15-780: Graduate Artificial
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Density estimation



Conditional Probability Tables
(CPT)

P(B)= P(E)=
But where do we get
them?
P(A|B,E) )=.95

P(A|B,-E) = .85
P(A| - BE)) 5

P(A| - B, - E) = .05 /
P(J|- A)— 05

P(M|A) )
P(M|- A) = 15



Density Estimation

« A Density Estimator learns a mapping from a set of

attributes to a Probability

Input data for a

variable or a set of

variables
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Density estimation

« Estimate the distribution (or conditional distribution) of a
random variable

« Types of variables:
- Binary
coin flip, alarm
- Discrete
dice, car model year
- Continuous
height, weight, temp.,



Not just for Bayesian networks ...

* Density estimators can do many good things...

— Can sort the records by probability, and thus spot
weird records (anomaly detection)

— Can do inference: P(E1|E2)
Medical diagnosis / Robot sensors
— Ingredient for Bayes networks



Density estimation

« Binary and discrete variables:

Easy: Just count!

 Continuous variables:

Harder (but just a bit): Fit
a model



Learning a density estimator

P(x[i]=u) = #records in which x/i] =

total number of records

A trivial learning algorithm!



Course evaluation

P(summer) = #Summer / # records
=23/151=0.15
P(Evaluation = 1) = #Evaluation=1

| # records
=49/151 =0.32

P(Evaluation = 1 | summer) =
P(Evaluation = 1 & summer) /
P(summer) = 2/23 = 0.09

But why do we count?

Summer? | Size Evaluation
1 19 3
1 17 3
0 49 2
0 33 1
0 55 3
1 20 1




Computing the joint likelinood of
the data

P(summer) = #Summer / # records
=23/151 =0.15

Summer?

Size

Evaluation

R
P(dataset|/M) = P(X, AX,...AX M) = Hp(xk|M)

— The next slide presents one of the most
important ideas in probabilistic inference. It
has a huge number of applications in many

different and diverse problems




Maximum Likelihood Principle

« We can fit models by maximizing the probability of

generating the observed samples:

L(xs, ... . x| ©) =p(x4| O) ... p(x, | 6)

* The samples (rows in the table) are assumed to be

independent)

 For a binary random variable A with P(A=1)=q
argmax, = #1/#samples

* Why?



Maximum Likelihood Principle

*For a binary random variable A with P(A=1)=q
argmax, = #1/#samples
* Why?

Data likelihood: P(D|M)=q"(1-9)"

We would like to find: argmax, g"(1-¢)"



Maximum Likelihood Principle

Data likelihood: PMD|M)=qg"(1-¢)"

We would like to find: argmax_g¢" (1-¢)"

d n n, n - ) m ny—
—q"(1-q)"” =nmq" " (1-q)" —q"n,(1-g)""
dq

9 0=

dq

ng" " (1-¢)" -¢"n,(1-¢)" " =0=
g""1-q)" " (n(1-q)-gn,) =0=
nl(l_Q)_qnz =0=
n=nmq+n,q=

n +n,




Log Probabillities

When working with products, probabilities of
entire datasets often get too small. A possible
solution is to use the log of probabilities, often

termed ‘log likelihood’
R R
log P(dataset|M ) = logDP(x,JM) = Z log P(x,|M)
=1 =1
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Density estimation

« Binary and discrete variables:

Easy: Just count!

But what if we
only have very

/ few samples?
Harder (but just a bit): Fit

a model

 Continuous variables:



The danger of joint density
estimation

P(summer & size > 20 & evaluation = 3)
=0

- No such example in our dataset

Now lets assume we are given a
new (often called ‘test’) dataset. If
this dataset contains the line

Summer Size Evaluation
1 30 3

Then the probability we would
assign to the entire dataset is O

Summer? | Size Evaluation
1 19 3
1 17 3
0 49 2
0 33 1
0 55 3
1 20 1




Naive Density Estimation

The problem with the Joint Estimator is that it just
mirrors the training data.

We need something which generalizes more usefully.

