15-780: Graduate Artificial
Intelligence

Probabilistic Reasoning and Inference



Advantages of probabilistic
reasoning

Appropriate for complex, uncertain, environments

- Will it rain tomorrow?

Applies naturally to many domains

- Robot predicting the direction of road, biology, Word paper clip

Allows to generalize acquired knowledge and
incorporate prior belief

- Medical diagnosis
Easy to integrate different information sources

- Robot’s sensors



Examples

« Unmanned vehicles



Examples: Speech processing




Example: Biological data
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ATGAAGCTACTGTCTTCTATCGAACAAGCATGCG
ATATTTGCCGACTTAAAAAGCTCAAG
TGCTCCAAAGAAAAACCGAAGTGCGCCAAGTGT
CTGAAGAACAACTGGGAGTGTCGCTAC
TCTCCCAAAACCAAAAGGTCTCCGCTGACTAGG
GCACATCTGACAGAAGTGGAATCAAGG
CTAGAAAGACTGGAACAGCTATTTCTACTGATTT
TTCCTCGAGAAGACCTTGACATGATT



Basic notations

Random variable
- referring to an element / event whose status is unknown:

A = “it will rain tomorrow”
Domain
- The set of values a random variable can take:
- “A = The stock market will go up this year”: Binary
- “A = Number of Steelers wins in 2007”: Discrete
- “A = % change in Google stock in 2007": Continuous



Priors

Degree of belief
In an event in the
absence of any
other information

No rain

P(rain tomorrow) = 0.2

P(no rain tomorrow) = 0.8



Conditional probability

« P(A=1|B =1): The fraction of cases where A is true if

B is true

P(A =0.2) P(A|B = 0.5)




Conditional probabillity

* In some cases, given knowledge of one or more

random variables we can improve upon our prior

belief of another random variable
 For example:

p(slept in movie) = 0.5

p(slept in movie | liked movie) = 1/3

p(didn’t sleep in movie | liked movie) = 2/3

Liked | Slept | P
movie

1 1 0.2
1 0 0.4
0 0 0.1
0 1 0.3




Joint distributions

« The probability that a set of random

variables will take a specific value is their

joint distribution.
* Notation: P(A A B) or P(A,B)
 Example: P(liked movie, slept)

Liked Slept P
movie

1 1 0.2
1 0 0.4
0 0 0.1
0 1 0.3




Joint distribution (cont)

P(class size > 20) = 0.5

P(summer) = 1/3

P(class size > 20, summer) = ?

Evaluation of classes

Time (regular =2, | Class size | Evaluation
summer =1) (1-3)

1 10 2

2 34 3

1 12 2

2 65 1

2 15 3

2 43 1

1 13 3

2 51 2




Joint distribution (cont)

P(class size > 20) = 0.5

P(summer) = 1/3

P(class size > 20, summer) =0

Evaluation of classes

Time (regular =2, | Class size | Evaluation
summer =1) (1-3)

1 10 2

2 34 3

1 12 2

2 65 1

2 15 3

2 43 1

1 13 3

2 51 2




Joint distribution (cont)

P(class size > 20) = 0.5
P(eval = 1) = 2/9

P(class size > 20, eval = 1) = 2/9

Evaluation of classes

Time (regular =2, | Class size | Evaluation
summer =1) (1-3)

1 10 2

2 34 3

1 12 2

2 65 1

2 15 3

2 43 1

1 13 3

2 51 2




Chain rule

« The joint distribution can be specified in terms of
conditional probability:

P(A,B) = P(A|B)*P(B)

« Together with Bayes rule (which is actually derived from
it) this is one of the most powerful rules in probabilistic
reasoning




Axioms of probability
(Kolmogorov's axioms)

A variety of useful facts can be derived from just three
axioms:

. 0=sPA)=1
. P(true) =1, P(false) =0
. P(Av B)=P(A)+ P(B)—-P(A A B)



Axioms of probability
(Kolmogorov's axioms)

A variety of useful facts can be derived from just three
axioms:

. 0=sPA)=<1
2. P(true) =1, P(false) =0
3. P(Av B)=P(A) + P(B)-P(A A B)




Axioms of probability
(Kolmogorov's axioms)

