
15-780: Graduate Artificial
Intelligence

Probabilistic Reasoning and Inference



Advantages of probabilistic
reasoning

• Appropriate for complex, uncertain, environments
    - Will it rain tomorrow?

• Applies naturally to many domains
    - Robot predicting the direction of road, biology, Word paper clip

• Allows to generalize acquired knowledge and
incorporate prior belief

    - Medical diagnosis

• Easy to integrate different information sources
   - Robot’s sensors



Examples
• Unmanned vehicles



Examples: Speech processing



Example: Biological data

ATGAAGCTACTGTCTTCTATCGAACAAGCATGCG
ATATTTGCCGACTTAAAAAGCTCAAG
TGCTCCAAAGAAAAACCGAAGTGCGCCAAGTGT
CTGAAGAACAACTGGGAGTGTCGCTAC
TCTCCCAAAACCAAAAGGTCTCCGCTGACTAGG
GCACATCTGACAGAAGTGGAATCAAGG
CTAGAAAGACTGGAACAGCTATTTCTACTGATTT
TTCCTCGAGAAGACCTTGACATGATT



Basic notations
• Random variable
    - referring to an element / event whose status is unknown:
      A = “it will rain tomorrow”
• Domain
    - The set of values a random variable can take:
      - “A = The stock market will go up this year”: Binary
      - “A = Number of Steelers wins in 2007”: Discrete
      - “A = % change in Google stock in 2007”: Continuous



Priors

P(rain tomorrow) = 0.2

P(no rain tomorrow) = 0.8

Rain

No rain
Degree of belief
in an event in the
absence of any
other information



Conditional probability
• P(A = 1 | B = 1): The fraction of cases where A is true if

B is true

P(A = 0.2) P(A|B = 0.5)



Conditional probability
• In some cases, given knowledge of one or more

random variables we can improve upon our prior
belief of another random variable

• For example:
   p(slept in movie) = 0.5
    p(slept in movie | liked movie) = 1/3
    p(didn’t sleep in movie | liked movie) = 2/3

0.310
0.100
0.401
0.211

PSleptLiked
movie



Joint distributions
• The probability that a set of random

variables will take a specific value is their
joint distribution.

• Notation: P(A ∧ B) or P(A,B)
• Example:  P(liked movie, slept)
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Joint distribution (cont)
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(1-3)

Class sizeTime (regular =2,
summer =1)

P(class size > 20) = 0.5

P(summer) = 1/3

Evaluation of classes
P(class size > 20, summer) = ?



Joint distribution (cont)
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(1-3)

Class sizeTime (regular =2,
summer =1)

P(class size > 20) = 0.5

P(summer) = 1/3

Evaluation of classes
P(class size > 20, summer) = 0



Joint distribution (cont)
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Evaluation
(1-3)

Class sizeTime (regular =2,
summer =1)

P(class size > 20) = 0.5

P(eval = 1) = 2/9

P(class size > 20, eval = 1) = 2/9 Evaluation of classes



Chain rule
• The joint distribution can be specified in terms of

conditional probability:
                P(A,B) = P(A|B)*P(B)
• Together with Bayes rule (which is actually derived from

it) this is one of the most powerful rules in probabilistic
reasoning



Axioms of probability
(Kolmogorov’s axioms)

• A variety of useful facts can be derived from just three
axioms:

1. 0 ≤ P(A) ≤ 1
2. P(true) = 1,  P(false) = 0
3. P(A ∨ B) = P(A) + P(B) – P(A ∧ B)
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Axioms of probability
(Kolmogorov’s axioms)

• A variety of useful facts can be derived from just three
axioms:

1. 0 ≤ P(A) ≤ 1
2. P(true) = 1,  P(false) = 0
3. P(A ∨ B) = P(A) + P(B) – P(A ∧ B)

P(Steelers win the 05-06 season) = 1
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Axioms of probability
(Kolmogorov’s axioms)

• A variety of useful facts can be derived from just three
axioms:

1. 0 ≤ P(A) ≤ 1
2. P(true) = 1,  P(false) = 0
3. P(A ∨ B) = P(A) + P(B) – P(A ∧ B)

There have been several
other attempts to provide a
foundation for probability
theory. Kolmogorov’s
axioms are the most widely
used.



Using the axioms
• How can we use the axioms to prove that:
    P(¬A) = 1 – P(A)
    ?



Bayes rule
• One of the most important rules for AI usage.
• Derived from the chain rule:
     P(A,B) = P(A | B)P(B) = P(B | A)P(A)
• Thus,

Thomas Bayes was
an English
clergyman who set
out his theory of
probability in 1764.
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Bayes rule (cont)
Often it would be useful to derive the rule a bit

further:
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This results from:
P(B) = ∑AP(B,A)

A
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A
B

P(B,A=1) P(B,A=0)



Using Bayes rule
• Cards game:

Place your bet on the
location of the King!



Using Bayes rule
• Cards game:

√

Do you want to
change your bet?



Using Bayes rule
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Computing the (posterior) probability: P(C = k | selB)
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Using Bayes rule

√

A B C
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Joint distributions
• The probability that a set of random

variables will take a specific value is their
joint distribution.

• Requires a joint probability table to
specify the possible assignments

• The table can grow very rapidly …

0.310

0.100

0.401

0.211

PSleptLiked
movie

How can we decrease the number of columns in
the table?



Independence
• In some cases the additional

information does not help

• In this case, the extra
knowledge about rain does not
change our prediction

• Slept and rain are independent!

P(slept) = 0.4

P(slept | rain = 1) = 0.4 0.075110
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Independence (cont.)
• Notation: P(S | R) = P(S)
• Using this we can derive the following:
    - P(¬S | R) = P(¬S)
    - P(S,R) = P(S)P(R)
    - P(R | S) = P(R)



Independence
• Independence allows for easier models, learning and

inference
• For our example:
     - P(raining, slept movie) = P(raining)P(slept movie)
     - Instead of 4 by 2 table (4 parameters), only 2 are

required
     - The saving is even greater if we have many more

variables …
• In many cases it would be useful to assume

independence, even if its not the case



Conditional independence
• Two dependent random variables may become

independent when conditioned on a third variable:
    P(A,B | C) = P(A | C) P(B | C)
• Example
     P(liked movie) = 0.5
     P(slept) = 0.4
     P(liked movie, slept) = 0.1
     P(liked movie | long) = 0.4
     P(slept | long) 0.6
     P(slept, like movie | long) = 0.24

Given knowledge of length,
the two other variables
become independent



Bayesian networks
• Bayesian networks are directed graphs with

nodes representing random variables and
edges representing dependency assumptions

Lo

Li S

Long?

Slept?

Liked?



Important points
• Random variables
• Chain rule
• Bayes rule
• Joint distribution, independence, conditional

independence


