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o HWS out today (due 12/6—last class)
o Project progress reports due 12/4

o One page: accomplishments so far,
plans, problems, preliminary figures, ...

o Final poster session: Thursday, 12/13,
5:30-8:30PM, NSH Atrium

o Final reports due at poster session
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Problems to solve
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o Help agents choose good strategies

o play poker well, find the hidden tanks
o Design games w/ desired properties

o e.g., an auction that maximizes revenue
o Predict what humans will do

o esp. as part of a complex system










Recap
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o Equilibrium = distribution over joint
strategies so that no one agent wants to
deviate unilaterally

o Minimax: only makes sense in zero-sum
two-player games, easy to compute

o Nash: independent choices, the
equilibrium everyone talks about

o Correlated: uses moderator
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One-shot + communication
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o To replace designer, players
could bargain

o Problems:

o predict what will happen
in case of disagreement

o incomplete information

Value to player 2

o world state

0 100 200 300
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How hard 1s 1t to find Nash?
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o At border of poly-time computability
o No poly-time algorithms known
o even for 2-player games w/ 0/1 payoffs

o results (since 2004) of Papadimitriou,
Chen & Deng, Abbott et al

o Easy to find in nondeterministic poly-time
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How hard 1s 1t to find CE?
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o Finding CE = solving LP
o Size = O(size(payoff matrices) actions?)
o So, finding CE is poly-time

o as is optimizing sum of payoffs

o E.g., 3-player, 10-action game: 271
constraints, 10° variables, sparsity ~10%
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Succinct games
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In a succinct game, payoff matrices are
written compactly

E.g., a million people sit in a big line
Each chooses +1 or —1

If I choose X, left neighbor chooses L, and
right neighbor chooses R, my payoff is

o XL—-XR
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CE 1n succinct games
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o Finding equilibria is harder in succinct
games: can'’t afford to write out payoff
matrices or LP

o But, can find CE in poly time in large class
of succinct games: clever algorithm due to

Christos H. Papadimitriou. Computing Correlated
Equilibria in Multi-Player Games. STOC 37, 2005.

o Interestingly, highest-total-payoff CE is
NP-hard
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Finding CE
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Recap ﬁndlng &8

AlU AU
Alal|b A 4,3 0
Ulc|d U| 0 |34

Row recommendation A 4a + 0b > Qa + 3b
Row recommendation U  Oc + 3d > 4c + 0d
Col recommendation A 3a + 0c > 0a + 4c

Col recommendation U 0b + 4d > 3b + 0d
a, b, c,d=0 a+b+c+d=1
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Interpretation
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AU Al
A % A (4,3 0
U; Ul 0|34

o Difference 4a — 3b is regret for A — U

o Constraint 4a — 3b = 0 means we don’t
want to switch A — U

o Other constraints: we don’t want U — A,
Col doesn’t wantA — Uor U — A
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Finding Nash
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Support enumeration algorithm
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o Enumerate all support sets for each player
o Row: 1,2, 3,12, 13,23, 123

o Col: A, B, C, AB, AC, BC, ABC

o 7/ x 7 =49 possibilities
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Support enumeration
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o For each pair of supports, solve an LP

o Vars are P(action) for each action in
support (one set for each player), and also
expected value to each player

o Constraints:
o All actions in support have value v
o All not in support have value <v

o Probabilities in support = 0, sum to 1
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o Checking singleton supports is easy: sum-
to-1 constraint means p=1 for action in
support

o So just check whether actions out of
support are worse




Try 2- strategy supports 12, AB
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o Payoff of Row 1:0p(A) + I p(B) =v
o Payoff of Row 2: 0p(A) + Op(B) =v
o Payoffof Col A: Op(l)+ I p(2) =w
o Payoffof ColB:0p(l)+0p(2)=w
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Try 2- strategy supports 12, AB
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o Op(A)+1p(B)=v=0p(A)+0p(B)
o Op(1) + Ip(2) =w=0p(1) +0p(2)

o Row payoff =row 3:v =1 p(A) + 0 p(B)
o Col payoff=col C:w=1p(l)+ 0p(2)
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Nash of Shapley
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o There are nonnegative probs p(1), p(2), &
p(3) for Row that equalize Col’s payoffs
for ABC

o There are nonnegative probs p(A), p(B), &
p(C) for Col that equalize Row’s payoffs
for 123

o No strategies outside of supports to check

o So, we’ve found the (unique) NE
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Repeated games
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o One-shot games: important questions were
equilibrium computation, coordination

o If we get to play many times, learning
about other players becomes much more
important than static equilibrium-finding

o Equilibrium computation, coordination can
be achieved as a by-product of learning
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[earning
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o Start with beliefs / inductive bias about
other players

o During repeated plays of a game

o or during one long play of a game
where we can revisit the same or
similar states

o Adjust our own strategy to improve payoff
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Rules of game
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o In addition to learning about other
players, can learn about rules of game

o Important in practice, but won't talk about
it here

o Many of the algorithms we’ll discuss
generalize straightforwardly
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Learning and equilibrium
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o Equilibrium considerations place
constraints on learning algorithms

o At the least, if all players “rational,” would
hope outcome of learning is near an
equilibrium in the limit

o Else some player would want to use a
different learning algorithm

o E.g., wouldn’t expect consistent excess of R




Equilibria in repeated games
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o Possible confusion: equilibria in repeated
games can be much more complicated
than in stage game

o Complicated equilibria are (unfortunately)
the relevant ones
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Fictitious play