The naive model generalizes strongly:

Assume that each attribute is distributed
independently of any of the other attributes.



Joint estimation, revisited

Assuming independence we can
compute each probability independently

P(Summer) = 0.15
P(Evaluation = 1) = 0.32
P(Size > 20) = 0.63

How do we do on the joint?
P(Summer & Evaluation = 1) = 0.09
P(Summer)P(Evaluation = 1) = 0.05

P(size > 20 & Evaluation = 1) = 0.23
P(size > 20)P(Evaluation = 1) = 0.20

Summer? | Size Evaluation
1 19 3
1 17 3
0 49 2
1
Not bad ! 3
T 20 1




Joint estimation, revisited

Assuming independence we can
compute each probability independently

P(Summer) = 0.15
P(Evaluation = 1) = 0.32
P(Size > 20) = 0.63

How do we do on the joint?
P(Summer & Size > 20) = 0.026
P(Summer)P(Size > 20) = 0.094

Summer? | Size Evaluation
1 19 3
1 17 3
0 49 2
0 33 1
0 55 3
1 20 1

We must be careful when using the Naive

density estimator




Contrast

Joint DE

Naive DE

Can model anything

Can model only very boring
distributions

No problem to model “C is a noisy
copy of A”

Outside Naive’s scope

Given 100 records and more than 6
Boolean attributes will screw up
badly

Given 100 records and 10,000
multivalued attributes will be fine




Dealing with small datasets

We just discussed one possibility: Naive estimation

There is another way to deal with small number of
measurements that is often used in practice.

Assume we want to compute the probability of heads in a
coin flip

- What if we can only observe 3 flips?

- 25% of the times a maximum likelihood estimator will
assign probability of 1 to either the heads or tails




Pseudo counts

- What if we can only observe 3 flips?

- 25% of the times a maximum likelihood estimator will assign probability of 1 to
either the heads or tails

. In these cases we can use prior belief about the
‘fairness’ of most coins to influence the resulting model.

. We assume that we have observed 10 flips with 5 tails
and 5 heads

«  Thus p(heads) = (#heads+5)/(#flips+10)

« Advantages: 1. Never assign a probability of O to an event

2. As more data accumulates we can get very close to the real
distribution (the impact of the pseudo counts will diminish rapidly)



Pseudo counts

- What if we can only observe 3 flips?

- 25% of the times a maximum likelihood estimator will assign probability of 1 to
either the he

. In thes
fairnes nodel.
Some distributions (for example, the .
. We a: e . 5 tails
45t Beta distribution) can incorporate
an pseudo counts as part of the model
. Thus g
. Advan nt
2. Asm real

distribution (the impact of the pseudo counts will diminish rapidly)



Density estimation

« Binary and discrete variables:

Easy: Just count! v

 Continuous variables:

Harder (but just a bit): Fit
a model



Conditional Probability Tables
(CPT)

What do we do with @
continuous variables? ‘\ /
S1 - sensor 1

S2 — sensor 2 Q

D — distance to wall

T — too close

P(T| D < 1)=.9 a



Conditional Probability Tables
(CPT)

What do we do with
continuous variables?

S1 —sensor 1

S2 — sensor 2
D — distance to wall

T — too close

P(T| D < 1)=.9 G



Elementary Concepts

 Population: the ideal group whose properties we are
interested in and from which the samples are drawn

e.d., graduate students at CMU

« Random sample: a set of elements drawn at random
from the population

e.d., students in grad Al



Elementary Concepts

« Statistic: a number computed from the data
e.g., Average time of sleep



Sample Statistics

1 &
=;in

where n is the number of samples.

« Sample variance:
2 1 —2
- n El xl_u)

« Sample mean: —

« Sample covariance:

I I R
cov(xp,x2) =;;(X1,i—ﬂ1) (xz,i_ﬂz)



How much do grad students sleep?

« Lets try to estimate the distribution of the time graduate
students spend sleeping (outside class).



