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Admin

HW5 out today (due 12/6—last class)
Project progress reports due 12/4

One page: accomplishments so far, 
plans, problems, preliminary figures, …

Final poster session: Thursday, 12/13, 
5:30–8:30PM, NSH Atrium

Final reports due at poster session
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Games and 
AI
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Why games?

Economics
Organizations
Warfare
Recreation
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Why games?

Economics
FCC spectrum auctions, Google/Yahoo 
ad placement, supply chains, stock 
market, …

Organizations
Warfare
Recreation
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Why games?

Economics
Organizations

formation of official / actual chains of 
command in businesses, governments, 
armies, …

Warfare
Recreation
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Why games?

Economics
Organizations
Warfare

dogfights, sensor tasking, troop 
deployment, logistics, settlement 
negotiations … 

Recreation
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Why games?

Economics
Organizations
Warfare
Recreation

chess, go, poker, football, …
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Problems to solve

Help agents choose good strategies
play poker well, find the hidden tanks

Design games w/ desired properties
e.g., an auction that maximizes revenue

Predict what humans will do
esp. as part of a complex system
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Recap

Matrix games
2 or more players choose action simultaneously
Each from discrete set of choices
Payoff to each is function of all agents’ choices 

A U
A 3, 4 0, 0
U 0, 0 4, 3
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Recap

Safety value is best I can guarantee myself 
with worst-case opponent
All we need to know if zero-sum or 
paranoid
If we assume more about opponent (e.g., 
rationality) we might be able to get more 
reward
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Recap

Equilibrium = distribution over joint 
strategies so that no one agent wants to 
deviate unilaterally

Minimax: only makes sense in zero-sum 
two-player games, easy to compute
Nash: independent choices, the 
equilibrium everyone talks about
Correlated: uses moderator
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Recap

Pareto dominance: not all 
equilibria are created equal
For any in brown triangle, 
there is one on red line that’s 
at least as good for both 
players
Red line = Pareto dominant
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Choosing 
strategies
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Choosing good strategies

Three fundamentally different cases:
one-shot
one-shot w/ communication
repeated
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One-shot game

One-shot = play game once, never see 
other players before or after
What is a good strategy to pick in a one-
shot game?

e.g., Lunch A U
A 3, 4 0, 0
U 0, 0 4, 3
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One-shot game

Answer: it was a trick question
No matter what we play, there’s no reason 
to believe other player will play same
Called the coordination problem
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One-shot + communication

One-shot w/o comm is boring
If comm allowed, designer 
could tell all players an 
equilibrium, and moderator 
could implement it
E.g., “flip a coin” CE
Can simulate moderator
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; what about designer?

18



One-shot + communication

To replace designer, players 
could bargain
Problems:

predict what will happen 
in case of disagreement
incomplete information
world state
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Repeated games

One-shot w/ comm motivates need to 
compute equilibria—will discuss next
Repeated case will motivate learning—
more later
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Computing 
equilibria

21



Computing equilibria

A central problem of complexity theory
Different answers depending on type of 
equilibrium desired
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How hard is it to find Nash?

At border of poly-time computability
No poly-time algorithms known

even for 2-player games w/ 0/1 payoffs
results (since 2004) of Papadimitriou, 
Chen & Deng, Abbott et al

Easy to find in nondeterministic poly-time
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How hard is it to find Nash?

Interestingly, adding almost any 
interesting restriction makes the problem 
NP-complete
E.g., existence of Nash w/ total payoff ≥ k 
is NP-complete
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How hard is it to find CE?

Finding CE = solving LP
Size = O(size(payoff matrices) actions2)
So, finding CE is poly-time

as is optimizing sum of payoffs
E.g., 3-player, 10-action game: 271 
constraints, 103 variables, sparsity ~10%
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But…

But, size of payoff matrices exponential in 
number of players
So, not practical to write down a matrix 
game with millions of players, much less 
find CE
Seems unsatisfying…
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Succinct games

In a succinct game, payoff matrices are 
written compactly
E.g., a million people sit in a big line
Each chooses +1 or –1
If I choose X, left neighbor chooses L, and 
right neighbor chooses R, my payoff is

XL – XR
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CE in succinct games

Finding equilibria is harder in succinct 
games: can’t afford to write out payoff 
matrices or LP
But, can find CE in poly time in large class 
of succinct games: clever algorithm due to
Christos H. Papadimitriou. Computing Correlated 
Equilibria in Multi-Player Games.  STOC 37, 2005.