Shapley's Game
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o Even in self-play, FP can do badly
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pl-paper
. pO-rock
pl-sCiszars
pl-paper
. pl-rock
pl-scissors
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Second try
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o We were kind of short-sighted when we
chose to optimize our immediate utility

o What if we formulate a prior, not over
single plays, but over (infinite) sequences
of play (conditioned on our own strategy)?

o E.g., P(7th opp play is R, 12th is S | my
first 11 plays are RRRPRPRSSSR) = 0.013
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Rational learner
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o Now we can look ahead: find best play
considering all future effects

o R might garner more predicted reward
now, but perhaps S will confuse opponent
and let me get more reward later...

o This is called rational learning

o A complete rational learner must also
specify tie-break rule
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Rational learner: discussion

o First problem: maximization over an
uncountable set of strategies

o Second problem: our play is still

deterministic, so if opponent gets a copy of
our code we’re still sunk

o What if we have a really big computer and
can hide our prior?
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Theorem
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o Any vector of rational learners which
(mumble mumble) will, when playing each
other in a repeated game, approach the
play frequencies and payoffs of some Nash
equilibrium arbitrarily closely in the limit

Ehud Kalai and Ehud Lehrer. Rational Learning Leads to
Nash Equilibrium. Econometrica, Vol. 61, No. 5, 1993.
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What does this theorem tell us?
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o Problem: “mumble mumble” actually
conceals a condition that’s difficult to
satisfy in practice

o for example, it was violated when we
peeked at prior and optimized response

o nobody knows whether there’s a weaker
condition that guarantees anything nice
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ogradient
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opponent?

maximize?)

Next try
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o What can we do if not model the

o Next try: policy gradient algorithms

o Keep a parameterized policy, update it to
do better against observed play

o Note: this seems irrational (why not
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Theorem
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o In a 2-player 2-action repeated matrix
game, two gradient-descent learners will
achieve payoffs and play frequencies of
some Nash equilibrium (of the stage game)
in the limit

Satinder Singh, Michael Kearns, Yishay Mansour. Nash Convergence
of Gradient Dynamics in General-Sum Games. UAI, 2000
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Theorem
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o A gradient descent learner with
appropriately-decreasing learning rate,
when playing against an arbitrary
opponent, will achieve at least its safety
value. When playing against a stationary
opponent, it will converge to a best
response.

Gordon, 1999; Zinkevich, 2003
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Pareto
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o What if we start our gradient descent
learner at (its part of) an equilibrium on
the Pareto frontier?

o E.g., start at “always Union Grill”
o In self-play, we stay on Pareto frontier

o And we still have guarantees of safety
value and best response

o Same idea works for other NR learners
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Pareto
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o First learning algorithm we’ve discussed
that guarantees Pareto in self-play

o Only a few algorithms with this property

so far, all since about 2003 (Brafman &
lennenholtz, Powers & Shoham, Gordon & Murray)

o Can't really claim it’s “bargaining” —
would like to be able to guarantee
something about accepting ideas from
others







Playing realistic games
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o Main approaches
o Non-learning
o Opponent modeling
o as noted above, guarantees are slim
o Policy gradient
o usually not a version with no regret

o Growing interest in no-regret
algorithms, but fewer results so far







Policy gradient example

' # . ; L "44“;,'nmw_gm_’l‘f_gt..,-...-.M;-l--:_u___r,-rn-urs-.”"#;z_.“ o

Simultaneous
Adversarial
Robot

Learning

Michael Bowling Manuela Veloso
Carnegie Mellon University
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Mechanism
design

Note: we didn'’t get to the remaining slides in class
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Mechanism design
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o Recall: want to design a game that has
desired properties

o E.g., want equilibrium to have highest
possible total payoff for players, or want
game designer to profit as much as
possible
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Social choice
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o Group of players must jointly select an
outcome x

o Player i has payoff Ri(x, wi)

o W; is a random signal, known only to
player i, called type

o If we knew all the w; values, could choose

o X =arg maxx[zi Ri(x, wi)]‘/ social welfare

o But players aren’t motivated to reveal w;
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Example: allocatic \
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o Choose which player gets a
valuable, indivisible item

o Each player has private value w;

o Social welfare maximized by giving item to
player with highest valuation

o So, everyone wants to say “it’s worth
$100M to me!!!”
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Problem
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o First-price auction mechanism has a
problem

o Players will lie and say item is worth less
than they think it is

o Might cause suboptimal allocation (but
only if players don’t know correct
distribution over others’ valuations)
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problems
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In general, no.
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o But we can do it for some social choice

o E.g., second-price auction: highest bidder
gets item,

pays second-highest price

o Nobody wants to lie
o So, painting goes to player w/ high value

o And, mechanism always profits
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VCG
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o Second-price auction is example of
Vickrey-Clarke-Groves mechanism

o Players tell mechanism their types (=
valuations for all choices)

o Mechanism selects socially optimal
outcome X

o Payments determined according to VCG
rule:
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VCG payment rule
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o Recall x* = socially optimal outcome
o Define x’ = outcome if player i absent

o Player i receives the sum of everyone
else’s reported valuations for x*

o Player i pays the sum of everyone else’s
reported valuations for x’
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VCG rule
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o In allocation problem
o X" = item allocated to highest bidder
o x’ = item allocated to second bidder
o For winner:
o sum of others’ values in x* = 0
o sum of others’ values in x’ = 2nd bid

o For others: don't affect outcome, payment is 0
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More generally
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o Player i receives the sum of everyone
else’s reported valuations for x*

o Player i pays the sum of everyone else’s
reported valuations for x’

o ...total payment for i is amount by which
everyone else suffers due to i’s presence —
called externality
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