Possible statistics

« X
Sleep time
*Mean of X:
E{X}
/.03
« Variance of X:
Var{X} = E{(X-E{X})"2}
3.05

Frequency

eeeee

Hours



Covariance: Sleep vs. GPA

Co-Variance of X1,
X2:
Covariance{X1,X2} =

E{(XT-E{X1})(X2-E{X2})]
=0.88

GPA
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Statistical Models

« Statistical models attempt to characterize properties of the
population of interest

* For example, we might believe that repeated measurements
follow a normal (Gaussian) distribution with some mean y and
variance o2, X ~ N(u,o?)

where 1 —(x—p)°
X @ = 2072
p(x1®)="r—">e

and ©=(u,o0?) defines the parameters (mean and variance) of the
model.




The Parameters of Our Model

0.45

- A statistical model is a g
collection of distributions; the .
parameters specify individual  °2
distributions x ~ N(u,0?) ’

* We need to adjust the e

parameters so that the resulting o+

distribution fits the data well 005 3

0
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The Parameters of Our Model

0.45

- A statistical model is a 04l
collection of distributions; the o3
parameters specify individual >
distributions x ~ N(u,0?) o
* We need to adjust the 015
parameters so that the resulting ©°
distribution fits the data well al

0.25-

AO



Computing the parameters of our
model

 Lets assume a Guassian

distribution for our sleep : _
data

 How do we compute the u

parameters of the model?




Maximum Likelihood Principle

» We can fit statistical models by maximizing the probability of
generating the observed samples:

L(Xy, ... . X,| ©) =p(X;] ©) ... p(x, | 6)
(the samples are assumed to be independent)

* In the Gaussian case we simply set the mean and the
variance to the sample mean and the sample variance:

— 1K — 1
r=— > X, o =, 2(x;i—u)

i=1
Why?

| will leave these derivation to you ...



Sensor data

Sensor reading
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What value would we infer for D
given S1,527

« We will write the general terms
and then use the network @ @

model to simplify it. 5 |
« The important issue is how to yERTHE \ /
work w{W

P(D|S1,52) = P(S1|D,S2)P(D|S2) *P(S1|D,S2)P(S2|D)P(D)
’ P(S1]52) P(S1|S2)P(S2)
Assuming equal prior on all values of [

Using network structure

/ P(S1| D)P(S2| D)P(D)

arg max =argmax , P(S1|D)P(S2| D Q
g D P(S1] S2)P(S2) g p» P(S1| D)P(S2| D)

_(D-S1)° | _(D-S2)

2 2
\ 270,

1

\27o]

20 20,

P(S1|D)P(S2|D) = e e



Model for sensor data

_(D-S1)? _(D-52)° 5 5
e 20} e 2073 )=10g( 1 1 )_(D_‘S;l) __(D_S;Z)
\27m0; J2m0? | 2m0? 20, 20,
1 (D-S1)° (D-S52)° (D-S1) _(D-S2)
> > )~ 2 ;=2 ;=2 2
\/ 210, \/ 210, 20, 20, 20, 20,
SPIGELIINCE - I
201 2 0, Only if 0,= o,
Do Sla22 + S22(71 _ /
O, +0,

_S1+82
2

D




Sensor data
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Lets go back to Naive vs.full
mode|

What should | use?
This can be determined based on:
« Training data size
» Cross validation
« Likelihood ratio test
Cross validation is one of

the most useful tricks in
model fitting



Cross validation

LR:-176.276561 LR:-177.452112
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Cross validation

LR:-171.571450 LR:-17
T

5.744144

T T T T T T T

T

T




Multi-Variate Gaussian

* A multivariate Gaussian model: x ~ N(u,Z) where

1 —%x _w =K —p)

X [0)= 277 |3 |2 e

Here u is the mean vector and X is the covariance matrix
M=Auy, gyt 2= var(x,) COV(X4,X,)

COV(X4,X5) var(x,)

* The covariance matrix captures linear dependencies among the
variables



Example




Important points

Maximum likelihood estimations (MLE)
Pseudo counts

Types of distributions

Handling continuous variables