Interestingly, highest-total-payoff CE is 
NP-hard
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Summary of complexity

Nash: border of poly-time
even in 2-player 0/1 case

CE: poly-time
highest-payoff CE: poly-time

Succinct CE: poly-time
highest-payoff sCE: NP-hard
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Finding CE

30



Recap: finding CE
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the recommendation F, we can show that

0c + 3d ≥ 4c + 0d . (21.3)

Similarly, the column player’s two possible recommendations tell us that

3a + 0c ≥ 0a + 4c (21.4)

and

0b + 4d ≥ 3b + 0d . (21.5)

Intersecting the four constraints (21.2–21.5), together with the simplex constraints

a + b + c + d = 1

and

a, b, c, d ≥ 0

yields the set of correlated equilibria. The set of correlated equilibria is shown as
the six-sided shaded polyhedron in figure 21.1. (Figure 21.1 is adapted from (Nau
et al., 2004).)

For a game with multiple players and multiple strategies we will have more
variables and constraints: one nonnegative variable per strategy profile, one equality
constraint which ensures that the variables represent a probability distribution, and
one inequality constraint for each ordered pair of distinct strategies of each player.
(A typical example of the last type of constraint is “given that the moderator
tells player i to play strategy j, player i doesn’t want to play k instead.”) All
of these constraints together describe a convex polyhedron. The number of faces
of this polyhedron is no larger than the number of inequality and nonnegativity
constraints given above, but the number of vertices can be much larger.

The Nash equilibria for Battle of the Sexes are a subset of the correlated
equilibria. The large tetrahedron in figure 21.1 represents the set of probability
distributions over strategy profiles. In most of these probability distributions the
players’ action choices are correlated. If we constrain the players to pick their
actions independently, we are restricting the allowable distributions. The set of
distributions which factor into independent row and column strategy choices is
shown as a hyperbola in figure 21.1. The constraints which define an equilibrium
remain the same, so the Nash equilibria are the three places where the hyperbola
intersects the six-sided polyhedron.

21.3 Learning in One-Step Games

In normal-form games we have assumed that the description of the game is common
knowledge: everyone knows all of the rules of the game and the motivations of the
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Figure 21.1 Equilibria in the Battle of the Sexes. The corners of the outlined
simplex correspond to the four pure strategy profiles OO, OF, FO, and FF; the
curved surface is the set of distributions where the row and column players pick
independently; the convex shaded polyhedron is the set of correlated equilibria.
The Nash equilibria are the points where the curved surface intersects the shaded
polyhedron.

and FF:

O F

O a b

F c d

Suppose that the row player receives the recommendation O. Then it knows that
the column player will play O and F with probabilities a/(a + b) and b/(a + b). (The
denominator is nonzero since the row player has received the recommendation O.)
The definition of correlated equilibrium states that in this situation the row player’s
payoff for playing O must be at least as large as its payoff for playing F.

In other words, in a correlated equilibrium we must have

4
a

a + b
+ 0

b

a + b
≥ 0

a

a + b
+ 3

b

a + b
if a + b > 0

Multiplying through by a + b yields the linear inequality

4a + 0b ≥ 0a + 3b (21.2)

(We have discarded the qualification a+b > 0 since inequality 21.2 is always true in
this case.) On the other hand, by examining the case where the row player receives

Row recommendation A

Row recommendation U

Col recommendation A

Col recommendation U

A U
A a b
U c d

A U
A 4,3 0
U 0 3,4

31a, b, c, d ≥ 0      a + b + c + d = 1



Interpretation

Row reward is 4a + 0b + 0c + 3d
What if, whenever moderator tells us A, 
we play U instead?