A variety of useful facts can be derived from just three
axioms:

. 0=sPA)=1
. P(true) =1, P(false) =0
. P(Av B)=P(A)+ P(B)—-P(A A B)

P(Steelers win the 05-06 season) = 1



Axioms of probability
(Kolmogorov's axioms)

A variety of useful facts can be derived from just three
axioms:

. 0=sPA)=1
. P(true) =1, P(false) =0
. P(Av B)=P(A)+ P(B)—-P(A A B)




Axioms of probability
(Kolmogorov's axioms)

« A variety of useful facts can be derived from just three
axioms:

1. 0<P(A) =<1
2. P(true) =1, P(false) =0
3. P(Av B)=P(A)+P(B)-P(A AB)

There have been several
other attempts to provide a
foundation for probability
theory. Kolmogorov's
axioms are the most widely
used.




Using the axioms

 How can we use the axioms to prove that:

P(-A) = 1 - P(A)
?



Bayes rule

* One of the most important rules for Al usage.
* Derived from the chain rule:

P(A,B) =P(A | B)P(B)=P(B | A)P(A)

* Thus,
P(B| A)P(A)
P(A B) =
P(B)
Thomas Bayes was
an English
clergyman who set
out his theory of

probability in 1764.



Bayes rule (cont)

Often it would be useful to derive the rule a bit
further:

P(B|A)P(4) _ P(B|A)P(A)
P(B) EP(B | A)P(A)

/vP(B,A=1> P(B,A=0)

This results from:

T o B

P(4 B) =




Using Bayes rule

« Cards game:

Place your bet on the
location of the King!



Using Bayes rule

« Cards game:

Do you want to
change your bet?



Using Bayes rule

A B C
:
*
Bayes rule
o
L*+ii'1° vl

Computing the (posterior) pro#ability: P(C = k | selB)

(selB|C = k)P(C = k)

P(C =k|selB) = P(selB)

P(selB|C=k)P(C =k)

" P(selB|C = k)P(C = k) + P(selB| C =10)P(C = 10)



Using Bayes rule A B c
0
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P(C=k | selB) =

1/2 /

_ P(selB|C=k)P(C=k) B
~ P(selB |C =k)P(C =k)+P(selB|C =10)P(C=10) 1/3
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Joint distributions

« The probability that a set of random
variables will take a specific value is their

joint distribution.

Liked Slept P
* Requires a joint probability table to movie
specify the possible assignments 1 1 0.2
* The table can grow very rapidly ... 1 0 0.4
0 0 0.1
0 1 0.3

How can we decrease the number of columns in

the table?




Independence

 |n some cases the additional
information does not help

P(slept) = 0.4
P(slept|rain=1)=0.4

* In this case, the extra
knowledge about rain does not
change our prediction

« Slept and rain are independent!

Liked | Slept |raining [P
movie

1 1 1 0.05
1 0 1 0.1

0 0 1 0.025
0 1 1 0.075
1 1 0 0.15
1 0 0 0.3

0 0 0 0.075
0 1 0 0.225




Independence (cont.)

* Notation: P(S | R) = P(S)
« Using this we can derive the following:

-P(-S|R) = P(-$)
- P(S,R) = P(S)P(R)
-P(R|S)=P(R)



Independence

Independence allows for easier models, learning and
inference

For our example:
- P(raining, slept movie) = P(raining)P(slept movie)
- Instead of 4 by 2 table (4 parameters), only 2 are
required

- The saving is even greater if we have many more
variables ...

In many cases it would be useful to assume
independence, even if its not the case



Conditional independence

 Two dependent random variables may become
independent when conditioned on a third variable:

P(AB|C)=PA|C)P(B|C)
« Example

P(liked movie) = 0.5

P(slept) = 0.4

P(liked movie, slept) = 0.1

P(liked movie | long) = 0.4

P(slept | long) 0.6

P(slept, like movie | long) = 0.24

Given knowledge of length,
the two other variables
become independent



Bayesian networks

« Bayesian networks are directed graphs with
nodes representing random variables and
edges representing dependency assumptions
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Important points

Random variables
Chain rule
Bayes rule

Joint distribution, independence, conditional
independence



