
15-780: Graduate AI
Natural Language Processing
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Admin

Apologies for the late start to Tuesday’s 
lecture!
HW3 due today
HW4 out (due Tuesday, 11/13)
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Admin

Project proposals due Thursday, 11/8
Work in groups of 2
If you’re having trouble finding a partner, 
email thlin@cs by tomorrow (Friday)

include brief statement of interests
Anyone who emails will get the list of 
people looking for partners
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Project proposals

A good proposal answers:
What result do you hope to get?
Why is it interesting?
Why is it related to Grad AI?

Limit 1 page
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Admin

Midterm approaching fast!
In class, Thursday 11/15 (two weeks)
Review sessions: 11/12 and 11/13 in 
evening (time and place TBA)
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Admin

By request, we are also adding a hands-on 
practice session

scheduled for next Monday evening, 
time and place TBA over email

Idea: work through some larger example 
problems in detail
Not necessarily midterm-related
Email me requests for problem types
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Game 
example



A political game

C W O

C –1, 5 0, 0 –5, –3

W 0, 0 0, 0 –5, –3

O –3, –10 –3, –10 –8, –13
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A political game
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Figure 1: Equilibria of the repeated cooperation game.

much in an equilibrium as he can guarantee himself by acting selfishly (called
his safety value), and any possible vector of payoffs that satisfies this restriction
corresponds to an equilibrium.

Figure 1 illustrates the equilibria of the repeated cooperation game, whose
one-round payoffs are given in Table 1. The pentagon in the figure is the feasible
region—the set of all possible joint payoffs.2 The corners of the feasible region
correspond to the pure joint actions as labeled; e.g., the corner labeled WC
shows the payoff to each player when U plays W and L plays C. (Some corners
have multiple labels, since some sets of joint actions have the same payoffs.)
The dashed lines indicate the safety values: L will not accept less than −10,
and U will not accept less than −5. The stippled area (the intersection of the
feasible and individually rational sets) is the set of payoffs that can result from
equilibrium play.

Figure 1 demonstrates that there is more to cooperation than just equilib-
rium computation: the payoff vectors that correspond to equilibria (stippled
region) are a significant fraction of all payoff vectors (pentagon); so, neither
party can use the set of equilibria to place meaningful limits on the payoffs
that he will receive. Worse, each different equilibrium requires the agents to act
differently, and so the set of equilibria does not give the agents any guidance
about which actions to select.

2Here we show average payoff, but the situation is essentially the same for total discounted
future payoff.
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What if?

Didn’t know each other’s exact payoffs?
Couldn’t observe each other’s exact 
actions?
Actions altered state of world?
We’ll talk about some of these in later part 
of course
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Another 
example
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Let’s play the lottery

($6, .05; $91, .03; $99, .92) 
($6, .02; $8, .03; $99, .95)
Which would you pick?
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5%, 2% 3%, 3% 92%, 95%

Lottery 1
Lottery 2
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Rationality

People often pick 
($6, .05; $91, .03; $99, .92) 

over 
($6, .02; $8, .03; $99, .95)

But, note stochastic dominance
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Stochastic dominance

Birnbaum & Navarrete. Testing Descriptive Utility 
Theories: Violations of Stochastic Dominance and 

Cumulative Independence
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NLP
(thanks to Noah Smith)

(errors are my own)



Overview

Overview of trends and tradeoffs in NLP
Major issues in language processing
Discussion of example applications, 
problems & solutions

Statistical parsing
Machine translation
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Language is central to intelligence

One of the best ways to communicate with 
those pesky humans
One of the best ways to represent complex, 
imperfectly-defined concepts
One of the most flexible reasoning systems 
ever invented



Language shapes the way we think, and 
determines what we can think about.