32

A U
A a b
U c d

A U
A 4,3 0
U 0 3,4



Interpretation

Row reward is 4a + 0b + 0c + 3d
     … becomes 0a + 3b + 0c + 3d
Difference 4a – 3b is regret for switch

+ve bad, –ve good
33

A U
A a b
U c d

A U
A 4,3 0
U 0 3,4



Interpretation

Difference 4a – 3b is regret for A → U

Constraint 4a – 3b ≥ 0 means we don’t 
want to switch A → U

Other constraints: we don’t want U → A, 
Col doesn’t want A → U or U → A
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CE: the picture
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CE ex w/ info hiding necessary

3 Nash equilibria (circles)
CEs include point at TR: 1/3 on each of 
TL, BL, BR (equal chance of 5, 1, 4)

0 1 2 3 4 5

0

1

2

3

4

5

L R

T 5,1 0,0

B 4,4 1,5
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Finding Nash
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Shapley’s game

A B C

1 0,0 1,0 0,1

2 0,1 0,0 1,0

3 1,0 0,1 0,0
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Support enumeration algorithm

Enumerate all support sets for each player
Row: 1, 2, 3, 12, 13, 23, 123
Col: A, B, C, AB, AC, BC, ABC
7 × 7 = 49 possibilities

A B C
1 0,0 1,0 0,1
2 0,1 0,0 1,0
3 1,0 0,1 0,0
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Support enumeration

For each pair of supports, solve an LP
Vars are P(action) for each action in 
support (one set for each player), and also 
expected value to each player
Constraints:

All actions in support have value v
All not in support have value ≤ v
Probabilities in support ≥ 0, sum to 1
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Support enumeration

Checking singleton supports is easy: sum-
to-1 constraint means p=1 for action in 
support
So just check whether actions out of 
support are worse

A B C
1 0,0 1,0 0,1
2 0,1 0,0 1,0
3 1,0 0,1 0,0
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Try 2-strategy supports: 12, AB

Payoff of Row 1: 0 p(A) + 1 p(B) = v
Payoff of Row 2: 0 p(A) + 0 p(B) = v
Payoff of Col A: 0 p(1) + 1 p(2) = w
Payoff of Col B: 0 p(1) + 0 p(2) = w

A B C
1 0,0 1,0 0,1
2 0,1 0,0 1,0
3 1,0 0,1 0,0
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Try 2-strategy supports: 12, AB

0 p(A) + 1 p(B) = v = 0 p(A) + 0 p(B)
0 p(1) + 1 p(2) = w = 0 p(1) + 0 p(2)
Row payoff ≥ row 3: v ≥ 1 p(A) + 0 p(B)
Col payoff ≥ col C: w ≥ 1 p(1) + 0 p(2)

A B C
1 0,0 1,0 0,1
2 0,1 0,0 1,0
3 1,0 0,1 0,0
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More supports

Other 2-vs-2 are similar
We also need to try 1-vs-2, 1-vs-3, and 2-
vs-3, but in interest of brevity: they don’t 
work either
So, on the 49th iteration, we reach 123 vs 
ABC…
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123 vs ABC

Row 1: 0 p(A) + 1 p(B) + 0 p(C) = v
Row 2: 0 p(A) + 0 p(B) + 1 p(C) = v
Row 3: 1 p(A) + 0 p(B) + 0 p(C) = v
So, p(A) = p(B) = p(C) = v = 1/3

A B C
1 0,0 1,0 0,1
2 0,1 0,0 1,0
3 1,0 0,1 0,0

45



123 vs ABC

Col A: 0 p(1) + 0 p(2) + 1 p(3) = w
Col B: 1 p(1) + 0 p(2) + 0 p(3) = w
Col C: 0 p(1) + 1 p(2) + 0 p(3) = w
So, p(1) = p(2) = p(3) = w = 1/3

A B C
1 0,0 1,0 0,1
2 0,1 0,0 1,0
3 1,0 0,1 0,0
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Nash of Shapley

There are nonnegative probs p(1), p(2), & 
p(3) for Row that equalize Col’s payoffs 
for ABC
There are nonnegative probs p(A), p(B), & 
p(C) for Col that equalize Row’s payoffs 
for 123
No strategies outside of supports to check
So, we’ve found the (unique) NE
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Learning in 
Games
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Repeated games

One-shot games: important questions were 
equilibrium computation, coordination
If we get to play many times, learning 
about other players becomes much more 
important than static equilibrium-finding
Equilibrium computation, coordination can 
be achieved as a by-product of learning
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Learning

Start with beliefs / inductive bias about 
other players
During repeated plays of a game

or during one long play of a game 
where we can revisit the same or 
similar states

Adjust our own strategy to improve payoff
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Rules of game

