15-780: Graduate Artificial Intelligence

Probabilistic Reasoning and Inference

Advantages of probabilistic reasoning

- Appropriate for complex, uncertain, environments
 Will it rain tomorrow?
- Applies naturally to many domains
 - Robot predicting the direction of road, biology, Word paper clip
- Allows to generalize acquired knowledge and incorporate prior belief
 - Medical diagnosis
- Easy to integrate different information sources
 - Robot's sensors

• Unmanned vehicles

Examples: Speech processing

Example: Biological data

Biological sequence analysis	
Probabilistic models of proteins and nucleic acids	
R. Durbin S. Eddy A. Kregh G. Mitchison	
(Comme)	

ATGAAGCTACTGTCTTCTATCGAACAAGCATGCG ATATTTGCCGACTTAAAAAGCTCAAG TGCTCCAAAGAAAAAACCGAAGTGCGCCAAGTGT CTGAAGAACAACTGGGAGTGTCGCTAC TCTCCCAAAACCAAAAGGTCTCCGCTGACTAGG GCACATCTGACAGAAGTGGAATCAAGG CTAGAAAGACTGGAACAGCTATTTCTACTGATTT TTCCTCGAGAAGACCTTGACATGATT

Basic notations

- Random variable
 - referring to an element / event whose status is unknown:
 A = "it will rain tomorrow"
- Domain
 - The set of values a random variable can take:
 - "A = The stock market will go up this year": Binary
 - "A = Number of Steelers wins in 2007": Discrete
 - "A = % change in Google stock in 2007": Continuous

Priors

Degree of belief in an event in the absence of any other information

P(rain tomorrow) = 0.2P(no rain tomorrow) = 0.8

Conditional probability

 P(A = 1 | B = 1): The fraction of cases where A is true if B is true

P(A = 0.2)

P(A|B = 0.5)

Conditional probability

- In some cases, given knowledge of one or more random variables we can improve upon our prior belief of another random variable
- For example:

p(slept in movie) = 0.5 p(slept in movie | liked movie) = 1/3 p(didn't sleep in movie | liked movie) = 2/3

Liked movie	Slept	Ρ
1	1	0.2
1	0	0.4
0	0	0.1
0	1	0.3

Joint distributions

- The probability that a set of random variables will take a specific value is their joint distribution.
- Notation: $P(A \land B)$ or P(A,B)
- Example: P(liked movie, slept)

Liked movie	Slept	Ρ
1	1	0.2
1	0	0.4
0	0	0.1
0	1	0.3

Joint distribution (cont)

P(class size > 20) = 0.5

P(summer) = 1/3

P(class size > 20, summer) = ?

Evaluation of classes

Time (regular =2, summer =1)	Class size	Evaluation (1-3)
1	10	2
2	34	3
1	12	2
2	65	1
2	15	3
2	43	1
1	13	3
2	51	2

Joint distribution (cont)

P(class size > 20) = 0.5

P(summer) = 1/3

P(class size > 20, summer) = 0

Evaluation of classes

Time (regular =2, summer =1)	Class size	Evaluation (1-3)
1	10	2
2	34	3
1	12	2
2	65	1
2	15	3
2	43	1
1	13	3
2	51	2

Joint distribution (cont)

P(class size > 20) = 0.5

P(eval = 1) = 2/9

P(class size > 20, eval = 1) = 2/9

Evaluation of classes

Time (regular =2, summer =1)	Class size	Evaluation (1-3)
1	10	2
2	34	3
1	12	2
2	65	1
2	15	3
2	43	1
1	13	3
2	51	2

Chain rule

 The joint distribution can be specified in terms of conditional probability:

 $P(A,B) = P(A|B)^*P(B)$

 Together with Bayes rule (which is actually derived from it) this is one of the most powerful rules in probabilistic reasoning

- A variety of useful facts can be derived from just three axioms:
- 1. $0 \le P(A) \le 1$
- 2. P(true) = 1, P(false) = 0
- 3. $P(A \lor B) = P(A) + P(B) P(A \land B)$

- A variety of useful facts can be derived from just three axioms:
- 1. $0 \le P(A) \le 1$
- 2. P(true) = 1, P(false) = 0
- 3. $P(A \lor B) = P(A) + P(B) P(A \land B)$

- A variety of useful facts can be derived from just three axioms:
- 1. $0 \le P(A) \le 1$
- 2. P(true) = 1, P(false) = 0
- 3. $P(A \lor B) = P(A) + P(B) P(A \land B)$

P(Steelers win the 05-06 season) = 1

- A variety of useful facts can be derived from just three axioms:
- 1. $0 \le P(A) \le 1$
- 2. P(true) = 1, P(false) = 0

3.
$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

- A variety of useful facts can be derived from just three axioms:
- 1. $0 \le P(A) \le 1$
- 2. P(true) = 1, P(false) = 0

3.
$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

There have been several other attempts to provide a foundation for probability theory. Kolmogorov's axioms are the most widely used.

Using the axioms

• How can we use the axioms to prove that:

 $P(\neg A) = 1 - P(A)$?

Bayes rule

- One of the most important rules for AI usage.
- Derived from the chain rule:

P(A,B) = P(A | B)P(B) = P(B | A)P(A)

• Thus,

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Thomas Bayes was

an English clergyman who set out his theory of probability in 1764.

Bayes rule (cont)

Often it would be useful to derive the rule a bit further:

Using Bayes rule

• Cards game:

Place your bet on the location of the King!

Using Bayes rule

• Cards game:

Do you want to change your bet?

P(selB | C = k)P(C = k) + P(selB | C = 10)P(C = 10)

Joint distributions

- The probability that a set of random variables will take a specific value is their joint distribution.
- Requires a joint probability table to specify the possible assignments
- The table can grow very rapidly ...

Liked movie	Slept	Ρ
1	1	0.2
1	0	0.4
0	0	0.1
0	1	0.3

How can we decrease the number of columns in the table?

Independence

 In some cases the additional information does not help

P(slept) = 0.4

P(slept | rain = 1) = 0.4

- In this case, the extra knowledge about rain does not change our prediction
- Slept and rain are independent!

Liked movie	Slept	raining	Ρ
1	1	1	0.05
1	0	1	0.1
0	0	1	0.025
0	1	1	0.075
1	1	0	0.15
1	0	0	0.3
0	0	0	0.075
0	1	0	0.225

Independence (cont.)

- Notation: P(S | R) = P(S)
- Using this we can derive the following:

$$- \mathsf{P}(\neg \mathsf{S} \mid \mathsf{R}) = \mathsf{P}(\neg \mathsf{S})$$

$$- P(S,R) = P(S)P(R)$$

$$- P(R \mid S) = P(R)$$

Independence

- Independence allows for easier models, learning and inference
- For our example:
 - P(raining, slept movie) = P(raining)P(slept movie)
 - Instead of 4 by 2 table (4 parameters), only 2 are required
 - The saving is even greater if we have many more variables ...
- In many cases it would be useful to assume independence, even if its not the case

Conditional independence

- Two dependent random variables may become independent when conditioned on a third variable:
 P(A,B | C) = P(A | C) P(B | C)
- Example

P(liked movie) = 0.5

P(slept) = 0.4

P(liked movie, slept) = 0.1

P(liked movie | long) = 0.4

P(slept | long) 0.6

P(slept, like movie | long) = 0.24

Given knowledge of length, the two other variables become independent

Bayesian networks

• Bayesian networks are *directed graphs* with nodes representing *random variables* and edges representing *dependency assumptions*

Important points

- Random variables
- Chain rule
- Bayes rule
- Joint distribution, independence, conditional independence