 — Benjamin Lee Whorf 

Language is central to intelligence



NLP is Interdisciplinary

mathematics/machine 
learning/CS theory

linguistics cognitive
science

engineering

goal:  
perfectly 

model 
human 

language

goal:  
plausibly 

model 
human 

language 
(like 

humans)

goal:  build stuff that 
works

goal:  
understand 

formal 
properties
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NLP is hard!

Ambiguity at all levels
Many different styles of language
Language is productive
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Levels of Language

characters

words

sentences

documents

collections

sounds

words

utterances

conversations

Boundaries not 
always 

unambiguous!

(speech) (text)
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Where are the words?
世界人权宣言

联合国大会一九四八年十二月十日第217A(III)号决议通过并颁布
1948 年 12 月 10 日， 联 合 国 大 会 通 过 并 颁 布《 世 界 人 权 宣 

言》。 这 一 具 有 历 史 意 义 的《 宣 言》 颁 布 后， 大 会 要 求 所 有 

会 员 国 广 为 宣 传， 并 且“ 不 分 国 家 或 领 土 的 政 治 地 位 , 主 要 

在 各 级 学 校 和 其 他 教 育 机 构 加 以 传 播、 展 示、 阅 读 和 阐 

述。” 《 宣 言 》 全 文 如 下：
序 言

鉴 于 对 人 类 家 庭 所 有 成 员 的 固 有 尊 严 及 其 平 等 的 和 不 移 的 

权 利 的 承 认, 乃 是 世 界 自 由、 正 义 与 和 平 的 基 础,

鉴 于 对 人 权 的 无 视 和 侮 蔑 已 发 展 为 野 蛮 暴 行, 这 些 暴 行 玷 污 

了 人 类 的 良 心, 而 一 个 人 人 享 有 言 论 和 信 仰 自 由 并 免 予 恐 惧 

和 匮 乏 的 世 界 的 来 临, 已 被 宣 布 为 普 通 人 民 的 最 高 愿 望,
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Where are the morphemes?

İnsan hakları  evrensel beyannamesi
Önsöz

İnsanlık ailesinin bütün üyelerinde bulunan haysiyetin ve bunların eşit ve devir 
kabul etmez haklarının tanınması hususunun, hürriyetin, adaletin ve dünya 

barışının temeli olmasına,
İnsan haklarının tanınmaması ve hor görülmesinin insanlık vicdanını isyana 
sevkeden vahşiliklere sebep olmuş bulunmasına, dehşetten ve yoksulluktan 

kurtulmuş insanların, içinde söz ve inanma hürriyetlerine sahip olacakları bir 
dünyanın kurulması en yüksek amaçları oralak ilan edilmiş bulunmasına,
İnsanin zulüm ve baskıya karşı son çare olarak ayaklanmaya mecbur 

kalmaması için insan haklarının bir hukuk rejimi ile korunmasının esaslı bir 
zaruret olmasına,

Uluslararasında dostça ilişkiler geliştirilmesini teşvik etmenin esaslı bir zaruret 
olmasına,
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Which words are these?

24



Word Sense Disambiguation

… plant …
… workers at the plant …
… plant a garden …
… plant meltdown …
… graze … plant …
… house plant … 
… CIA plant …
… plant firmly on the ground …

pick a 
dictionary 
definition 
for each
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Language

Ambiguity at all levels
haven’t even gone above words yet—it 
gets worse!

Diversity of domains
New York Times v. Wall Street Journal
newspaper v. research paper
newspaper v. blog
blog v. conversation, chat, …
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Language is productive

New words appear all the time
Very many rare words, so it’s a common 
occurrence to see a rare word
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Zipf’s Law

Type: element of a set (e.g., vocabulary word)
Zipf: The most frequent types are extremely 
frequent, and there’s a long tail.

frequency × rank ≈ constant
First noticed for words; holds for pretty much 
everything in NLP.
Result: sparse data, generalization hard  
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Zipf’s Law
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Word Classes