In addition to learning about other 
players, can learn about rules of game
Important in practice, but won’t talk about 
it here
Many of the algorithms we’ll discuss 
generalize straightforwardly
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Learning and equilibrium

Equilibrium considerations place 
constraints on learning algorithms
At the least, if all players “rational,” would 
hope outcome of learning is near an 
equilibrium in the limit

Else some player would want to use a 
different learning algorithm

E.g., wouldn’t expect consistent excess of R
52



Equilibria in repeated games

Possible confusion: equilibria in repeated 
games can be much more complicated 
than in stage game
Complicated equilibria are (unfortunately) 
the relevant ones
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E.g., Lunch

In one-shot Lunch 
game, 3 NE
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E.g., Lunch

In repeated game, for 
example:
We’ll both go to Ali Baba 
6 times, then to different 
places 2 times, then 
repeat.  You’d better do 
what I say, or else I’ll 
make sure you get the 
least possible payoff.
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Folk Theorem

In fact, any feasible 
payoff that is above 
safety values corresponds 
to some Nash equilibrium
Makes designing and 
analyzing learning 
algorithms difficult…
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Bargaining

I’d like AA best
And nobody wants to 
converge to interior of 
pentagon
“Steering” outcome of 
learning is an important 
open question

57

0 100 200 300 400

0

100

200

300

400

Value to player 1

V
a
lu

e
 t
o
 p

la
y
e

r 
2



Opponent 
modeling

58



First try

Run any standard supervised learning 
algorithm to predict

payoff of each of my actions, or
play of all other players

Now act to maximize my predicted utility 
on next turn
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Fictitious play

For example, count up number of times 
opponent played Rock, Paper, or Scissors
If Rock is highest, play Paper, etc.
This algorithm is called fictitious play
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Shapley’s game

R P S

R 0,0 1,0 0,1

P 0,1 0,0 1,0

S 1,0 0,1 0,0

61

non-zero-sum version of rock, paper, scissors



Fictitious play

Even in self-play, FP can do badly
62



Fictitious play

Worse yet, what if opponent knows we’re 
using FP?

We will lose every time
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Second try

We were kind of short-sighted when we 
chose to optimize our immediate utility
What if we formulate a prior, not over 
single plays, but over (infinite) sequences 
of play (conditioned on our own strategy)?
E.g., P(7th opp play is R, 12th is S | my 
first 11 plays are RRRPRPRSSSR) = 0.013

64



Rational learner

Now we can look ahead: find best play 
considering all future effects
R might garner more predicted reward 
now, but perhaps S will confuse opponent 
and let me get more reward later…
This is called rational learning
A complete rational learner must also 
specify tie-break rule
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Rational learner: discussion

First problem: maximization over an 
uncountable set of strategies
Second problem: our play is still 
deterministic, so if opponent gets a copy of 
our code we’re still sunk
What if we have a really big computer and 
can hide our prior?
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Theorem

Any vector of rational learners which 
(mumble mumble) will, when playing each 
other in a repeated game, approach the 
play frequencies and payoffs of some Nash 
equilibrium arbitrarily closely in the limit

Ehud Kalai and Ehud Lehrer. Rational Learning Leads to 
Nash Equilibrium. Econometrica, Vol. 61, No. 5, 1993.
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What does this theorem tell us?

Problem: “mumble mumble” actually 
conceals a condition that’s difficult to 
satisfy in practice

for example, it was violated when we 
peeked at prior and optimized response
nobody knows whether there’s a weaker 
condition that guarantees anything nice
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What does this theorem tell us?

And, as mentioned above, there are often a 
lot of Nash equilibria
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Policy 
gradient

70



Next try

What can we do if not model the 
opponent?
Next try: policy gradient algorithms
Keep a parameterized policy, update it to 
do better against observed play
Note: this seems irrational (why not 
maximize?)
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Gradient dynamics for Lunch
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Figure 21.2 The gradient dynamics of the Battle of the Sexes. If we initialize
the players’ strategy profile at one of the small dots, the gradient ascent update
(equation 21.9) will move it along the corresponding line. The fixed points of the
gradient dynamics are the Nash equilibria (0, 0), (1, 1), and (4/7, 3/7) (marked with
circles); the first two are stable fixed points while the last is an unstable fixed point.

where α(t) is a learning rate. The projection operator P∆(x̄) ensures that the rec-
ommended play is a legal probability distribution: it projects x̄ onto the probability
simplex ∆ by minimum Euclidean distance.

