15-780: Graduate Artificial **Intelligence**

Probabilistic Reasoning and Inference

Advantages of probabilistic reasoning

- Appropriate for complex, uncertain, environments - Will it rain tomorrow?
- Applies naturally to many domains
	- Robot predicting the direction of road, biology, Word paper clip
- Allows to generalize acquired knowledge and incorporate prior belief
	- Medical diagnosis
- Easy to integrate different information sources
	- Robot's sensors

• Unmanned vehicles

Examples: Speech processing

Example: Biological data

ATGAAGCTACTGTCTTCTATCGAACAAGCATGCG ATATTTGCCGACTTAAAAAGCTCAAG TGCTCCAAAGAAAAACCGAAGTGCGCCAAGTGT CTGAAGAACAACTGGGAGTGTCGCTAC TCTCCCAAAACCAAAAGGTCTCCGCTGACTAGG GCACATCTGACAGAAGTGGAATCAAGG CTAGAAAGACTGGAACAGCTATTTCTACTGATTT TTCCTCGAGAAGACCTTGACATGATT

Basic notations

- Random variable
	- referring to an element / event whose status is unknown: $A =$ "it will rain tomorrow"
- Domain
	- The set of values a random variable can take:
- "A = The stock market will go up this year": Binary
- "A = Number of Steelers wins in 2007": Discrete
- "A = % change in Google stock in 2007": Continuous

Priors

No rain
 No rain No rain No rain No in an event in the absence of any other information

 P (rain tomorrow) = 0.2 $P(no \space rain \space tomorrow) = 0.8$

Conditional probability

• $P(A = 1 | B = 1)$: The fraction of cases where A is true if B is true

 $P(A = 0.2)$ $P(A|B = 0.5)$

Conditional probability

- In some cases, given knowledge of one or more random variables we can improve upon our prior belief of another random variable
- For example:

 p (slept in movie) = 0.5 p(slept in movie | liked movie) = 1/3 p(didn't sleep in movie | liked movie) = 2/3

Joint distributions

- The probability that a set of random variables will take a specific value is their joint distribution.
- Notation: $P(A \wedge B)$ or $P(A,B)$
- Example: P(liked movie, slept)

Joint distribution (cont)

P(class size $>$ 20) = 0.5

 P (summer) = $1/3$

P(class size > 20 , summer) = ?

Evaluation of classes

Joint distribution (cont)

P(class size $>$ 20) = 0.5

 P (summer) = $1/3$

P(class size > 20 , summer) = 0

Evaluation of classes

Joint distribution (cont)

P(class size $>$ 20) = 0.5

 $P(\text{eval} = 1) = 2/9$

P(class size > 20 , eval = 1) = 2/9 Evaluation of classes

Chain rule

• The joint distribution can be specified in terms of conditional probability:

 $P(A,B) = P(A|B)^*P(B)$

• Together with Bayes rule (which is actually derived from it) this is one of the most powerful rules in probabilistic reasoning

- A variety of useful facts can be derived from just three axioms:
- 1. $0 \leq P(A) \leq 1$
- 2. P(*true*) = 1, P(*false*) = 0
- 3. $P(A \vee B) = P(A) + P(B) P(A \wedge B)$

- A variety of useful facts can be derived from just three axioms:
- 1. $0 \leq P(A) \leq 1$
- 2. P(*true*) = 1, P(*false*) = 0
- 3. $P(A \vee B) = P(A) + P(B) P(A \wedge B)$

- A variety of useful facts can be derived from just three axioms:
- 1. $0 \leq P(A) \leq 1$
- 2. P(*true*) = 1, P(*false*) = 0
- 3. $P(A \vee B) = P(A) + P(B) P(A \wedge B)$

P(Steelers win the 05-06 season) = 1

- A variety of useful facts can be derived from just three axioms:
- 1. $0 \leq P(A) \leq 1$
- 2. P(*true*) = 1, P(*false*) = 0

3.
$$
P(A \vee B) = P(A) + P(B) - P(A \wedge B)
$$

- A variety of useful facts can be derived from just three axioms:
- 1. $0 \leq P(A) \leq 1$
- 2. P(*true*) = 1, P(*false*) = 0

3.
$$
P(A \vee B) = P(A) + P(B) - P(A \wedge B)
$$

There have been several other attempts to provide a foundation for probability theory. Kolmogorov's axioms are the most widely used.

Using the axioms

• How can we use the axioms to prove that:

 $P(\neg A) = 1 - P(A)$?

Bayes rule

- One of the most important rules for AI usage.
- Derived from the chain rule: $P(A,B) = P(A | B)P(B) = P(B | A)P(A)$
- Thus,

$$
P(A|B) = \frac{P(B|A)P(A)}{P(B)}
$$

Thomas Bayes was an English

clergyman who set out his theory of probability in 1764.

Bayes rule (cont)

Often it would be useful to derive the rule a bit further:

Using Bayes rule

• Cards game:

Place your bet on the location of the King!

Using Bayes rule

• Cards game:

Do you want to change your bet?

 $P(self | C = k)P(C = k) + P(self | C = 10)P(C = 10)$

Joint distributions

- The probability that a set of random variables will take a specific value is their joint distribution.
- Requires a joint probability table to specify the possible assignments
- The table can grow very rapidly ...

How can we decrease the number of columns in the table?

Independence

• In some cases the additional information does not help

 P (slept) = 0.4

 P (slept | rain = 1) = 0.4

- In this case, the extra knowledge about rain does not change our prediction
- Slept and rain are independent!

Independence (cont.)

- Notation: $P(S | R) = P(S)$
- Using this we can derive the following:

$$
-P(-S | R) = P(-S)
$$

$$
-P(S,R) = P(S)P(R)
$$

$$
-P(R \mid S) = P(R)
$$

Independence

- Independence allows for easier models, learning and inference
- For our example:
	- P(raining, slept movie) = P(raining)P(slept movie)
	- Instead of 4 by 2 table (4 parameters), only 2 are required
	- The saving is even greater if we have many more variables …
- In many cases it would be useful to assume independence, even if its not the case

Conditional independence

- Two dependent random variables may become independent when conditioned on a third variable: $P(A,B | C) = P(A | C) P(B | C)$
- Example

P(liked movie) = 0.5

 P (slept) = 0.4

P(liked movie, slept) = 0.1

 $P($ liked movie $|$ long $) = 0.4$

P(slept | long) 0.6

P(slept, like movie | long) = 0.24

Given knowledge of length, the two other variables become independent

Bayesian networks

• Bayesian networks are *directed graphs* with nodes representing *random variables* and edges representing *dependency assumptions*

Important points

- Random variables
- Chain rule
- Bayes rule
- Joint distribution, independence, conditional independence