Useful to abstract from the words themselves.
Nouns: { cat, dog, horse, pig, cookie, protest, … }
Verbs: { hunt, eats, kill, cook, animated, … } 
More verbs:  { dog, horse, pig, protest, … }
More nouns: { hunt, eats, kill, cook, … }
Adjectives:  { animate, funny, heavy-handed, … }
Linguist required:  { what, that, up, umm, … }
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Word Classes

Haven’t even gotten to fancier classes:
Animate: { horse, cat, professor, … }
Place: { New York, Wean 5409, under the 
boardwalk, … }
Intangible: { blue, filibuster, complexity, … }
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Goals

Given all of this complexity and ambiguity, 
we want to:

Understand
Respond
Translate
Classify
…
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Goals

For any of these goals, we need some deeper 
representation.

Two common levels beyond words:

Words  Syntax  Semantics

How do we get there?
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Syntax

First thought:  use lex/yacc to build a 
parser for a natural language just like for 
a programming language!

Need to know grammar of NL

Tremendous number of possible rules; 
no spec.

Zipf’s law attacks again.
Where is NL in the Chomsky Hierarchy?
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Chomsky Hierarchy

Unrestricted Turing machine

Context-sensitive
Nondeterministic 
linear-bounded 

automaton

Context-free Pushdown 
automaton

Regular Finite-state 
machine

Grammar type Machine type
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Chomsky Hierarchy

Some linguistic phenomena don’t exhibit very 
long-ranging influences.

Phonetics, phonology.
Speech recognition uses mostly finite-state 
models.

Linguists have used examples to demonstrate that 
there is 

arbitrary center-embedding (i.e., NL is not FS)
36



NL is not Finite-State

This is the cat.

This is the dog the cat chased.

This is the man the dog the cat chased bit.

This is the woman the man the dog the cat chased bit kissed. 
37



NL is not Finite-State

Si V1 Oj

Sk V2 tj

relative clause;
modifies Oj

Sl V3 tk

relative clause;
modifies Sk
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Chomsky Hierarchy

Some linguistic phenomena don’t exhibit very 
long-ranging influences.

Phonetics, phonology.
Speech recognition uses mostly finite-state 
models.

Linguists have used examples to demonstrate 
that there is 

arbitrary center-embedding (i.e., NL is not FS)
cross-serial dependencies (i.e., NL is not CF).  
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Chomsky Hierarchy

Many context-sensitive models of language 
have been proposed!
NLP still uses FS or CF models mostly, for 
speed and coverage.
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Syntax

First thought:  use lex/yacc to build a 
parser for a natural language just like for 
a programming language!
Where is NL in the Chomsky Hierarchy?

Context-sensitive, but we’ll pretend 
context-free.

Problem: ambiguity.
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Ambiguity in English

• IT KNOWS YOU LIKE YOUR MOTHER

• IRAQI HEAD SEEKS ARMS

• JUVENILE COURT TO TRY SHOOTING DEFENDANT

• KIDS MAKE NUTRITIOUS SNACKS

• BRITISH LEFT WAFFLES ON FALKLAND ISLANDS

• LITTLE HOPE GIVEN BRAIN-DAMAGED CHILD

• NEVER WITHHOLD HERPES INFECTION FROM 
LOVED ONE

• STOLEN PAINTING FOUND BY TREE
Thanks to:  J. Eisner, L. Lee 42



Syntactic Ambiguity

IT KNOWS YOU LIKE YOUR MOTHER

“that”

subj
subj

obj

p = You like your 
mother.

It knows p.
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Syntactic Ambiguity

IT KNOWS YOU LIKE YOUR MOTHER

subj

mod

obj arg

YOUR MOTHERIT KNOWS

subj obj

YOUR MOTHER KNOWS YOU

subj
obj

It knows your mother in a way 
p.

It knows you in way p.

Your mother knows 
you in a way p.