Gradient ascent has much stronger performance guarantees than fictitious play
and the other gradient-based algorithms described above. If we decrease the learning
rate according to a schedule like α(t) = 1/

√
t, then a player which runs gradient

ascent is guaranteed in the long run to achieve an average payoff at least as high
as its safety value (Zinkevich, 2003). (See section 21.3.4 for additional algorithms
with similar guarantees.) In a two-player two-action game the guarantee is even
stronger: Singh et al. (2000) proved that two gradient-ascent learners will achieve
many properties of a Nash equilibrium in the limit, including the average payoffs
and the average strategy.

The most current strategy x(t)
i may not converge when two gradient-ascent

players learn simultaneously: Singh et al. showed that the joint strategies can
enter a limit cycle, even in a two-player two-action game. If the strategies do
converge, though, their limit must be a Nash equilibrium: the projected gradient
P∆(xi + gi) − xi is zero exactly when player i can get no benefit by changing its
strategy. In other words, the Nash equilibria are exactly the fixed points of the
update in equation 21.9; see figure 21.2 for an example.

Since Nash equilibria can be difficult to find, it is interesting to look for modifica-
tions to the gradient ascent algorithm which make it converge more often. Bowling
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Theorem

In a 2-player 2-action repeated matrix 
game, two gradient-descent learners will 
achieve payoffs and play frequencies of 
some Nash equilibrium (of the stage game) 
in the limit

Satinder Singh, Michael Kearns, Yishay Mansour.  Nash Convergence 
of Gradient Dynamics in General-Sum Games.  UAI, 2000
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Theorem

A gradient descent learner with 
appropriately-decreasing learning rate, 
when playing against an arbitrary 
opponent, will achieve at least its safety 
value.  When playing against a stationary 
opponent, it will converge to a best 
response.

Gordon, 1999; Zinkevich, 2003
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Discussion

Works against arbitrary opponent
Gradient descent is a member of 
a class of learners called no-
regret algorithms which achieve 
same guarantee
Safety value still isn’t much of a 
guarantee, but…
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Figure 1: Illustration of feasible values, safety values, equilibria, Pareto domi-
nance, and the Folk Theorem for RBoS.

problem facing two people who go out to an event every weekend, either the
opera (O) or football (F ). One person prefers opera, the other prefers football,
but they both prefer to go together: the one-step reward function is

O F
O 3, 4 0, 0
F 0, 0 4, 3

Player p wants to maximize her expected total discounted future value Vp; we
discount rewards t steps in the future by γt = 0.99t. Figure 1 displays the
expected value vector (E(V1), E(V2)) for a variety of situations.

The shaded triangle in Figure 1, blue where color is available, is the set
of feasible expected-value vectors. Each of the points in this triangle is the
expected-value vector of some joint policy (not necessarily an equilibrium).

The single-round Battle of the Sexes game has three Nash equilibria. Re-
peatedly playing any one of these equilibria yields an equilibrium of RBoS, and
the resulting expected-value vectors are marked with circles in Figure 1. Some
learning algorithms guarantee convergence of average payoffs to one of these
points in self-play. For example, one such algorithm is gradient descent in the
space of an agent’s mixed strategies, since RBoS is a 2× 2 repeated game [15].

Other algorithms, such as the no-regret learners mentioned above, guarantee
that they will achieve at least the safety value of the game. The safety values
for the two players are shown as horizontal and vertical thin dashed lines. So,
two such algorithms playing against each other will arrive at a value vector
somewhere inside the dashed pentagon (cyan where color is available).

