action that results in the highest expected sum of
future rewards

- But that may not be the best action. Remember, we are only

sampling from the distribution of possible outcomes. We do not
want to avoid potentially beneficial actions.

* Instead, we can take a more probabilistic approach:

est
(s;,a)
p(a) =— p(— —)
z 1)
\
Decreases as time goes

The probablllty we by and we are more
will use action a Normalizing confident in the model

constant we learned



Choosing the next action

Instead, we can take a more probabilistic approach:

O (s,,9)
Q)

p(a) < exp(- )

We can initialize Q values to be high to increase the likelihood that
we will explore more options

It can be shown that Q learning converges to optimal policy



Demo



What you should know

Differences between MDP and RL

Strategies for computing with expected rewards
Strategies for computing rewards and actions
Q learning