It knows you in way p.
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Semantic Ambiguity

IT KNOWS YOU LIKE

subj

mod

obj arg

YOUR MOTHER KNOWS YOU

subj
obj

the computer?
the same “it” that 

rains?
your bad habits?
your first word? 45



Pragmatics and World Knowledge

IT KNOWS YOU LIKE YOUR MOTHER

This statement isn’t meant literally!
Someone is trying to sell you something.
They are juxtaposing the product with a 
competitor’s product that is impervious to 
the user.
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Ambiguity

Headlines are more ambiguous than most 
text
But, with any broad-coverage grammar, 
almost any sentence of reasonable 
complexity will be ambiguous, often in 
ways humans will never notice
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Tradeoffs

words syntax semantics pragmatics

pre
cis
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,
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coverage, 

efficiency
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How can we handle ambiguity?

Probability
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The Revolution

In 1980s and 1990s, NLP started borrowing 
from speech recognition, information theory, 
and machine learning.

Probability models, including weighted 
grammars

Use of statistics on data (corpora)
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The Revolution

The new paradigm involves learning to 
accomplish tasks accurately from data.

How much data?  What kind?
Same tradeoffs as before, and some new 
ones!
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Example: Statistical Parsing

Input:  a sentence
Output:  a parse tree (usually labeled constituents)

Evaluation:  compare to gold standard tree, 
count erroneous constituents.*
Before 1993:  write rules by hand.
1993:  Penn Treebank

A million words’ worth of Wall Street Journal 
text, annotated by linguists with a consensus 
structure
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How We Do It

Assume a model p(t, w).

Probability distribution over discrete 
structures (trees and sequences).
Starting point:  Probabilistic Context-
Free Grammar (aka Stochastic CFG)

53



Probabilistic CFG

Just like CFGs, but with probability 
distribution at each rewrite.

S
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Probabilistic CFG

S
p(NP VP . | S)  = 0.44

p(VP ! | S)   = 0.26
p(Is NP VP ? | S) = 0.27

p(NP . | S)  = 0.01
…

VP !

Just like CFGs, but with probability 
distribution at each rewrite.
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Probabilistic CFG

S
p(V | VP)   = 0.24

p(V NP | VP)   = 0.23
p(V PP | VP)  = 0.21

p(V NP PP | VP) = 0.16
…

VP !
V PP

Just like CFGs, but with probability 
distribution at each rewrite.
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Probabilistic CFG

S
p(eat | V)  = 0.03
p(buy | V)  = 0.03
p(sell | V)  = 0.03

p(implement | V) = 0.02
…

p(listen | V)  = 0.01
…

VP !
V PP

listen

Just like CFGs, but with probability 
distribution at each rewrite.
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Probabilistic CFG

S
p(to NP | PP)  = 0.80

p(up | PP)  = 0.02
…VP !

V PP
listen NPto

Just like CFGs, but with probability 
distribution at each rewrite.
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Probabilistic CFG

S
p(him | NP)  = 0.06
p(us | NP)  = 0.02

…
p(me | NP)  = 0.01

VP !
V PP

listen NPto

me

Just like CFGs, but with probability 
distribution at each rewrite.
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Probabilistic CFG

S
VP !

V PP
listen NPto

me

p

=    p(VP ! | S)
   × p(V PP | VP)
   × p(listen | V)

   × p(to NP | PP)
   × p(me | NP)

=    0.26
   × 0.21
   × 0.01
   × 0.80
   × 0.01

= 0.0000004368

Just like CFGs, but with probability 
distribution at each rewrite.
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How We Do It

Assume a model p(t, w).