The Folk Theorem tells us that RBoS has a Nash equilibrium for every point

4
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Pareto

What if we start our gradient descent 
learner at (its part of) an equilibrium on 
the Pareto frontier?
E.g., start at “always Union Grill”
In self-play, we stay on Pareto frontier
And we still have guarantees of safety 
value and best response
Same idea works for other NR learners
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Pareto

First learning algorithm we’ve discussed 
that guarantees Pareto in self-play
Only a few algorithms with this property 
so far, all since about 2003 (Brafman & 
Tennenholtz, Powers & Shoham, Gordon & Murray)

Can’t really claim it’s “bargaining”—
would like to be able to guarantee 
something about accepting ideas from 
others 
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Scaling up
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Playing realistic games

Main approaches
Non-learning
Opponent modeling

as noted above, guarantees are slim
Policy gradient

usually not a version with no regret
Growing interest in no-regret 
algorithms, but fewer results so far
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Policy gradient example

Keep-out game: A tries to get to target 
region, B tries to interpose
Subproblem of RoboCup

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2006/03/30 20:02

38 Game-theoretic Learning—DRAFT Please do not distribute

x

robot A

robot B

target region

Figure 21.11 The keep-out game. Robot A tries to get to the target region, while
robot B tries to block robot A. State is x, y, ẋ, ẏ for each robot, minus one degree
of freedom for rotational symmetry.

Figure 21.12 Robots plaing the keep-out game. Reprinted with permission from
Michael Bowling.

circle for a preset length of time.
Representing an evaluation function for this game would be complex but not

impossible. The state is described by seven continuous variables: the x and y
positions and the x and y velocities of the two robots make eight degrees of freedom,
but we lose one degree of freedom because the world is rotationally symmetric.

Instead of learning an evaluation function, though, the robots learned their
policies directly. They picked from seven actions (defined by seven carefully selected
target points which depended on the locations of the robots) ten times a second,
according to a randomized policy with about 70,000 adjustable parameters. By
observing the states and rewards encountered in practice games, they estimated the
gradient of their payoffs with respect to the policy parameters, and adjusted the
parameters according to a gradient ascent algorithm like the ones in section 21.3.2.
While the convergence guarantees of section 21.3.2 do not hold in this more
complicated situation, the robots were able to improve their performance both
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Policy gradient example
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Mechanism 
design

82

Note: we didn’t get to the remaining slides in class



Mechanism design

Recall: want to design a game that has 
desired properties
E.g., want equilibrium to have highest 
possible total payoff for players, or want 
game designer to profit as much as 
possible
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Social choice

Group of players must jointly select an 
outcome x
Player i has payoff Ri(x, wi)

wi is a random signal, known only to 
player i, called type

If we knew all the wi values, could choose
x = arg maxx ∑i Ri(x, wi)

But players aren’t motivated to reveal wi
84
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Example: allocation

Choose which player gets a             
valuable, indivisible item
Each player has private value wi

Social welfare maximized by giving item to 
player with highest valuation
So, everyone wants to say “it’s worth 
$100M to me!!!”
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Example: auction

For allocation problem, can fix 
overbidding problem by requiring players 
to pay according to their bids
E.g., highest bidder gets item, pays bid 
price (“first price auction”)
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Mechanism

This is a simple example of a mechanism: 
a game which determines social choice x 
as well as payments to/from players
Actions = bids
Strategy = (type ↦ bid)
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Problem

First-price auction mechanism has a 
problem
Players will lie and say item is worth less 
than they think it is
Might cause suboptimal allocation (but 
only if players don’t know correct 
distribution over others’ valuations)
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Is there a general solution?

Want:
mechanism implements socially optimal 
choice (“efficiency”)
mechanism doesn’t lose money 
(“budget balance”)
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In general, no.

But we can do it for some social choice 
problems
E.g., second-price auction: highest bidder 
gets item, pays second-highest price
Nobody wants to lie
So, painting goes to player w/ high value
And, mechanism always profits
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VCG

Second-price auction is example of 
Vickrey-Clarke-Groves mechanism
Players tell mechanism their types (= 
valuations for all choices)
Mechanism selects socially optimal 
outcome x*

Payments determined according to VCG 
rule:
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VCG payment rule

Recall x* = socially optimal outcome
Define x’ = outcome if player i absent
Player i receives the sum of everyone 
else’s reported valuations for x*

Player i pays the sum of everyone else’s 
reported valuations for x’
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VCG rule

In allocation problem
x* = item allocated to highest bidder
x’ = item allocated to second bidder

For winner:
sum of others’ values in x* = 0
sum of others’ values in x’ = 2nd bid

For others: don’t affect outcome, payment is 0
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More generally

Player i receives the sum of everyone 
else’s reported valuations for x*

Player i pays the sum of everyone else’s 
reported valuations for x’
… total payment for i is amount by which 
everyone else suffers due to i’s presence — 
called externality
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