Train the model on the Treebank.
To parse infer the best tree:  maxt p(t | w)

Discrete optimization problem
Or, infer properties of posterior over trees: 
P(words 5–9 are a VP)

Probabilistic inference problem
61



Problem

Problem: possible t is O(exp |w|)

Solution: dynamic programming
Similar to forward-backward or Viterbi 
algorithms for HMMs
Analog of forward-backward: inside-outside
Analog of Viterbi: PCKY (Probabilistic 
Cocke-Kasami-Younger)—will show here
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Optimization

For simplicity, assume grammar in 
Chomsky normal form
All productions are

A → BC

A → word

A → ε (nothing)
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Chomsky normal form example

S → NP VP

VP → V NP

NP → D N

D → the (0.6) | those (0.4)

N → cat(s) (0.3) | dog(s) (0.7)

V → hear(s) (0.9) | dog(s) (0.1)

the cat dogs the dogs
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Optimization

Given a string of nonterminals:
the cat dogs the dogs

And a probabilistic context free grammar 
(previous slide)
Figure out most likely parse
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Dynamic programming

String of words X
For nonterminal N, write

Pmax(N, X) = max P(t, X)

Similarly, for production A → B C, write

Pmax(A → B C, X) = max P(t, X)

t = 
N

t = 
A

B C
66



Dynamic programming

Now, we have
Pmax(VP, X)  =    

max      Pmax((VP → …), X) P(VP → …)

Pmax((VP → V NP), X) = 

max    Pmax(V, Y) Pmax(NP, Z)
X=YZ

VP → …

67



Dynamic programming

Build a table P(i, j, k) = probability of 
generating the substring from word i to 
word j from nonterminal k using best 
possible tree = Pmax(k, X[i..j]) 
In our example (5 words, 6 nonterminals), 
this is double[5, 5, 6]

some elements unused (triangle array)
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Dynamic programming

ways of 
generating 
symbol 2

ways of 
generating 

symbols 2–4

the         cat         dogs         the         dogs
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Dynamic programming

D .6 N .3 N .7, V .1 D .6 N .7, V .1

the         cat         dogs         the         dogs

D → the (0.6) | those (0.3)

N → cat(s) (0.3) | dog(s) (0.7)

V → hear(s) (0.9) | dog(s) (0.1)

S → NP VP

VP → V NP

NP → D N
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Dynamic programming

NP .18 NP .42

D .6 N .3 N .7, V .1 D .6 N .7, V .1

the         cat         dogs         the         dogs

D → the (0.6) | those (0.3)

N → cat(s) (0.3) | dog(s) (0.7)

V → hear(s) (0.9) | dog(s) (0.1)

S → NP VP

VP → V NP

NP → D N
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Dynamic programming

NP .18 NP .42

VP .042

D .6 N .3 N .7, V .1 D .6 N .7, V .1

the         cat         dogs         the         dogs

D → the (0.6) | those (0.3)

N → cat(s) (0.3) | dog(s) (0.7)

V → hear(s) (0.9) | dog(s) (0.1)

S → NP VP

VP → V NP

NP → D N
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Dynamic programming

NP .18 NP .42

VP .042

D .6 N .3 N .7, V .1 D .6 N .7, V .1

the         cat         dogs         the         dogs

D → the (0.6) | those (0.3)

N → cat(s) (0.3) | dog(s) (0.7)

V → hear(s) (0.9) | dog(s) (0.1)

S → NP VP

VP → V NP

NP → D N
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Dynamic programming

NP .18 NP .42

VP .042

S .0076

D .6 N .3 N .7, V .1 D .6 N .7, V .1

the         cat         dogs         the         dogs

D → the (0.6) | those (0.3)

N → cat(s) (0.3) | dog(s) (0.7)

V → hear(s) (0.9) | dog(s) (0.1)

S → NP VP

VP → V NP

NP → D N
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More Powerful Models

Link words to their arguments:  
lexicalization

Smooth model for better generalization
Train models using more sophisticated 
machine learning
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Applications

Machine translation

Speech recognition, synthesis, dialog

Information Retrieval

Question Answering

Sentiment Analysis

Spelling/Grammar Checking

Digitization (Optical Character Recognition)

Natural Language Interfaces

Language Education
76



Example:  Statistical Translation

Input:  Chinese sentence
Output:  English translation
Evaluation:  how close is output to a reference 
translation?  (controversial how to measure this!)

Before 1990:  write rules by hand.
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Example:  Statistical Translation

Predominant approach now:  learn to translate 
from a parallel corpus of examples.

Parliamentary proceedings from bilingual countries 
(Canada, Hong Kong) or the EU or UN; also laws
News from agencies that publish in multiple 
languages
Nowadays:  tens-to-hundreds of millions of words 
each side

78



Translation by Modeling

Warren Weaver (1948):
This Russian document is actually an encoded English 
document!  That is, the writer was thinking in English, and 

somehow the message was garbled into this strange 
“Russian” stuff.  All we have to do is decode!

Modern MT:  model the source (English 
sentences) and the channel (translation):

      

€ 

) 
e c( )← argmax

e

p ec( ) = argmax
e

p ce( ) ⋅p e( )
p c( )

= argmax
e

p ce( ) ⋅p e( )
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Three Statistical MT Problems

Build a language model over English sentences
Learn from English data!

Build a translation model that turns English 
into Chinese

Learn from parallel data!
Build a decoder that finds the best English 
sentence, given Chinese input.

NP hard for many models!
Difficult search problem.
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Translational Structure

Klimatizovaná jídelna, světlá místnost pro snídaně.

Air-conditioned dining room, well-lit breakfast room.

?
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Translational Structure

Word-to-word correspondences?  

Klimatizovaná jídelna, světlá místnost pro snídaně.

Air-conditioned dining room, well-lit breakfast room.
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Translational Structure

Word-to-word correspondences?
Phrases?  

Klimatizovaná jídelna, světlá místnost pro snídaně.

Air-conditioned dining room, well-lit breakfast room.
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Translational Structure

Word-to-word correspondences?
Phrases?
Target tree?  

Klimatizovaná jídelna, světlá místnost pro snídaně.

Air-conditioned dining room, well-lit breakfast room.
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Translational Structure

Word-to-word correspondences?
Phrases?
Target tree?
Synchronous tree?  

Klimatizovaná jídelna, světlá místnost pro snídaně.

Air-conditioned dining room, well-lit breakfast room.
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Translational Structure

Word-to-word correspondences?

Phrases?

Source tree?

Synchronous tree?

Synchronous dependency tree?  

Klimatizovaná jídelna, světlá místnost pro snídaně.

Air-conditioned dining room, well-lit breakfast room.
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Translational Structure

Word-to-word correspondences?

Phrases?

Source tree?

Synchronous tree?

Synchronous dependency tree?

Czech-prime?  

Klimatizovan- jídelna, světl- snídan- místnost
Klimatizovaná jídelna, světlá místnost pro snídaně.

Air-conditioned dining room, well-lit breakfast room.
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Statistical MT

As before:
Ambiguity at all levels
Tradeoffs

Will not discuss the models or how they are 
learned, but lots of interesting stuff here…
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Current Hot Areas

Domain:  most text ain’t newstext!
Biomedical text

Blogs

Conversation

Multilingual NLP:  most languages are not like English!

Models and representations (e.g., features) for deeper 
understanding (e.g., sentiment) or simply better accuracy

Learning from unannotated data (or less-annotated 
data, or less annotated data)

How should we evaluate NLP systems?
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Summary

Language is hard because it is productive and 
ambiguous on all levels.

NLP is about trading off between
Accuracy and coverage

Speed and expressive power

Human and computational effort

General mathematical formalisms and specific applications

• Optimization, search, and probabilistic inference 
methods underlie much of modern NLP (e.g., dynamic 
programming, training and applying models).
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Courses of Interest (11nnn)

Language and Statistics (I and II!)
Algorithms in NLP
Grammars and Lexicons
Information Extraction
Information Retrieval
Machine Translation
Speech Recognition and Understanding

11-762 (Noah Smith)

Also 11-411 (u-
grad / masters)
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